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The Measurement Theory of Dense Threshold Structures
Louls NARENS

University of California at Irvine

A dense threshold structure consists of a nonempty set X, a total ordering > on X, and
a function T from X onto itsell such that (i) (X, = ) is dense (ie, for each x and y in X,
il x >y, then for some z, x >z > y)and (i) T(w) > w for all w in X. The intended
interpretation is that elements y of X are discriminated as being more intense than elements
xifand only if y > . T(x). A measurement-theoretic foundation for dense threshold structures
is given that includes representation and uniqueness results, a measurement-theoretic analysis
of Weber’s law, and meaningfulness considerations about Weber constants.  © 1994 Academic
Press, Inc.

1. INTRODUCTION

Thresholds for discriminating stimuli play a prominent role in psychological
theory and experimentation. In the literature, the qualitative theory underpinning
such discriminations have been based on a binary relation >, where x> y is inter-
preted as “x is discriminably more intense than y.” Luce (1956) gave a qualitative
axiomatization for such a binary relation which he called a “semiorder” and showed
that each semiorder > with a finite domain can be represented by a real valued
function ¢ and a positive real number ¢ such that for all stimuli x and y in the
domain,

x>y it ex)>e(y)+e (1)

Note that in Eq. (1), the “threshold for y,” ¢(y)+ ¢, may not correspond to any
stimulus in the domain, ie., there may be no stimulus z such that @lz)=¢(y)+c
In most of the important applications in psychology of discrimination structures,
the stimuli form a sufficiently richly ordered set in which the “thresholds™ for
stimuli y correspond to other stimuli; ie, there is a function T on the stimuli such
that for all stimuli x and y,

x is discriminably more intense than y iff x >, T(y),

where > _ is the ordering on the stimuli. When such a threshold function T exists,
the mathematical theory of discrimination becomes simpler.
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In this paper, infinite ordered structures with such threshold functions are
examined. Representation and uniqueness theorems for them are given, and their
theory is extended qualitatively to incorporate a very general version of Weber's
law. The qualitative theory of Weber’s law is used to argue through meaningfulness
considerations that in psychophysical situations the Weber constant does not have
a purely psychological interpretation but 1+ the Weber constant does.

Preliminaries

Throughout this paper, R denotes the set of real numbers, R* the set of positive
real numbers, | the set of integers, and 1™ the set of positive integers. * denotes the
(partial) operation of composing functions.

By definition, >, is said to be a total ordering on X, if and only if it is a trans-
itive and reflexive relation on a nonempty set X, and, forall x and yin X, x > »,
YD aX, 0rx=3y.

By definition, a set X is said to be denumerable if and only if there exists a one-to-
one function from it onto [

By definition, (X, R; ., is said to be a relational structure if and only if X is a
nonempty set and for each jin J, R, is a relation on X.

Let X=<X, R;) ., be a relational structure. Then X is called the domain of X,
and X and R;, for je J, are called the primitives or primitive relations of X. X is said
to be denumerable if and only if X is denumerable.

Let X ={X, R;);., be a reiational structure. By convention, substructures of X
are often described by using the relations R; instead of their restrictions; e.g., for
{R, =, + > the substructure based on [ is written as {1, >, + » instead of using
new symbols, e.g, =" and +', to denote the restrictions of = and + to I

2. DENSE THRESHOLD STRUCTURES

DeFNITION 2.1, (X, 2,, T') is said to be a dense threshold structure if and only
if the following three statements are true:

1. {X, =, is a totally ordered set.

2. (X, =z, is dense; ie., for cach x and z in X, if x >, z, then for some y
nX,x>,y>,z

3. Tis a strictly increasing function from X onto X such that for each x in
X, T(x) >, x

Let X=<X, =, T) be a dense threshold structure. Then T is called the tAreshold
function of X.

Dense threshold structures are special cases of 2 more general class of structures
known ag semiorders.
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DermviTION 2.2, > is said to be a semiorder on X if and only if X is a nonempty
set, > is a nonempty binary binary rclation on X, and the following threc
statements are true for all w, x, y, and z in X

1. Not x> x.
2. Ifwr>xand y>z then w>z or y»x.
3. Hwsxand x> y, then w>z or z> .

DermviTION 2.3, Let > be a semiorder on X. Define >, on X as follows: For
all x and y in X,

XZ,¥ ift Vz[(if y>>z then x> z) and (if z>> x then z > y)].

=, is called the order induced by >.

THEOREM 2.1. Suppose (X, =, T is a dense threshold structure. Define > on
X as follows: for a ll x and y in X,

x>y i x>, T()
Then (X, > is a semiorder and =, is the order induced by >.
Proof. Left to reader.

Let {X, > > be a semiorder. It easily follows from Definition 2.3 that > is a
transitive and connected relation, i.e., is a “weak ordering” on X.

For a semiorder to be a dense threshold structure, additional assumptions need
to be made:

DeFNITION 24, Let ¥=(X, > be a semiorder and >, be its induced
ordering. Then X is said to be a dense T-structure if and only if the following three
conditions are satisfied:

1. =, is a total ordering on X.
2. (X, =, is dense.
3. For each x in X there exist a and » in X such that

b>,x>,a
and for all y and all z in X,
y>x Ml y>_b,
and

Z>a iff z>,x
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Infinite semiorders have been studied in Manders (1981). In terms of representa-
tion theorems presented there, it is apparent that Condition 3, which implies that >
can be defined in terms of >, and elements of X, puts a severe restriction on the
general theory of infinite semiorders. Nevertheless, Condition 3 is a reasonabi¢ and
natural assumption in most scientific contexts where infinite semiorders are
applicable.

THEOREM 2.2. Let X=X, > ) be a semiorder structure that is a dense T-struc-
ture and 2, be the order induced by . Define T on X as follows: for each x and
yinX, T(x)=y if and only if for all z in X,

=X i z>,».
Then {X, 2,.T> is a dense threshold structure.
Proof. The proof follows from the above definitions and is left to the reader.
DeFNITION 2.5, Let X= (X, = ,, T) be a dense threshold structure. Then X is

said to be Archimedean if and only if for each x and y in X there exists a positive
integer m such that

T™(y) 2 x.

DerNITION 2.6. Let ¥=(X, =,, 7> be a dense threshold structure. Then X
is said to be Dedekind complete if and only if each nonempty = ,-bounded above
subset of X has a least upper > ,-bound in X.

THECREM 2.3. Suppose X= (X, 2, T) is a Dedekind complete dense threshold
structure. Then X is Archimedean.

Proof. Suppose ¥ were not Archimedean. A contradiction is shown. It easily
follows from Definition 2.5 and the fact that T* is defined for all integers k& that x
and y in X can be found such that for each positive integer m, x =, T™(y). Let

A={z|x =, T™(z) for all positive integers m}.

Then A is nonempty (since ye A), bounded above by x, and such that for each =z
in A, T(z) is in A. Since X is Dedekind complete, let the element a in X be the least
upper bound of 4. a¢ A4, for if ae A, then T(a)e 4, but then a could not be the
least upper bound of A since T{(a) >, a. Since

a>, T '(a)
and a is a least upper bound of A and a ¢ A, let b in 4 be such that

a>,b>,T Ya)
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Then
) >, T[T Ya)]=a,

which is impossible, since T{(h) is in A and a is the least upper bound of A.

3. REPRESENTATION THEOREMS

LeMMA 3.1, Suppose (X, =z ,, T) is an Archimedean, dense threshold structure
and ae X. Then for each x in X, there exists a unique integer k& such that

az,THx) >, T Ya)
Proof. The proof is left to the reader.
THEOREM 3.1. Suppose X=X, 2,,T) and V=Y, =', U} are Archimedean

dense threshold structures and that X and Y are denumerable. Then X and %) are
isomorphic.

Progf. Let a, be an element of X and b, an element of ¥. Let 4 be the half-open
interval (T~ '(ag), @p], and B the half-open interval (U~ 1(y), by]. Then it
immediately foliows from the hypotheses that 4 and B are denumerable and that
(A, 2,7 and (B, =" are dense, totally ordered sets with greatest elements and
without lcast clements. Therefore, by a classical theorem of Cantor {1893) charac-
terizing order types, let / be an isomorphism of {4, =, ) onto (B, ='). Define F
on X as follows: For each x in X, let k¥ be the unique integer such that T*(x)e 4,
and let

Flx)= U [ AT (x)].

Suppose x and y are arbitrary elements of X, By Lemma 3.1, let m and n be the

unique integers such that 77(x)e 4 and T"(y)e A.

Case 1. m=n. Then
xz,y i T™x}z,T"(»)
il A(T™(x)) =" fT™(y))
ff UTmLAT™(x))] 2" U LAT™(y)]
iff F(x)z"F(y)
Case2. m#n. Then
X2,y il n>m
iffl —m>—n
i UTTLATT(x))] 2T U LA ()]
iff Fx)}z=" Fy).
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Cases 1 and 2 show that F is order preserving, and since 2, is a total ordering,
it then follows that F is a function into ¥, To show that Fis onto ¥, let z be an
arbitrary element of ¥. Let & be the unique integer such that U*(z) is in B. Then,
since £ is an isomorphism of 4 onto B, let w in A be such that f(w)= U*(z). Then

FIT ¥ w) 1= U ATHT "W = U W= U [UN2)] ==

The following equation completes the proof that F is an isomorphism onto 9):
Suppose x is an arbitrary element of X and m is the unique integer such that
T™(x)e A. Then 7™~ [T(x)] € A, and thus

F[T(x)1=U'""[ AT [T(x)])]
=U'"LAT" ()]
=ULU"(A(T7(x))]
=U[F(x)].

Not all denumerable dense threshold structures are isomorphic. Let
X,z +,V> and (X", 2", 4" 1"> be distinct isomorphic copies of
{R, =, +,1), where R is the set of rational numbers. For each x in X, let
T(x)=x +"1', and let

X=X, 2. T

Let Y=XuX". Define =, on Y as follows: For each x and yin ¥, x =, y if and
only if (1) x and y arein X and x 2" y, (2) x and y are in X" and x 2" y, or (3)
xisin X" and yis in X. For each x and y in ¥, let Wix)= y if and only if either
xisin Xand y=x +'1"or xisin X" and y=x +"1". Let

‘D:(Y, 215 W>

Then X and ) are nonisomorphic dense threshold structures, and X is Archimedean
and ) is non-Archimedean.

Dermamion 310 Let (X, =) be a totally ordered structure. Then (X, 2,5 is
said to satisfy denumerable density if and only if there is a denumerable subset ¥ of
X such that for all x and z in X, il x > z, then there exists y in ¥ such that
X2,V 2,2

Denumerable density is a necessary condition for (X, =, > to be isomorphic to
{R, =z >. Examples exist of Dedekind complete dense threshold structurcs that are
not denumerably dense.

DermviTION 3.2, A dense threshold structure is said to be continuous if and only
if it is Dedekind complete and denumerably dense.
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THEOREM 3.2. Suppose X={X, 2,.T) and D=(Y, =", U> are continuous
threshold structures. Then there exists an isomorphism of X onto 9.

Proof. By Theorem 2.3, X is Archimedean. We first proceed as in Theorem 3.1:
Let a, be an element of X and b, an clement of Y. Let 4 be the half-open interval
(T~'(a,), @] and B be the half-open interval (U~!(b,), bo]. We then use a different
classical theorem of Cantor (1895) characterizing order types to find an
isomorphism f of (A4, >,) onto (B, '), and then continue as in Theorem 3.1,

DEFINITION 3.3. Let ¥=(X, 2,,T)> be a dense threshold structure. Then
X'={X', =), T') is said to be a Dedekind completion of X if and only il
(i) X'2X, 2,22, and T'27T,
(iij X’ is a dense threshold structure, and
(iny (X', 2> is Dedekind complete,

THEOREM 3.3. Suppose X=(X, 2,,T) is an Archimedean dense threshold
structure that is denumerably dense. Then the following three statements are true:

1. X has a Dedekind completion.
2. All Dedekind completions of X are isomorphic.
3. Each Dedekind completion of X is a continuous threshold structure.

Proof. It is very easy to show (e.g., by use of “Dedekind cuts”) that X can be
extended to a set X' and =, can be extended to a total ordering =, of X" such that

(1) (X', 2> is Dedekind complete,
(ii) (X', 2. > has neither a greatest nor least element, and
(iii) for all ¥ and v in X", if w > v, then for some x in X,
u>y x>
For each x in X, let
T'(x)=sup{T(y) | x 2, y and ye X}, 2)

where sup is taken with respect to the ordering =,. Then for each x in X,
T'(x}=T(x), ie, T T".

It is now shown that T is a strictly increasing function: Suppose u and v are
arbitrary elements of X" and » >/ ». By (ii) above, let z and w be elements of X
such that

UL 2>, WL (3)
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Then by Eq. (2),
T(u) 2, T'(z) 2, T'(w) 2, T'(v) (4)

However, since >, € 2, and T< T’ and z and w are in X, it follows from
Eq. (3) that

T'(z)=T(z) », T(w)=T"{w),

and since =, € =, it then follows from Eq. (4) that
T'(u) >, T'(v).
Since » and v are arbitrary elements of X’ it has been shown that T’ is strictly
increasing,
It is now shown that T~ is onto X”: Let b be an arbitrary element of X", Let

A={x|xeXand b 2, T(x)}. (5
By (ii} above, let ¢ in X’ be such that ¢ > b. By (iii), let e in X be such that
¢ >, e >, b Then T-'(e) ¢ 4, since e= T[T (e)] >, b. Thus T '(e) is an upper
bound of 4. By (i), let a be the least upper bound of 4. Then by Egs. (2) and (5),

T'(a)=sup{T(x)| xe A4}

Also by Eqgs. 2 and 5, b =/, T'(a). However, b %, T'(a), for if b > T'(a), then by
(iii) above there would exist d in X such that

b>,d>,T'a) (6)
and thus

b>, T{T Y{d)],
which implies that T~!(d) is in A4, and thus a =/, T'(d), and therefore

T'(a) 2, TT~(d)]1=4
which contradicts Eq. (6). Therelore, b= T"(a).
The above shows that (X', 2, T'> is a Dedekind completion of (X, >, T>.

Thus Statement 1 has been shown. Statements 2 and 3 follow by noting that by
Definitions 3.3 and 3.2 all Dedekind completions of X are continuous threshold

structures and that by Theorem 3.2 all continuous thresheold structures are
isomorphic.



DENSE THRESHOLD STRUCTURES 309

DermiTION 34, A canonical, numerical, dense threshold structure is a dense
threshold structure of the form M= (N, =, §), where NER, = is the usual order-
ing on the reals, and S is the function on R defined by

S{x)y=x+1.

THEOREM 34. Suppose X=X, =, T is a dense threshold structure. Then the
following three statements are true:

1. If X is Archimedean and denumerable, then X is isomorphic to the canonical,
numerical, dense threshold structure (Ra, =, 8>, where Ra is the set of rational
numbers.

2. If X is Archimedean and denumerably dense, then X is isomorphic to a
canonical, numerical dense threshold structure (N, =, § ), where NS R,

3. If X is continuous, then X is isomorphic to the canonical, numerical dense
threshold structure (R, =, S).

Proof. It is casy to verify that {(Ra, =, S is a denumerable threshold structure
and {R, =, S is a continuous threshold structure. Statements 1 and 3 then follow
from Theorems 3.1 and 3.2. To show Statement 2, suppose X is denumerably dense.
Let X' be a Dedekind completion of X. By Theorems 3.3 and 3.2, let F be an
isomorphism of X' onto <R, =,S). Then the restriction of F to X is an
isomorphism of X into (R, =, .

4, UNIQUENESS RESULTS AND AUTOMORPHISM GRQUP

ConNvENTION 4.1. Throughout the rest of this paper, let
N=<(R, =,5>
be the continuous threshold structure, where
S(x)=x+1
for all xin R.

We begin by describing the automorphism group of 9.

DeriniTioN 4.1, By definition, let . be the set of strictly increasing functions
from the half-open interval (0, 1] of the reals onto itself. Also by definition, for each
o in ./ and each r in R, let «, be the function on R such that for all x in R and
all min |,

if xe(m, m+ 1], then a,(x)=m+r+ a(x—m).
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By definition, let

%={a, |ace and reR}.

LemMMa 4.1.  Each element of 9 is an automorphism of M.

Proof. Suppose x and y are arbitrary elements of B and m and » are the unique
integers such that xe(m m-+1] and ye(n,n+1]. Also suppose that x is an
arbitrary element of &/ and r i an arbitrary element of R.

Since

o [S(x)] =« [x+1]
={m+1}+r+af(x+1}—(m+1)]
=m+r+afx—m]+1
=a,(x}+1
=S[o(x)],

it follows that «, preserves the function S.
It is now shown that «, preserves =. Without loss of generality, suppose m = n.
There are two cases to consider:

Case 1. m=n. Then
xXzy ff x-mzy—m
iff a«(x—m)za(y—m)
ff m+r+alx—m)zm+r+o(y—m)
i alx)zel(y)

Case 2. m>n. Then, since a(y—n)e(0,1] and a(x—m)e (0, 1],

Xz iff m4rznt+ria{y-n)
it m+r+alx—m)zan+r+oly—n)
il o lx)zaly)

LemMa 4.2,  Each aqutomorphism of W is in 4,

Proof. Suppose f# is an automorphism of M. Let r= #(0). Let : be the identity
function on (0, 1]. Then by Definition 4.1, 1, €%, and therefore by Lemma 4.1 is an
automorphism of 9. Let « be the restriction of 17! # f to (0, 1]. It easily follows
from the definition of r, that « is onto (0,1]. Then, since i, '+f is an
automorphism of M, it follows that « is a strictly increasing function. Thus a€ .
It is shown that f=o,.
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Let x be an arbitrary element of R, and m be the unique integer such that
xe(m,m+1]. Then

a(xy=m+r+olx—m)
=m+r+i17" % flx—m)
=m+r+p(x—m)—r
=m+ flx—m)
=m+ f[S7"(x)]
=m+ ST"[f(x)]
=m+f(x)—m
= B(x).
THEOREM 4.1. % is the set of automorphisms of M.
Proof. Lemmas 4.1 and 4.2.
Lemma 4.3. Suppose X=X, = _, T is an Archimedean dense threshold struc-

ture that Is denumerably dense, a is an element of X, and ¢ and \ are isomorphisms
of X into M such that (a)y= @la)=0. Then for some & in %, =3 = @.

Proof. For each x in {a, T(a)], let
alo(x}]=y(x).
Since ¢ and y are isomorphisms of X into M, for each x and y in X,
px)ze(y)  Hiy(x)z¢(y)  ifaxp(x)zaxe(y)

and thus « is a strictly increasing function from ¢({(a, T(a)]) onto ¥((a, T(a)]).
Since both the domain and range of « are order dense in (0, 1], it easily follows
that o can be extended to a strictly increasing function & from (0, 1] onto (0, 17].
Then & is in . and &, is in %. The theorem is shown by showing that =&, * ¢.

Let y be an arbitrary element of X. Since X is Archimedean, let m be the unique
positive integer such that

ye(T™(a), T"* H{a)].
Therefore, since ¢ is an isomorphism of X into N,
(p(T™(a)), (T™* Y(a))1=(5"(e(a)), S™* (p(a))]
=(8(0), s 1(0)]

={m,m+1],
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and thus @(y)e (m, m+ 17. Similarly, ¥(y)e (m, m+ 17. Therefore,

Gle(¥)]1=04+m+a(p(y)—m)
=m+a(S™"[o(y)])
=m+a(e[T™"(y)]1)
=m+y(T"(y))
=m+S~"(¥(y))
=m+y(py)—-m
=y(y)

LemMa 4.4, Suppose X=X, = ,. T ) is an Archimedean dense threshold siruc-
ture that is denumerably dense and @ and  are isomorphisms of X into N. Then for
some & in %, Yy =0 % .

Proof. Let a be an element of X. Let : be the identity function on (0, 1]. Then

tis in 7. Let
ﬂ=1;[f,)*(p and y=1|;(;)*!/1.
Then, since 1;(}1) and agtj,) are automorphisms of 9, it is easy to verify that f and
y are isomorphisms of X into M and f(a)=y(a)=0. Thus by Lemma 4.3, let n be
an element of % such that
y=nx*p.

Then

Y=tya*?
=ty * f
= lyga) ¥ * 1;(:,) *
= [ty *n* 1;&;)] * @,
and =1y, *n i, isin &
THEOREM 4.2. Suppose X=(X, 2., T) is an Archimedean dense threshold

structure that is denumerably dense and ¢ and W are isomorphisms of X into N. Then
the following two statements are true:

1. There exists 8 in G such that =3 = .
2. For each v in %, n = @ is an isomorphism of X into R.

Proof. Statement 1 follows from Lemma 4.4. Statement 2 easily follows from the
definitions of “isomorphism” and “automorphism.”
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The following theorem is useful for establishing automorphism groups of
Archimedean dense threshold structures that are denumerably dense:

THEOREM 4.3. Suppose X=<X, 2, T)> is an Archimedean dense threshold
structure that is denumerably dense and X' = (X', =', T') is a Dedekind completion
of X. Then for each automorphism o of X, there is an automorphism o of X’ such that
s

Proof. Let o be an automorphism of X. Let «’ be the function on X~ such that
for all x in X7,

a'{x)=supf{a(z)| ze X and x =" z}.
Then the following three statements easily follow:
1. Forall xin X, o¢'(x)=«(x), ie, aca'.

2. Forall xand yin X7, if x >’ y then a'(x) =" «'(y).
3. o is onto X"

It is now shown that o preserves the ordering =': Suppose x and y are arbitrary
elements of X". Without loss of generality, suppose x >’ y. It need only be shown
that a'(x) > a'(¥). Since X’ is a Dedekind completion of X, let 4 and » be elements
of X such that

x>u>"v>"p
Then o' (1) =alu) >"a(v)=a'(v), and thus by Statement 2 above,
o'(x} 2" o' (u) > o (v) 2 2'(y),

e, a'(x) >"a'(p).

It is next shown that o preserves T': Suppose that x is an arbitrary element
of X', a'[(T'(x)]=T'[«'(x)] is shown by contradiction. Suppose «'[(T'(x)] #
T'[a’(x}]. There are two cases to consider:

Case 1. T'[o'(x)] > a'[T'(x)]. Let w in X be such that
T'e(x)] =>"w=>"a'[T'(x)] {7)
Since T and o are onto X, let u in X be such that
T[x(u)] = w. (8)
Then by Egs. (7) and (8),
T'la'(x)] > Tle{u)]=T'[a"(u) ],
which, since T’ and o are strictly increasing, implies

x> (9}
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Since o is an automorphism of X,
Tlo(u)] =alT(u)],
which by Eqgs. (7) and (&) vield
o'[T'()]=a[T(u)] > o'[T'(x}],
ie.,
u>"x,
which contradicts Eq. (9).
Case 2. o'[T'(x)] > «'[T’(x)]. Similar to Case 1.

It is worthwhile noting that in Theorem 4.3 ' is the unique automorphism of X’
that extends o in the sense that if § is another automorphism of X’ that extends «
then «" = f. (This easily follows because for each « and b in X" such that @ >’
there exists ¢ in X such that @ >’ ¢ >'5.)

DerFNITION 4.2, Let 1 be the identity function on R, By definition, for each r in
R, let 1, be the function on R such that for x in R and all integers m,

f xe{imm+1] then 1,(x)=m+r+1{x—m).

Then it follows from Definition 4.1 that 1, is an automorphism of M for each r
in R. It also easily follows that for each x in M and each r in R,

Lx)=r+x

§ is said to be a pure translation of M if and only if B=1, for some r in R

Let X= (X, >, T) be a continuous threshold structure. Then a function f from
X onto X is said to be a @-pure translation of ¥ if and only if the image of § under
an isomorphism ¢ of X onto M is a pure translation of M; that is, if and only if the
function y from R onto R is such that, for each x in X,

yLe(x)]=o[B(x)]

is a pure translation of M. It easily follows from ¢ being isomorphism of X onto N
that cach pure translation of % is an image under ¢ of a @-pure translation of X.

THEOREM 44, Let X be a continuous threshold structure and @ be an isomorphism
of X onto N. Then the following two statements are true:
1. The set of @-pure translations of X form a group under function composition.

2. For each x and y in the domain of X, there exists a @-pure transiation § of
X such that f(x)=y.
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Progf. Statement 1 then follows by noting that by Definition 4.2 the pure trans-
lations of 9N form a group, and therefore by isomorphism the ¢-pure translations
of ¥ form a group.

Let x and y be arbitrary elements of the domain of X. Statement 2 then foliows
by noting that, by Definition 4.2,

lga(y)—qo(x)(()a(x)) = GD(J’),

and that by Definition 4.2, the automorphism f of X whose image under ¢ is
Lo(y)— e 18 @ @-pure translation of X.
5. WEBER REPRESENTATIONS

Dermaiion 5.1, (X, 2, > is said to be a contirmum il and only if the following
six statements are true:

1. X#@.

2. 2, 1s a total ordering on X,

3. (X, 2, has neither greatest nor least element.
4. (X, =, is densc.

5. <X, 2, is denumerably dense.

6. (X, =,> is Dedekind complete.

DEFINITION 5.2, A structure X= (X, =, R,),., 1§ said to be continuwous if and
cnly if {X, =,> is a continuum.

The focus of the remainder of this paper is on continuous structures. (The results
below, however, with appropriate modifications, apply to more general situations in
which the tora} order need not be Dedeking complete.)

Derinrrion 5.3, Let X= (X, =, R;};., be a continuous structure.

X is said to be homogeneous if and only if for each x and y in X there exists an
automorphism o of X such that x(x) = y.

X is said to be 1-point unique if and only if for ali automorphisms « and f§ of %,
if a(x)= B(x) for some x in X, x=j.

Let X be a continuous threshold structure. Then it follows from Statement 2 of
Theorem 4.4 that X is homogencous. By considering the isomorphic structure 9
and its automorphism group as characterized in Theorem 4.1, it 1s easy to see that
there exist distinct automorphisms f# and y that agree on an infinite subsct of the
domain of X and thus, in particular, X is not 1-point unique.

Narens (1981) shows the following theorem:

480/38/3-2
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THEOREM 5.1. Suppose X=X, >, R;>,., is a continuous structure that is
homogeneous and 1-point unigue. Then there exists a structure of the form
D=LR*, =, D,>,., such that the set & of isomorphisms of X onto D forms a ratio
scale, ie., is such that

(1) ¥+,
(2) f e and Yy e, then for some r in R, ¥ =r-o; and
3) fope¥ and seR, thens-pe ¥,

(In modern measurement theory, it has become customary to consider the sct of
homomorphisms of continuous structure X into a numerially based structure D as
the proper way to measure X. Since X is totally ordered, all homomorphisms of X
into © are isomorphisms into D. I believe this view of measurement to be in error
(see Narens, 1981, 1994) and that measurement should consist of isomorphisms of
X onto D. However, for the important case of homogeneous, 1-point unique, con-
tinnous structures X, numerical structures D are gencrally selected so that all
hememerphisms into D are in fact isomorphisms onto T, and thus for these kinds
of structures there is nothing to argue about.)

Dermvimion 5.4, Let X=X, =, T be a dense threshold structure. Then ¢ is
said to be a Weber representation of X if and only if for all x and y in X,

(i) x 2z, yilf px)ze(y), and
(i) @[T(x)1=4k" @(x), where k> 1.

The real number & in (i} is called the modified Weber constant, and (ii) is called
the modified Weber formula. These are related to the (usual} Weber constant ¢ and
Weber formula by the following:

k=1+c¢ and PLTx) ] = o(x) =
p(x)
DerintTION 5.5. For each k> 1, let
N=<{R7, =, S,
where S, is defined as follows: For all x in R¥,
Six)=Fk-x

THEOREM 5.2. For each k> 1, let ¢, be the function from R onto BR" that is
defined by

@r(x) = k"
Then the following 1wo statements are true for each k> 1:

1. @ is an isomorphism of W onto N,
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2. Let B be a pure translation of N, ie., let r in R be such that f(x)=x+r.
Then the image y of B under the isomorphism ¢, is a @ -pure transiation of N, and,
Jorall yin RY, W(y)=Kk"- y, and thus by isomorphism the set of @ -pure iranslations
of M, consists of multiplications by positive constants.

Proof. Immediate from the definitions of “R,” and “g,-pure translation.”

THEOREM 5.3. Suppose X is an Archimedean dense threshold structure that is
denumerably dense and k> 1. Then X has a Weber representation with modified
Weber constant k.

Proof. By Theorem 3.4, X is isomorphically embeddable into 9. Then by
Statement | of Theorem 5.2, X is isomorphically embeddable in M,, and since
the threshold function S of M is a pure translation of 9, X has modified Weber
constant k£ by Statement 2 of Theorem 5.2.

Theorem 5.3 is a modest generalization of a result of Householder and Young
{1940).

TueoreM 54. Let D={X, =,. R,>,;., be a continuous, homogeneous, 1-point
unique structure, and let X= (X, =, T ) be a continuous threshold structure. By
Theorem 5.1, let & be a ratio scale of isomorphisms of Y onto D=(R™, 2, D>,
and let pe . Then ¢ is a Weber representation for X if and only if T is an
automorphism of 9.

Proof. Suppose ¢ is a Weber representation for X. Since % is a ratio scale onto
D, it easily follows that the set of automorphisms of D is the set of multiplications
by positive constants, Let & be the modified Weber constant, and S, be the function
on R* that is multiplication by %k Then ¢ is an isomorphism of X onto
N,.=(R*, =, S>. Therefore S,, the image of T under ¢, is an automorphism of
D, and therefore, by isomorphism, 7 is an automorphism of 9).

Suppose T is an automorphism of ). Since & is a ratio scale of isomorphisms
onto D, it casily follows that the set of automorphisms of ® is the set of multiplica-
tions by positive constants. Thus, since ¢ is an isomorphism of ) onto D, it follows
that the image of 7 under ¢ is multiplication by a positive constant &, and therefore
for each x in X

[T(x) 1=k @(x).

In order to more easily apprehend the significance of Theorem 5.4, a special case
is considered:

DerFNITION 5.6, E= (X, =, @ ) is said to be a continuous extensive structure
if and only if € is a continuous structure, &) is an associative and commutative
operation on X that is strictly increasing in each variable, and for all x and y in X,
(D x®y>,xand (2)if x>, y, thenforsome zin X, x >, y Bz >, v
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Continuous extensive structures are prominent in physics and are used as a
theoretical justification for the measurement of many physical qualities. The follow-
ing characterization of them is due to Helmholtz (1887):

THEOREM 5.5, Let € be a continuous extensive structure. Then the set of
isomorphisms of € onto {R*, =, + > is a ratio scale.

Let €= (X, = ,, @ » be a continuous ¢xtensive structure, & be a ratio scale of
isomorphisms of & onto (R, 2, +3, and ¥=<(X, 2., T) be a continuous
threshold structure. It easily follows from Theorem 5.5 that & is homogeneous and
1-point unique. For concreteness, think of € as some physical physical structure
and 7T as some empirically determined psychological threshoid function. Let ¢ € &.
Then, by Theorem 5.4, the following two statements are logically equivalent:

1. Forall xand yin X, T(x® y)=T(x)® T(»).
2. There exists k> 1 such that for all xin X, o[T(x)]=k-@(x).

Note that Statement 1 above corresponds to possible experiments. Therefore,
Statement 2 can be determined experimentally by the direct testing of Statement 1;
that is, Statement 2 can be determined experimentally “without fitting curves to
e[T(x)])”

Theorem 5.3 implies that each continuous dense threshold structure has a
modified Weber representation. Householder and Young (1940) mistakenly
confused this conclusion with Weber’s Law, a much cherished principle of
psychophysics:

Let X=<X, >,,T) be a continuous threshold structure. To obtain a Weber
representation of ¥ one finds an isomorphism of X onto N, for some positive real
k. There is obviously nothing “lawful” about this. To obtain a Weber's Law
representation of X, one first obtains a function ¢ of a ratio scale of isomorphisms
of another structure 9 which does not have T as a primitive relation, and then
verifics that ¢ is a Weber representation for X. What is “lawful” about the latter is
that ¢ is simultaneously an isomorphism of a ratio scale for 9 and a Weber
representation for X, Qualitatively, this law reduces to saying that T is an
automorphism of ¥)—an experimentally testable condition if T and the primitive
relations of 9 are empirically determinable.

A case between a Weber representation and a “Weber's Law™ may arise when T
appears among the primitives of 9. This is because the structure that results by
removing T may not be ratio scalable. The following is an interesting case of this.

THEOREM 5.6. Let X=<{(X, 2,, T, U), where (X, 2,. T) and (X, =2 ,, U) are
continuous threshold structures, and suppose X satisfies the following twe conditions:

(i) Forall xinX, T[U(x)]=U[T(x)].
(i) For all x, y, and z in X, if x >, y then there exist integers m and n such
that

x>, T« U"z) >, »
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Then the following four statements are true:

L. X is a continuous structure that is homogeneous and 1-point unigue.

2. There exists a numerically based structure © such that the set of
isomorphisms of X onto Q is a ratio scale.

3. Let & be a rativ scale of isomorphisms of X onto &, Then each
homomorphism of X into € is in &.

4, Let & be a ratio scale of isomorphisms of X onto &. Then each ¢ in & is
a Weber representation for (X, 2, T) and is a Weber represemation for
<X1 ? ¥ U>‘

Proof. Left to reader.

It is not difficult to establish the existence of a structure X that satisfies the
hypotheses of Theorem 5.6,

6. MEANINGFULNESS

Dermition 6.1, Let ¥= (X, =, T> be a continuous threshold structure. An
automorphism £ of X is said to be X-automorphism invariant if and only if for ali
x in X and all automorphisms y of %,

yLB(x)] = Bl¥{x)],
ie., if and only if
yxf=F=y
ie., if and only if
yxBryTt =4
THEOREM 6.1. Suppose O <r<1t and f is the pure translation of M defined by
B(x)=x+r.

Then f§ is not M-automorphism invariant.

Proof. Suppose f§ were M-automorphism invariant, A contradiction is shown.
By Definition 4.1 and Theorem 4.1 let y be the following automorphism of : For
cach x in X and cach integer m,

il xe(m,m+1], then p(x) =m+ 0+ (x —m)~
Since # is M-automorphism invariant, for each x in (0,17,

y[B(x)]—BLy{x)]=0,
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ie.,
(x 47— (x*+r)=0,
ie,
xr+r7—r=0 (10)
But Eq. {10) is impossible for all x in (0, 1] since it has at most one solution.

Let X=<X, =,, T> be a continuous threshold structure and & a scale of
isomorphisms of X into N,. Then (by Theorem 5.3 and the proof of Theorem 5.2)
for all ¢ and ¢ in % and all x in X,

e[T(x)]=k-e(x) and  Y[T(x)]=k-y(x), (11)

i.e, all isomorphisms in & yield the same modified Weber constant k. Some
measurement theorists might want to use this result to say that “k is meaningful”
I think this would be an error: This by itself is not enough to conclude that “k is
meaningful™; it is only enough to conclude that the sentence

e[ T(x))=k-(x)

is a meaningful assertion. To properly conclude “k is meaningful,” additional obser-
vations like the following are needed:

Multiplication by the constant & is an automorphism of M, and it is
N,-automorphism invariant since it is the threshold function S,.
Through the isomorphisms of &, it has an interpretation in X as the
threshold function T.

Observations similar to the above do not hold for the Weber constant c.
Consider the Weber formula

@[Tx)]—o{x)=c-l(x), (12)

where @ e.¥ and c=%k—1. By Theorem 6.1 and the isomorphism of 9 and N,,
multiplication by ¢ is not R, -automorphism invariant. By using results of Narens
(1988), this means that the automorphism that corresponds to multiplication by ¢
via ¢ ! is not definable in terms of the primitives X, > «» and T, no matter how
powerful a logical language is used.

Note that the statement in Eq. (12} is meaningful in the sense that if i is any
element of &, then

YIT(x)]—d(x)=c-¢(x).

The fact that this statement is “meaningful” deoes not mean that every part of
it—e.g., the constant c—has a proper interpretation in X.

Let €= (X, =, @ > be a continuous extensive structure and X=(X, 2>, T>
a continuous threshold structure, For this discussion, X is considered to be a set of
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physical objects as well as a set of psychological stimuli, =, is considered a physi-
cal relation on physical objects as well as a psychological relation on psychological
stimuli, @ is considered a physical operation on physical objects, and T is con-
sidered a psychological function on psychological stimuli. Thus & characterizes a
physical situation and X characterizes a psychological situation. Let & be a ratio
scale of isomorphisms of € onto (R, =, + ). As discussed above, the modified
Weber constant that results from measurement by % has an interpretation in the
psychological structure X, whereas the Weber constant has no such interpretation.
By using results of Narens (1988}, both constants have interpretations in the physi-
cal structure €. (Here “Interpretability” means definable from the primitives of € in
terms of some sufficiently powerful {ogical language.)

Meaningfulness and interpretability in psychophysical situations, like the above,
in which the psychophysical situation can be described by two structures—one
having only psychological primitives and the other only physical primitives—are
discussed in some detail in Narens and Mausfeld {1990) and Narens (1994).
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