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Most mathematical sciences rest upon quantitative models, and the theory
of measurement is devoted to making explicit the qualitative assumptions that
underlie them. This is accomplished by first stating the qualitative assumptions
– empirical laws of the most elementary sort – in axiomatic form and then
showing that there are structure preserving mappings, often but not always
isomorphisms, from the qualitative structure into a quantitative one. The set
of such mappings forms what is called a “scale of measurement”.

A theory of the possible numerical scales plays an important role through-
out measurement – and therefore throughout science. Just as the qualitative
assumptions of a class of structures narrowly determine the nature of the possi-
ble scales, so also the nature of the underlying scales greatly limits the possible
qualitative structures that give rise to such scales. Two major themes of this
entry reflect research results of the 1970s and 80s: (i) the possible scales that
are useful in science are necessarily very limited and, (ii) once a type of scale
is selected (or assumed to exist) for a qualitative structure, then a great deal
is known about that structure and its quantitative models. A third theme con-
cerns applications of these ideas to the behavioral sciences, especially to utility
theory and psychophysics from 1980 onward.

There are several general references to the axiomatic theory. Perhaps the
most elementary and the one with the most examples is Roberts (1979). Pfan-
zagl (1968) and Krantz et al. (1971/1989) are on a par, with the latter more
comprehensive. Narens (1985), which is the mathematically most sophisticated,
covers much of the basic material mentioned here. Later additions are: Luce, et
al. (1990), which has much in common with Narens (1985); Suppes, et al. (1989),
which is focused on geometric representations and probability generalizations;
Narens (in press), which is a more narrowly focused introductory book with
examples mainly from psychophysics; and Suppes (2002). Mostly, we cite only
references not included in one of these surveys.

1. Axiomatizability

The Qualitative Setup. The qualitative situation is usually conceptualized as
a relational structure X = 〈X,S0, S1, . . . 〉, where the S0, S1, . . . are finitary
relations on X. The number of relations can be either finite or infinite, but in
applications almost always finite. X is called the domain of the structure and
the Si its primitive relations. In most applications, S0 will be some type of
ordering relation that is usually written as %. The following are some examples
of qualitative structures used in measurement situations.

The first, goes back to Helmholtz (see section 4). It has for its domain a
set X of objects with the properties like those of mass. There are two primitive
relations. The first, %, is a binary ordering according to mass (which may be
determined, for example, by using an equal-arm pan balance so that x % y
means that the pans either remain level or the one containing x drops). The
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second is a binary operation ◦, which formally is a ternary relation. For mass it
is empirically defined as follows: if x and y are placed in the same pan and are
exactly balanced by z, then we write x ◦ y ∼ z, where ∼ means equivalence in
the attribute. Other interpretations of the primitives of 〈X,%, ◦〉 can be found
in the above references. Axiomatic treatments of the structure 〈X,%, ◦〉 are
discussed in section 4.

A second example is from economics. Suppose that C1, . . . , Cn are sets each
consisting of different amounts of a commodity, and % is a preference order-
ing exhibited by a person or an institution over the set of possible commodity
bundles C =

∏
i Ci. 〈C,%〉 is called a conjoint structure, and axioms about

it are given that among other things induce an ordering, %i, of an individual’s
preferences for the commodities associated with each component i.

A third example, due to B. de Finetti, has as its domain an algebra of subsets,
called “events”, of some non-empty set Ω. The primitives of the structure consist
of an ordering relation % of “at least as likely as”, the events Ω and ∅ and the
set theoretical operations of union ∪, intersection ∩, and complementation ¬.
The relational structure

P = 〈E ,%,Ω,∅,∪,∩,¬〉 (1)

is intended to characterize qualitatively probability-like situations. The primi-
tive % can arise from many different processes, depending upon the situation. In
one, which is of considerable importance to Bayesian probability theorists and
statisticians, % represents a person’s ordering of events according to how likely
they seem, using whatever basis he or she wishes in making the judgements.
In such a case, P is thought of as a subjective or personal probability structure.
In another, % is an ordering of events based on some probability model for the
situation (possibly one coupled with estimated relative frequencies), as in much
of classical probability theory.

2. Ordered Structures

Weak Order, Dedekind Completeness, and Unboundedness. Two types of “quan-
titative” representations have played a major role in science: systems of coordi-
nate geometry and the real number system (the latter being the one-dimensional
specialization of the former). Results about the former are in Suppes et al.
(1989), but our focus here is the latter. The absolutely simplest case, included
in all of the above examples, is the order-preserving representation φ of 〈X,%〉
into 〈R,≥〉, where R denotes the real numbers. An immediate implication is
that % must be transitive, reflexive, and connected (for all x and y, either x % y
or y % x). Such relations are given many different names including weak order.
An antisymmetric weak order is called a total or simple order. There has been
much empirical controversy about the transitivity of %, with the most recent
Bayesian analyses favoring transitivity of � but not of ∼ (Myung, Karabatsos,
& Iverson, 2005). Some doubt has been expressed about completeness. Never-
theless, most of the well-developed measurement-theoretic techniques assumes
both the completeness and transitivity of % as idealizations.
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G.Cantor showed that for 〈X,%〉 to be so represented, necessary and suf-
ficient conditions are that % be a weak order and that there be a finite or
countable subset Y of X that is order dense in X (i.e., for each x � z there
exists a y in Y such that x % y % z. For many purposes, this subset plays the
same role as do the rational numbers within the system of real numbers.

In order for the representation to be onto either 〈R,≥〉 or 〈R+,≥〉, where
R+ denotes the positive real numbers, which often happens in physical measure-
ment, two additional conditions are necessary and sufficient: Dedekind complete-
ness (each non-empty bounded subset of X has a least upper bound in X) and
unboundedness (there is neither a least nor a greatest element).

In measurement axiomatizations, one usually does not postulate a countable,
order-dense subset, but derives it from axioms that are intuitively more natural.
For example, with a binary operation of combining objects, order density follows
from a number of properties including an Archimedean axiom which states in
some fashion that no object is either infinitely larger than or infinitesimally
close to another object. When the structure is Dedekind complete and the
operation is monotonic, it is also Archimedean. Dedekind completeness and
Archimedeaness are what logicians call “second order axioms,” and in principle
they are incapable of direct empirical verification.

The most fruitful and intensively examined measurement structures are those
with a weak ordering % and an associative, positive binary operation ◦ that is
strictly monotonic (x % y iff x ◦ z % y ◦ z). They have been the basis of much
physical measurement. However, for much of the 20th century, they played little
role in the behavioural and social sciences but, as seen in sections 6 and 7, in
the past 20 years such operations have come to be useful. The development of
a general non-associative and non-positive (x % x ◦ y for some x and y) theory
began in 1976, and it is moderately well understood in certain situations having
many symmetries1. This, and its specialization to associative structures, is the
focus of section 3.

Representations and Scales. A key concept in the theory of measurement is
that of a representation, which is defined to be a structure preserving map φ of
the qualitative, weakly ordered relational structure X into a quantitative one,
R, in which the domain is a subset of the real numbers. Representations are
either isomorphisms or homomorphisms. The latter are used in cases where
equivalences play an important role (e.g., conjoint structures where trade-offs
between components are the essence of the matter), in which case equivalence
classes of equivalent elements are assigned the same number. We say φ is a
R-representation for X .

From 1960 through 1990, measurement theorists were largely focused on
certain types of qualitative structures for which numerical representations exist.
The questions faced are two: The first, the “existence” problem, is to estab-
lish that the set of R-representations is non-empty for X . Cantor’s conditions
above establish existence of a numerical representation of any weak order. The

1Technically, automorphisms of the structure are isomorphic transformations of the struc-
ture onto itself.
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second, the “uniqueness”, problem is to describe compactly the set of all R-
representations. Several examples are cited. Since 1990, the focus has been
increasingly on applying these insights to behaviour. We cite aspects of utility
theory, global psychophysics, and probability.

For the qualitative mass structure X = 〈X,%, ◦〉 described previously, the
qualitative representing structure is taken to be R = 〈R+,≥,+〉 where ≥ and
+ have their usual meanings in R+. The set of R−representations of X consist
of all functions φ from X into R+ such that for each x and y in X,

(i) x % y iff φ(x) ≥ φ(y), and

(ii) φ(x ◦ y) = φ(x) + φ(y).

Such a function is called a homomorphism for X , and the set of all of them
is called a scale (for X ). In addition to Helmholtz, others – including O. Hölder,
P. Suppes, Luce and A. A. J. Marley, and J.-C. Falmagne – have stated axioms
about the primitives that are sufficient to show the existence of such homomor-
phisms and to show the following uniqueness theorem: Any two homomorphisms
φ and ψ are related by positive multiplication, that is, there is some real r > 0
such that ψ = rφ. In the language introduced by S. S. Stevens (1946), such a
form of measurement is said to form a “ratio scale”. For cases where ◦ is an op-
eration (defined for all pairs), F. S. Roberts (1979) and Luce and Narens (1985)
gave necessary and sufficient conditions for such a representation. Such a com-
plete characterization as this one is rather unusual in measurement; sufficient
conditions are far more the norm. Often they entail structural assumptions,
such as a solvability condition, as well as necessary ones.

Representations of the structure C = 〈
∏

i Ci,%〉 of commodity bundles are
usually taken in economics to be n-tuples 〈φ1, ..., φn〉 of functions, where φi

maps Ci into R+, such that for each xi and yi in Ci, i = 1, . . . , n,

(x1, ..., xn) % (y1, ..., yn) iff
∑

i

φi(xi) ≥
∑

i

φi(yi) . (2)

In the measurement literature such a conjoint representation is called “additive”.
G. Debreu, Luce and J. W. Tukey, D. Scott, A. Tversky and others, gave axioms
about C for which existence of an additive representation can be shown, and
such that any two representations 〈φ1, ..., φn〉 and 〈ψ1, ..., ψn〉 are related by
affine transformations of the form ψi = rφi + si, i = 1, ..., n, r > 0. Note that
r is common to all components. In Stevens’ nomenclature, the set of such
representations ψi for each fixed i are said to form an “interval scale”.

In the example of the subjective probability structure, Equation 1, the usual
sort of representation is a probability function P from E into [0, 1], such that,
for all A,B in E ,

(i) P (Ω) = 1 and P (∅) = 0,

(ii) A % B iff P (A) ≥ P (B), and
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(iii) if A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

Unlike the previous two examples, here any two representations are identical,
which scales Stevens called “absolute”. Such a scale might be appropriate for
representing a qualitative structure describing a relative frequency approach to
probability. However, for subjective probability, it is better to view P as being
a representation of the bounded ratio scale {rP | r > 0} that is normalized by
setting the bound, Ω, to be 1 = rP (Ω).

A number of authors have given sufficient conditions in terms of the primi-
tives for P to exist. Fine (1973) gave the first good, early summary of a variety of
approaches to probability. Additional approaches to qualitative and subjective
probability can be found in Narens (submitted).
Interlocked Measurement Structures. A very common, and fundamentally im-
portant, feature of measurement is the existence of two or more ways to manip-
ulate the same attribute. Again, mass measurement is illustrative. The mass
order 〈X,%〉 is determined as above. Mass can be manipulated in at least two
ways by varying volumes and/or substances. Let 〈V,%′, ◦V 〉 be a structure for
combining volumes, where V is a set of volumes and ◦V is a strictly monotonic,
positive, and associative operation over V , and let X = V × S be a structure
of masses, where S is a set of homogeneous substances of various densities.
(v, s) is interpreted as an object of volume v filled with substance s and that,
therefore, has mass. By definition, ◦V is the operation on V × {s} such that
(v, s) ◦V (v′, s) = (v ◦V v′, s). The first manipulation is to vary % via volume
concatenation of a single homogeneous material s, 〈V × {s},%, ◦V 〉. The sec-
ond is to manipulate the conjoint trade-off between volumes and substances,
〈V × S,%〉. Let m and m∗ be the resulting representations of mass which, be-
cause they both preserve %, they must be strictly monotonically related. The
ordering interlock alone is insufficient to develop measurement as was done in
classical physics and as reflected in the familiar structure of physical units. Com-
parable developments are now beginning to appear in the behavioral and social
sciences. The two structures must be interlocked beyond %. Such interlocks are
often types of distribution laws. In the mass case, the distributive interlock is:
For u, v ∈ V and r, s ∈ S,

(u, r) ∼ (v, s) and (u′, r) ∼ (v′, s) imply (u ◦V u′, r) ∼ (v ◦V v′, s) .

For much more detail, see Luce et al. (1990). Such laws are the source of the
structure reflected in the units of physical measurement that are used and un-
derlie dimensional analysis (Krantz et al., 1971; Luce et al., 1990; Narens, 2002).

Typically, one is able to use the two separate numerical representations to
reduce the interlock to solving a functional equation.2

2A functional equation resembles a differential one in that its solutions are the unknown
functions satisfying the equation. It is unlike a differential equation in that no derivatives
are involved; rather the equation relates the value of the function at several values of the
independent variable. See Aczél (1966, 1987) for a general introduction and classical examples
of functional equations. Some arising in the behavioural and social sciences were novel and
have required the aid of specialists to solve.
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Behavioural examples of interlocked structures are cited in sections 6 and 7.

Empirical Usefulness of Axiomatic Treatments. One, seemingly under appreci-
ated, advantage of a measurement approach to some scientific questions is that
it offers an alternative way of testing quantitative models other than attempting
to fit the representation to data and to evaluate it by a measure of goodness
of fit. Because representations, such as utility and subjective probability, in
general have free parameters and often free functions, estimation is necessary.
In contrast, the axioms underlying such representations are (usually) parameter
free. Testing the axioms often makes clear the source of a problem, thereby giv-
ing insight into what must be altered. Not everyone values the overall axiomatic
(as compared to an analytic mathematical) approach to scientific questions; in
particular, Anderson (1981, pp. 347–56) has sharply attacked it.

A familiar economic example arose in the theory of subjective expected util-
ity (Fishburn, 1970; Savage, 1954). In its simplest form the domain is gambles
of the form x◦Ay, meaning that x is the consequence attached to the occurrence
of the chance event A, whereas y is the consequence when the chance outcome
is ¬A. The x and y may be pure consequences or may be themselves gambles,
and the theory postulates a preference ordering % over the pure consequences
and gambles constructed from pure consequences and gambles. Classical axiom-
atizations establish conditions on preferences over gambles so that there exists
a probability measure P on the algebra of events, as in a probability structure,
and a “utility function” U over the gambles such that U preserves % and

U(x ◦A y) = P (A)U(x) + [1− P (A)]U(y) . (3)

A series of early empirical studies (for summaries see Allais and Hagen, 1979, and
Kahneman and Tversky, 1979) made clear that this representation, which can
be readily defended on grounds of rationality, fails to describe human behaviour.
Among its axioms, the one that appears to be the major source of difficulty is
the “extended sure-thing principle”. It may be stated as follows: For events A,
B and C, with C disjoint from A and B,

x ◦A y % x ◦B y iff x ◦A∪C y % x ◦B∪C y . (4)

It is easy to verify that Equation 3 implies equation Equation 4, but people
seem unwilling to abide by Equation 4. Any attempt at a descriptive theory
must abandon it (see below).
Non-Uniqueness of Axiom Systems. The isolation of properties in the axiomatic
approach has an apparently happenstance quality because the choice of quali-
tative axioms is by no means uniquely determined by the representation. Any
infinite structure has an infinity of equivalent axiom systems, and it is by no
means clear why we select the ones that we do. It is entirely possible for a
descriptive failure to be easily described in one axiomatization and to be to-
tally obscure in another. Thus, some effort is spent on finding alternative but
equivalent axiomatizations.

A related use of axiomatic methods, including the notion of scale (see Repre-
sentations and Scales above and section 3) is to study scientific meaningfulness,
which is treated under Meaningfulness and Invariance.
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3. Scale Types

Classification. As was noted in the examples, scale type has to do with the
nature of the set of maps from one numerical representation of a structure
into all other equally good representations, in a particular numerical structure
such as the multiplicative real numbers. For some fixed numerical structure
R, a scale of the structure X is the collection of all R-representations of X .
Much the simplest case, the one to which we confine most of our attention,
occurs when X is totally ordered, the domain of R is either R or R+, and
the R-representations are all onto the domain and so are isomorphisms. Such
scales are then usually described in terms of the (mathematical) group of real
transformations that take one representation into another. As Stevens noted,
four distinct groups of transformations have appeared in physical measurement:
any strictly monotonic function, any linear function rx+s, r > 0, any similarity
transformation rx, r > 0, and the identity map. The corresponding scales are
called ordinal, interval, ratio, and absolute. (Throughout this entry, although
not in all of the literature, ratio scales are assumed to be onto R+ thereby ruling
out cases were an object maps to 0.)

A property of the first three scale types, called homogeneity, is that for each
element x in the qualitative structure and each real number r in the domain
of R, some representation maps x into r. Homogeneity, which is typical of
physical measurement, plays an important role in formulating many physical
laws. Two general questions are: What are the possible groups associated with
homogeneous scales, and what are the general classes of structures that can are
represented by homogeneous scales?

It is easiest to formulate answers to these questions in terms of automor-
phisms (= symmetries), that is, isomorphisms of the qualitative structure onto
itself. The representations and the automorphisms of the structure are in one-
to-one correspondence, because if φ and ψ are two representations and juxta-
position denotes function composition, then ψ−1φ is an automorphism of the
structure, and if φ is a representation and α is an automorphism, then ψ = φα
is a representation.

It is not difficult to see that homogeneity of a scale simply corresponds
to there being an automorphism that takes any element of the domain of the
structure into any other element. To make this more specific, for M a positive
integer, X is said to be M -point homogeneous if and only if each strictly ordered
set of M points can be mapped by an automorphism onto any other strictly
ordered set of M points. A structure that fails to be homogeneous for M = 1
is said to be 0-point homogeneous; one that is homogeneous for every positive
integer M is said to be ∞-point homogeneous.

A second important feature of a scale is its degree of redundancy, formulated
as follows: a scale is said to beN -point unique, whereN is a non-negative integer
if and only if for every two representations φ and ψ in the scale that agree at
N distinct points, then φ = ψ. By this definition, ratio scales are 1-point
unique, interval scales are 2-point unique, and absolute scales 0-point unique.
Scales, such as ordinal ones, that take infinitely many points to determine a
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representation are said to be ∞-point unique. Equally, we speak of the structure
being N -point unique if and only if every two automorphisms that agree at N
distinct points are identical.

The abstract concept of scale type can be given in terms of these concepts.
The scale type of X is the pair (M,N) such that M is the maximum degree of
homogeneity and N is the minimum degree of uniqueness of X . For the types
of cases under consideration, it can be shown that M ≤ N . Ratio scales are
of type (1, 1) and interval scales of type (2, 2). Narens (1981a,b) showed that
the converses of both statements are true. And Alper (1987) showed that if
M > 0 and N < ∞, then N = 1 or 2. The group in the (1, 2) case consists of
transformations of the form rx+ s, where s is any real number and r is in some
non-trivial, proper subgroup of the multiplicative group 〈R+, ·〉. One example
is r = kn, where k > 0 is fixed and n ranges over the integers. So a structure
is homogeneous if and only if it is of type (1, 1), (1, 2), (2, 2), or (M,∞). The
(M,∞) case is not fully understood. Ordinal scalable (∞,∞) structures appear
frequently in science, and a (1,∞) structure for threshold measurement appears
in psychophysics. We focus here on the (1, 1), (1, 2), (2, 2) cases. For detailed
references, see Luce et al. (1990), Narens (1985), or Narens (in press).
Unit Representations of Homogeneous Concatenation Structures. The next
question is: Which structures have scales of these types? Although the full
answer is unknown, it is completely understood for ordered structures with bi-
nary operations. This is useful because, as was noted, the associative form of
these operations play a central role in much physical measurement and, as we
shall see below, both associative and non-associative forms arise naturally in
two distinct ways of interest to behavioural and social scientists.

Consider real concatenation structures of the form R = 〈R+,≥, ∗′〉 where ≥
has its usual meaning and we have replaced + by a general binary, numerical
operation ∗′ that is strictly monotonic in each variable. The major result is that
if X satisfies M > 0 and N < ∞ – a sufficient condition for finite N is that
∗′ be continuous (Luce and Narens, 1985) – then the structure can be mapped
canonically into an isomorphic one of the form 〈R+,≥, ∗〉, with a function f
from R+ onto R+ such that

(i) f is strictly increasing,

(ii) f(x)/x is strictly decreasing, and

(iii) for all x, y in R+, x ∗ y = yf(x/y)

(Cohen and Narens, 1979).
This type of canonical representation, which is called a unit representation,

is invariant under the similarities of a ratio scale, that is, for each positive real
r,

rx ∗ ry = ryf(rx/ry) = ryf(x/y) = r(x ∗ y) .

The two most familiar examples of unit representations are ordinary additivity,
for which f(z) = 1+z and so x∗y = x+y, and bisymmetry, for which f(z) = zc,
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c ∈ (0, 1), and so x ∗ y = xcy1−c. Situations where such representations arise
are discussed later.

A simple invariance property of the function f corresponds to the three finite
scale types (Luce and Narens, 1985). Consider the values of ρ > 0 for which
f(xρ) = f(x)ρ for all x > 0. The structure is of scale type (1, 1) if and only
if ρ = 1; of type (1, 2) if and only if for some fixed k > 0 and all integers n,
ρ = kn; and of type (2, 2) if and only if there are constants c and d in (0, 1)
such that

f(z) =
{

zc, z ≥ 1
zd, z < 1 .

If, as is the usual practice in the social sciences (see subjective expected utility,
section 6), but not in physics, the above representation is transformed by by
taking logarithms, it becomes a weighted additive form on R:

x ∗ y =
{

cx+ (1− c)y, x ≥ y
dx+ (1− d)y, x < y .

That representation is called dual bilinear and the underlying structures are
called dual bisymmetric (when c = d, the “dual” is dropped). For references see
Luce et al. (1990).

4. Axiomatization of Concatenation Structures

Given this understanding of the possible representations of homogeneous,
finitely unique concatenation structures, it is natural to return to the classical
question of axiomatizing the qualitative properties that lead to them. Until the
1970s, the only two cases that were understood axiomatically were those leading
to additivity and averaging (see below). We now know more, but our knowledge
remains incomplete.

Additive Representations. The key mathematical result underlying extensive
measurement, due to O. Hölder, states that when a group operation and a total
ordering interlock so that the operation is strictly monotonic and is Archimedean
in the sense that sufficient copies of any positive element (i.e., any element
greater than the identity element) will exceed any fixed element, then the group
is isomorphic to an ordered subgroup of the additive real numbers. Basically,
the theory of extensive measurement restricts itself to the positive subsemigroup
of such a structure. Extensive structures can be shown to be of scale type (1, 1).
Various generalizations involving partial operations (defined for only some pairs
of objects) have been developed. (For a summary, see Krantz et al., 1971, chs
2, 3, and 5; Luce et al., 1990, ch 19). Not only are these structures with partial
operations more realistic, they are essential to an understanding of the partial
additivity that arises in such cases as probability structures. They can be shown
to be of scale type (0, 1). Michell (1999) gives an alternative perspective on
measurment in the behavioural sciences and a critique of axiomatic measurement
approaches.
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The representation theory for extensive structures not only asserts the exis-
tence of a numerical representation, but provides a systematic algorithm (involv-
ing the Archimedean property) for constructing one to any preassigned degree
of accuracy. This construction, directly or indirectly, underlies the extensive
scales used in practice.

The second classical case, due to J. Pfanzagl, leads to weighted average repre-
sentations. The conditions are monotonicity of the operation, a form of solvabil-
ity, an Archimedean condition, and bisymmetry, (x◦u)◦(y◦v) ∼ (x◦y)◦(u◦v),
which replaces associativity. One method of developing these representations
involves two steps: first the bisymmetric operation is recoded as a conjoint one
(see section 5) as follows: (u, v) % (x, y) iff u◦v % x◦y; and second, the conjoint
structure is recoded as an extensive operation on one of its components. This re-
duces the proof of the representation theorem to that of extensive measurement,
that is to Hölder’s theorem, and so it too is constructive.

Non-Additive Representations. The most completely understood generaliza-
tion of extensive structures, called positive concatenation structures or PCSs
for short, simply drops the assumption of associativity. Narens and Luce (see
Narens, 1985; Luce et al., 1990, ch 19) showed that this was sufficient to get
a numerical representation and that, under a slight restriction which has since
been removed, the structure is 1-point unique, but not necessarily 1-point ho-
mogeneous. Indeed, Cohen and Narens (1979) showed that the automorphism
group is an Archimedean ordered group and so is isomorphic to a subgroup of
the additive real numbers; it is homogeneous only when the isomorphism is to
the full group. As in the extensive case, one can use the Archimedean axiom
to construct representations, but the general case is a good deal more complex
than the extensive one and almost certainly requires computer assistance to be
practical.

For Dedekind complete PCSs that map onto R+, a nice criterion for 1-point
homogeneity is that for each positive integer n and every x and y, n(x ◦ y) =
nx ◦ ny, where by definition 1x = x and nx = (n − 1)x ◦ x. The form of the
representations of all such homogeneous representations was described earlier.

The remaining broad type of concatenation structures consists of those that
are idempotent, i.e. for all x, x ◦ x = x. The following conditions have been
shown to be sufficient for idempotent structures to have a numerical representa-
tion (Luce and Narens, 1985): ◦ is an operation that is strictly monotonic and
satisfies an Archimedean condition (for differences) and a solvability condition
that says for each x and y, there exist u and v such that u ◦ x = y = x ◦ v. If,
in addition, such a structure is Dedekind complete, it can be shown that it is
N -point unique with N ≤ 2.

5. Axiomatization of Conjoint Structures

Binary structures. A second major class of measurement structures, widely
familiar from both physics and the social sciences, are those involving two or
more independent variables exhibiting a trade-off in the to-be-measured depen-
dent variable. Their commonness and importance in physics is illustrated by
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familiar physical relations among three basic attributes, such as kinetic energy
= mv2/2, where m is the mass and v the velocity of a moving body. Such
conjoint trade-off structures are equally common in the behavioural and social
sciences: preference between commodity bundles or between gambles; loudness
of pure tones as a function of signal intensity and frequency; trade-off between
delay and amount of a reward etc. Although there is some theory for more than
two independent variables in the additive case, with the general representation
given by Equation 2, for present purposes we confine attention to the two vari-
able case 〈X × S,%〉. Michell (1990) gives detailed analyses of a number of
behavioral examples.

As with concatenation structures, the simplest case to understand is the
additive one in which the major non-structural properties are:

(i) Independence (monotonicity): if (x, s) % (x′, s) holds for some s, then it
holds for all s in S, and the parallel statement for the other component.
Note that this property allows us to induce natural orderings, %X on X
and %S on S.

(ii) Thomsen condition: if (x, r) ∼ (y, t) and (y, s) ∼ (z, r), then (x, s) ∼
(z, t).

(iii) An Archimedean condition which says that if {xi} is a bounded sequence
and if for some r � s it satisfies (xi, r) ∼ (xi+1, s), then the sequence is
finite. A similar statement holds for the other component.

These properties, together with some solvability in the structure, are suffi-
cient to prove the existence of an interval scale, additive representation (for a
summary of various results, see Krantz et al., 1971, chs 6, 7 and 9). The result
has been generalized to non-additive representations by dropping the Thomsen
condition, which leads to the existence of a non-additive numerical representa-
tion (Luce et al., 1990, chs 19, 20). The basic strategy is to define an operation,
say ◦X on component X, that captures the information embodied in the trade-
off between components. The induced structure can be shown to consist of
two PCSs pieced together at an element that acts like a natural zero of the
concatenation structure. The results for PCSs are then used to construct the
representation. As might be anticipated, ◦X is associative if and only if the
conjoint structure satisfies the Thomsen condition.

6. Interlocked Structures and Applications to Utility Theory

Interlocked conjoint/extensive structures. The next more complex structure has
the form D = 〈X × S,%, ◦〉, where ◦ is an operation on S. Such structures
appear in the construction of the dimensional structure of physical units. The
key qualitative axioms for physical measurement are that 〈X×S,%〉 is a conjoint
structure satisfying independence, 〈S,%S , ◦〉 is an extensive structure, where %S

is the induced ordering on S, and D is distributive, that is,

if (x, p) ∼ (yq) and (x, s) ∼ (y, t), then (x, p ◦ s) ∼ (y, q ◦ t).
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These axioms yield the following representation for D: The exists a ratio scale S
for the extensive structure 〈S,%S , ◦〉 such that for each φ ∈ S there exists ψ from
X into the positive reals such that for all x, y in X and all s, t, p, q in S, there
exists a representation φ on S that is part of a multiplicative representation of
the conjoint structure and additive over the concatenation operation, that is,

(i) (x, s) % (y, t) iff ψ(x)φ(s) ≥ ψ(y)φ(t), and

(ii) φ(p ◦ q) = φ(p) + φ(q).

Discussions of how to construct the full algebra of physical dimensions using
distributive structures and how to generalize these algebras to situations where
there are not primitive associative operations are discussed in Luce et al. (1990)
and Narens (2002).

Rationality Assumptions in Traditional Utility Theory. As was noted earlier,
an extensive literature exists on preferences among uncertain alternatives, often
called “gambles.” The first major theoretical development was the axiomatiza-
tion of subjective expected utility (SEU), which is a representation satisfying,
in the binary case, Equation 3. Although such axiomatizations are defensible
theories in terms of principles of rationality, they fail as descriptions of human
behaviour. The rationality axioms invoked are of three quite distinct types.

First, preference is assumed to be transitive. This assumption has been
shown to fail in various empirical contexts (especially multifactor ones), with
perhaps the most pervasive and still ill-understood example being the “pref-
erence reversal phenomenon,” discovered by P. Slovic and S. Lichtenstein and
investigated extensively by others, most famously by Grether and Plott (1979),
and several later references given in Luce (2000, pp. 39-45). Nevertheless, tran-
sitivity is the axiom that is least ease to give up. Even subjects who violate it
are not inclined to defend their “errors”. A few attempts have been made to
develop theories without it, but so far they are complex and have not received
much empirical scrutiny (Bell, 1982; Fishburn, 1982, 1985; Suppes et al., 1989,
chs 16 and 17).

The second type of rationality postulates so-called “accounting” principles
in which two gambles are asserted to be equivalent in preference because when
analyzed into their component outcomes they are seen to be identical. For
example, if x ◦A y is a gamble and (x ◦A y) ◦B y means that if the event B
occurs first and then, independent of it, A occurs, then on accounting grounds
(x ◦A y) ◦B y ∼ (x ◦B y) ◦A y is rational because, on both sides, x is the outcome
when A and B both occur (although in opposite orders) and y otherwise. One
of the first “paradoxes” of utility theory, that of M. Allais, is a violation of an
accounting equation which assumes that certain probability calculations also
take place.

The third type of rationality condition is the extended sure-thing principle,
Equation 4. Its failure, which occurs regularly in experiments, is substantially
the “paradox” pointed out earlier by D.Ellsberg. Subjects have insisted on the
reasonableness of their violations of this principle (MacCrimmon, 1967).
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Some Generalizations of SEU. Kahneman and Tversky (1979) proposed a binary
modification of the expected utility representation designed to accommodate the
last two types of violations, and Tversky and Kahneman (1992) generalized it to
general finite gambles. During the 1980s and 90s a great deal of attention was
devoted to this general class of so-called rank- (and sometimes sign-) dependent
representations (RDU or RSDU) (also called cumulative and Choquet, 1953,
representations). Summaries of this work, much of it of an axiomatic character
for both risky cases, where probabilities are assumed known, and uncertain
cases, where a subjective probability function is constructed, can be found in
Quiggin (1993) and Luce (2000). These developments rests very heavily on
modifying the distribution laws that are assumed. A far more general survey of
utility theory, covering many aspects of it from an economic but not primarily
an axiomatic measurement-theoretic perspective, is Barberà et al. (1998, 2004).

Returning to an axiomatic approach, suppose in what follows that x1 % x2 %
· · · % xn and their associated event partition is (E1, E2, ..., En). Define E(i) =⋃i

j=1Ej . The class of RDU representations involve proving from the axioms
the existence of an order-preserving, utility function U over pure consequences
and gambles and, in general, non-additive weighting function S over the chance
events such that

U(x1, E1;x2, E2; ...;xn, En)

=
n∑

i=1

U(xi) [S (Ei ∪ E(i− 1))− S (E(i− 1))] . (5)

Note that the weighting function is essentially the incremental impact of adding
Ei to E(i−1). When S is finitely additive, i.e., for disjoint A and B, S(A∪B) =
S(A) + S(B), then Equation 5 reduces to subjective expected utility (SEU).

If there is a unique consequence e, sometimes called a reference level and
sometimes taken to be no change from the status quo, then the consequences
and gambles can be partitioned into gains, where xi % e, and the remainder,
losses. In such cases, usually it follows from the assumptions made that U(e) = 0
and, usually, the weighting functions are sign dependent (i.e., their form depends
on whether their consequences are positive respect to e or negative). Also, the
RSDU representation includes cumulative prospect theory (Tversky & Kahne-
man, 1992) as a special case having added restrictions on both U and S.

Other interesting developments involving different patterns of weighting are
cited in Luce 2000.

A great deal of attention has been paid to issues of accounting for empiri-
cal phenomena discovered over the years that have discredited SEU and EU as
descriptive models of human behaviour. For some summaries see Luce (2000)
and Marley and Luce (2005). M.H. Birnbaum (numerous citations are given to
his articles in the last reference) has discovered experimental designs that dis-
credit a major feature of Equation 5 called coalescing or, equally, event splitting :
Suppose xk = xk = y, then

(x1, E1; ...; y,Ek; y,Ek+1; ...;xn, En) ∼ (x1, E1; ...; y,Ek∪Ek+1; ...;xn, En) . (6)
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The left hand side of Equation 6 is called “split” because y is attached to
each of two events, Ek and Ek+1. The right hand side is called “coalesced”
because y is attached to the single coalesced event Ek ∪ Ek+1. Birnbaum
has vividly demonstrated that experimental subjects often fail to split gambles
in ways that help facilitate rational decisions. The other direction, coalescing,
is effortless because no choice is involved. Indeed, Birnbaum (submitted) has
shown that splitting the branch (x1, E1), which has the best consequence, x1,
enhances the apparent worth of a gamble, whereas splitting (xn, En), the branch
with the poorest consequence, diminishes it. Long ago, he proposed a modified
representation, called TAX, because it “taxes” the poorest consequence in favor
of the best one, that accommodates many empirical phenomena, including this
one, but neither he nor anyone else has offered a measurement axiomatization
of TAX. This remains an open problem.
Joint receipt. Begining in 1990, Luce and collaborators have investigated an
operation ⊕ of joint receit in gambling structures and ways that it may interlock
with gambling structures. Its interpretation is suggested by its name, having two
goods at once which, because ⊕ is assumed to be associative and commutative,
can be extended to any finite number of goods. Several possible interlocking
laws have been studied and improved axiomatizations involving them have been
given for a number of classical representations (for a summary, see Luce, 2000).
The representation that has arise naturally is called p-additive3, namely, for
some real δ,4

U(x⊕ y) = U(x) + U(y) + δU(x)U(y).

Lack of Idempotence and the Utility of Gambling. A feature of very many utility
models, in particular, of all RDU or RSDU ones, is idempotence:

(x,E1; ...;x,Ei; ...;x,En) ∼ x .

Among other things, this has been thought to be a way to connect gambles
to pure consequences, but that feature is redundant with the certainty princi-
ple (x,E(n)) ∼ x. Further, if there is an inherent utility or disutility to risk
or gambling, as widespread behaviour suggests there is – witness Las Vegas
and mountain climbing – violations of idempotence assess it. Luce and Marley
(2000) proposed partitioning a gamble g into a pure consequence, called a kernel
equivalent of g, KE(g), with the joint receipt, ⊕, of its unrewarded event struc-
ture (e,E1; ...; e,Ei; ...; e,En), which is called an element of chance. Although
they found properties of such a decomposition based on the assumption that
utility is additive over joint receipt, ⊕, they did not discover much about the
form of the utility of an element of chance. In the case of risk, further work
has led to a detailed axiomatic formulation of that leads either to EU plus a
Shannon entropy term, or to a linear weighted form plus entropy of some degree

3So named, at the suggestion of A. J.Marley, because it is the only polynomial form that
can be transformed into an additive one.

4By rescaling U there is no loss of generality in assuming δ is either −1, 0, 1.
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different from 1. In the case of uncertainty, the form for elements of risk is much
less restrictive (Luce et al., submitted). This risky form was first arrived at by
Meginniss (1976) using a non-axiomatic approach. Because of the symmetry
of entropy, this representation is unable to account for Birnbaum’s differential
event splitting data. This approach needs much more work.

7. Other Applications of Behavioural Interest

A Psychophysical One. A modified version of one of the RDU axiomatizations
has been reinterpreted as a theory of global psychophysics, meaning that the
focus is on the full dynamic range of intensity dimensions (for example, in audi-
tion the range 5 dB to 130 dB SPL5), not just local ranges as in discrimination
studies. An example of the primitives are sound intensities x and y to the left
and right ears, respectively, denoted (x, u), about which the respondent makes
loudness judgments. Given two such stimuli (x, x) and (y, y), x > y, and a pos-
itive number p, the respondent also can be requested to judge which stimulus
(z, z) makes the subjective “interval” from (y, y) to (z, z) seem to be p times
the “interval” from (y, y) to (x, x). The data are z, which we may denote in
operator notation as (x, x) ◦p (y, y) := (z, z). Luce (2002, 2004) (for a summary
of theory, tests, and references, see Luce and Steingrimsson, 2006, in press) pro-
vided testable axioms, it is shown that there is a real valued mapping Ψ, called
a psychophysical function, and a numerical distortion function W such that

Ψ(x, u) = Ψ(x, 0) + Ψ(0, u) + δΨ(x, 0)Ψ(0, u) (δ ≥ 0) , (7)

W (p) =
Ψ [(x, x) ◦p (y, y)]−Ψ(y, y)

Ψ(x, x)−Ψ(y, y)
(x > y ≥ 0) . (8)

The axioms have been empirically tested by Steingrimsson and Luce in four
papers. The 2005a focused on each structure, the conjoint one and the operator;
the 2005a focused on the interlocks between them for audition. The results are
supportive of the theory. Possible mathematical forms for Ψ and W have been
reduced to testable conditions that, with one exception6, were evaluated with
considerable, but not perfect, support, for power functions (2006, in press).
Narens (1966) earlier proposed a closely related theory that included an axiom
that forced W (1) = 1. Empirical data of Ellermeier and Faulhammer (2000) and
Zimmer (2005) soundly rejected the joint hypothesis that W is a power function
with W (1) = 1. Subsequent theory and experiments found considerable support
for power functions with W (1) 6= 1.
Foundations of Probability. Today, the usual approach to probability theory
is the classical one due to Kolmogorov. It assumes that probability is a σ-
additive7 measure function P with a sure event having probability 1. It defines

5Contemporary IRBs restrict the top of the range to 85 dB.
6It is the cases where δ 6= 0, Ψ(x, 0) and Ψ(0, x) are both power functions but with different

exponents.
7The countable extension of finite additivity.

15



the important concepts of independence and conditional probability in terms of
P .

There are many objections to this approach as a foundation for probability.
A summary of most of them can be found in Fine (1973) and Narens (sub-
mitted). In particular, independence and conditional probability appear to be
more basic concepts than unconditional probability, e.g., one often needs to
know the independence of events in order to estimate probabilities. Also in
most empirical situations one cannot exactly pin down the probabilities, that
is, there are many probability functions consistent with the data. This suggests
that in such situations the underlying probabilistic concept should be a fam-
ily of probability functions instead of a single probability function. Obviously,
with many consistent probability functions explaining the data, the Kolmogorov
method defining independence by P (A∩B) = P (A)P (B) really does not work.
These and other difficulties disappear with measurement-theoretic approaches
to probability (e.g., see Krantz, et al., 1971; Fine, 1973; Narens, 1985; Narens,
submitted). The qualitative approach provides richer and more flexible methods
than Kolmogorov’s for formulating and investigating the foundations of proba-
bility.

Both the Kolmogorov and the measurement-theoretic approaches assume
an event space that is a boolean algebra of subsets. This assumptions works
for most applications in science and is routinely assumed in theoretical and
empirical studies of subjective probability. A major exception to it is quantum
mechanics, where a different event space is needed (von Neumann, 1955).

Algebras of events correspond to the classical propositional calculus of logic.
This calculus captures deductions for propositions that are either true or false.
It is not adequate for capturing various concepts of “vagueness,” “ambiguity,”
or “incompleteness based on lack of knowledge.” For these, logicians use non-
classical propositional calculi. In general, these non-classical calculi cannot be
interpreted as the classical propositional calculus with “true” and “false” re-
placed with probabilities. It is plausible that some of the just mentioned con-
cepts are relevant to how individuals make judgments and decisions. Their
incorporation into formal descriptions of behavior requires the event space to
be changed from the usual algebra of events used in the Kolmogorov approach
to probability to a different kind of event space. This issue and proposals for
alternative event spaces are discussed in detail in Narens (submitted).

In summary, the Kolmogorov approach to probability is flawed at a foun-
dational level and is too narrow to account for many important scientific phe-
nomena. The measurement-theoretic approach is one alternative for providing
a better foundation and generalizations for the kind of probability theory de-
scribed by Kolmogorov. One should also consider the possibility of developing
probabilistic theories for event spaces different from algebras of events, espe-
cially for phenomena that fall outside of usual forms of observation, including
various phenomena arising from mentation.

R. Duncan Luce and Louis Narens

See also dimensions of economic quantities; meaningfulness and invariance;

16



mean value; transformations and invariance.
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