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Cliff’s (1992) commentary on the failure of axiomatic
measurement theory (AMT) to generate as much impact
on cognitive psychology and psychometrics as he had
once anticipated invites further commentary. For the
most part, we do not disagree with his observations, but
we believe that some amplification and clarification may
be helpful. We attempt to establish three major points:

1. There are areas of psychology (e.g., decision making
and psychophysics) in which AMT has had consider-
ably more impact than CIliff acknowledges, and in
these areas it assumes the form of theory, not scale,
construction.

2. There are results of a new type (described in Luce,
Krantz, Suppes, & Tversky, 1990; Narens, 1985), less
well known than those of Krantz, Luce, Suppes, and
Tversky (1971), about which Cliff makes no comment.
These results should be of broad interest in psychol-
ogy for two reasons: They provide a shelf of nonad-
ditive representations that can be drawn upon along
with the traditional additive and multiplicative ones,
and they give better understanding about how to apply
meaningfulness and invariance arguments.

3. The failure of measurement to ‘‘take’’ in cognition and
psychometrics is related to a deep conceptual ques-
tion concerning the relationship between statistics, as
a way of describing randomness, and measurement, as
a way of describing structure. The lack of an adequate
theory for this relationship is, in reality, a weakness of
both fields.

Our observations do not undercut Cliff’s charge that a
possibly major reason for the limited impact lies with the
researchers themselves. There is no question that our
published works tend to be mathematically accessible
only to persons having some exposure to abstract alge-
bra, geometry, and topology. Except for Roberts, whose
1979 book describes some of the major additive models
and their applications, the field is still awaiting someone
willing and able to write a suitable bridging work. We
suspect this is a major reason why Cliff and others seem
unaware of some of the important applications and de-
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velopments of the past 10 years. We hope this challenge
will soon be met.

EXAMPLES OF USES OF AXIOMATIC
MEASUREMENT THEORY

We discuss in this commentary a class of theories that
have two primary intertwined goals: (1) to provide qual-
itative theories underlying quantitative models that relate
several variables, and (2) to provide a theoretical foun-
dation for measuring quantitatively the variables of a
qualitative theory. The quantitative models characterize
how the measurements of qualitative variables are linked,
and the measurement axiomatizations explain how differ-
ent qualitative experimental situations link together to
capture the corresponding qualitative model. For each
quantitative model, many measurement axiomatizations
can be given, each corresponding to a different way of
capturing the quantitative model in terms of experimen-
tally observable primitives. Because of this, the insights
embodied in formulating good axiomatic theories are of-
ten similar to those used in designing good experiments.
Formulating such axiomatic, qualitative models places
stringent requirements of clarity on the researcher.

Although the two goals of measurement theory are
both theoretical, they yield powerful practical implica-
tions. The first is that the axioms characterizing the qual-
itative theory often suggest focused, qualitative experi-
mental tests of the theory. These can pinpoint what is
amiss, and such knowledge can provide a basis for mod-
ifying the theory. In contrast, if a quantitative model fails
to give a good overall fit to a body of data, that failure
often provides little direction about how to formulate a
better theory other than by adding more free parameters.

The second implication is that such a theoretical foun-
dation is useful not only in measuring variables, but also
in determining their scale types. The impact of this ob-
servation is discussed in the next section.

Throughout, we cite examples illustrating applications
of AMT. Although they are selected to demonstrate the
diversity of problems AMT addresses, they are far from
exhaustive.

Decision Theory

The dominant approach to studying individual deci-
sion making under risk and uncertainty began with von
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Neumann and Morgenstern (1947) and Savage (1954).
The primitive concept is the qualitative ordering gener-
ated by choices among sets of alternatives defined over
chance events. The initial (normative) theories showed
that if certain principles of consistency are met, the be-
havior is as if there is a utility function over conse-
quences and a subjective probability measure over
events such that choices among risky and uncertain al-
ternatives involve selecting the one having the largest
subjective expected utility. Although early empirical re-
search tended to support this overall quantitative model
as a good first-order approximation to human behavior,
careful examination of the axioms revealed unambiguous
difficulties (see, e¢.g., Kahneman & Tversky, 1979). Mod-
ified proposals led to increasingly better descriptive theo-
ries. Decision theory has been a textbook example of
using axioms to localize the difficulty in a theory. The
process of finding axiomatic failures and generating al-
tered axiomatizations and new models for risky decisions
has been repeated several times (Fishburn, 1982, 1988;
Wakker, 1989).

Axiomatic measurement has been far more than a
“revolution’’ in decision theory; it has essentially created
the field. And it is a field with socially significant appli-
cations in business, operations research, and engineer-
ing.

Color Theory

The psychophysics of color matching is deeply embed-
ded in the science of vision, and a variety of quantitative
models have been developed to describe the ‘‘laws’ of
color matching. Exactly how these models are related to
one another and what qualitative principles they encom-
pass turned out to be a subtle matter that eluded re-
searchers until Krantz systematically worked out axiom-
atic measurement theories for them (for a summary, see
chap. 15 of Suppes, Krantz, Luce, & Tversky, 1989).

Magnitude Estimation

Procedures in which subjects provide verbal estimates
of subjective intensities of stimuli are much used in psy-
chology and other social and behavioral sciences. De-
spite the value of these procedures as a research tool,
they have generated much controversy because a clear
theoretical foundation was lacking. Without such a foun-
dation, one cannot properly distinguish between valid
and invalid uses of these methods. Krantz (1972), Luce
(1990), Narens (1993), and Shepard (1981) have suggested
somewhat different measurement-theoretic axiomatiza-
tions for magnitude estimation that allow one to deter-
mine the appropriateness of magnitude estimation for a
wide range of situations.
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NEW RESULTS

The past 12 years have witnessed a bit of a revolution
within AMT itself. It has centered on scale type, invari-
ance, and meaningfulness. The topic began with Stevens’s
(1946, 1951) classification of scale types—nominal, ordi-
nal, interval, and ratio—and his contention that statis-
tical propositions should be invariant under the trans-
formations appropriate to the measures in question. His
discussion suffered from there not being then a well-
developed theory of what constitutes measurement, an
explanation of what gives rise to his classification, and a
systematic argument in defense of his invariance condi-
tion.

Scale Type and Admissible Statistics

Narens (1981a, 1981b) initiated a theory of scale types
that is based on inherent properties of the qualitative
measurement structure, and the relation of meaningful-
ness and invariance is now better (although not fully)
understood in these terms. Within the class of homoge-
neous' structures with finitely many degrees of freedom
and continuous real representations, Stevens’s intuition
that interval and ratio scales exhaust the possibilities was
nearly correct. Between these two, however, lie other
scale types, some of which exhibit underlying periodici-
ties in the structure (Alper, 1987). In addition, the AMT
analysis of meaningfulness has greatly muted the contro-
versy about admissible statistics by clearly describing
those kinds of inferences for which invariance arguments
are appropriate and those for which such arguments are
irrelevant. These ideas apply not just to statistics, but to
a whole range of arguments found in the sciences, includ-
ing dimensional analysis, geometry, and other parts of
mathematics. Luce et al. (1990) summarize many of the
topics, including a detailed discussion of admissible sta-
tistics (chap. 22).

Laws of Combination

These scale-type ideas play an increasing role in
achieving suitable psychophysical laws (Falmagne, 1985)
and in offering families of nonadditive representations.
As an example of the latter, consider a binary operation
O of combining two things exhibiting a common attribute

1. A structure is homogeneous if it is impossible, aside from their
separate identity, to distinguish any two elements by differences in their
structural properties. A structure with a maximum or a minimum ele-
ment is not homogeneous because these elements are structurally un-
like all others, which necessarily lie between them. Structures that
admit ordinal, interval, or positive ratio representations are necessarily
homogeneous.
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to yield a new object also exhibiting that attribute. Often
the order of the combination matters: a O b is not equiv-
alent to b O a. A familiar example of such a noncommu-
tative operation is a weighted average with weights dif-
ferent from Y2; other examples arise in the analysis of
nonadditive conjoint structures. The simple fact of non-
commutativity means that the operation O cannot possi-
bly be represented by numerical addition, +. What are
the options? For homogeneous situations, they are sim-
ply ratio scale representations of O by a numerical oper-
ation & that has the form:

x @y = y(xly),

where f is strictly increasing and f(z)/z is strictly decreas-
ing. The task becomes one of either characterizing f theo-
retically or estimating it empirically. Similar simple rep-
resentations exist for two-factor structures (Luce et al.,
1990, pp. 180-184).

Merging of Ratings

In contests of various sorts, in selecting among candi-
dates for a position, and in other settings, judges’ ratings
of a set of alternatives must be merged to form a consen-
sus rating. The arithmetic mean of the ratings is com-
monly used. It has been shown that if the ratings of in-
dividual judges are assumed to form ratio scales, then
arithmetic means are valid, in the sense of yielding the
same overall ranking independent of the particular units
selected for each of the individual scales, only if a very
controversial theoretical assumption holds, namely, that
the judges’ subjective intensities underlying the ratings
lie on a common subjective scale. Such an assumption of
interpersonal comparability is exceedingly suspect and
very difficult to defend (Narens & Luce, 1983). Aban-
doning that assumption, one can show that merging based
on geometric means is valid and that any other valid
method is equivalent to it (Aczél & Roberts, 1989).

RANDOMNESS AND STRUCTURE

Put somewhat baldly, statistics focuses mostly on ran-
domness, largely taking structure among variables for
granted; AMT focuses almost exclusively on structure,
largely ignoring randomness. These are two partial facets
of a single problem: to uncover structure among variables
in the presence of inherent randomness. Roughly, statis-
tics presumes numerical observations and the form of the
structure (linear, log-linear, multinomial, euclidean, fac-
tor analytic, etc.) underlying them, and it attends to the
numerical representation of randomness within that
framework. Typically, statistical trouble arises when
one considers the possibility of general monotonic trans-
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formations of aspects of the data in order to explore
structure more fully.? For example, such monotonic
transformations are a major feature of the psychometric
technique of nonmetric multidimensional scaling, but its
statistical treatment is rather casual. (Axiomatizations of
nonmetric multidimensional scaling are at this time only
partially satisfactory—e.g., see Suppes et al., 1989, chap.
14).

By contrast, AMT begins with ordinal and relational
data and postulates properties (i.e., axioms) that the data
are believed to satisfy in one or more empirical interpre-
tations. Its goal is to determine whether the data can be
represented by some numerical structure, such as the
ordered structure of the additive, positive real numbers.
This approach simply does not acknowledge randomness
in its formal description of the data from which structure
is to be inferred. True, a few measurement studies try to
accommodate the numerical representation to the vari-
ability of the data, but such treatments are not really a
part of the basic description of qualitative structure. For
example, one approach takes the probabilities of choices
from sets of alternatives as primitive, but it has proved
very difficult to incorporate more than ordinal structure
into this framework (Suppes et al., 1989, chap. 17).

Neither camp has any very clear idea about how to
formulate the concept of randomness in a nonnumerical
way. In particular, we simply do not know how to talk
about randomness at a level involving only qualitative
ordinal observations together with other qualitative rela-
tionships, such as combining two stimuli to form a third.
Yet this is the level at which measurement theorists be-
lieve structural questions must be understood. We need a
theory for the simuiltaneous qualitative description of
both structure and randomness that leads to a represen-
tation not into numbers, but into families of random vari-
ables. Their expected values would form the domain of a
numerical structure describing qualitative structural rela-
tionships, much like the representations of current AMT,
and their distributions would constitute the basis of the
corresponding statistical theory.

Although we believe that the existing incompleteness
of statistical and measurement approaches largely ac-
counts for the limited impact of AMT in psychometrics,
it only partially accounts for why AMT has been ignored
in many areas of cognitive psychology. Often the vari-
ables studied by cognitive psychologists are or are
treated as categorical, usually binary. The question typ-
ically posed is whether a change in one variable affects
another. It is rare for the focus to be on the structural
relations among the several independent and dependent
variables. Increasingly, structural issues are being raised

2. Nonparametric methods avoid structural commitments and do not
focus on structure.
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about categorical variables. For example, Riefer and
Batchelder (1988) have strongly questioned the suitability
for much cognitive data of the usual linear models and
analysis-of-variance or regression approaches. Instead,
they have proposed, and analyzed statistically, an alter-
native structural formulation known as multinomial mod-
eling. As cognitive research attends more to structural
issues, it will have greater reason to be interested in mea-
surement theory, although it surely will be badly frus-
trated by the latter’s current failure to incorporate ran-
domness explicitly.

CONCLUSIONS

Our aim has been threefold: First, we sought to estab-
lish that the applications of AMT are considerably wider
and hold more potential than recognized in the critique by
CIiff (1992). Second, we cited some of the newer, less
well known results that not only clarify deep issues raised
by psychologists, but also offer interesting ways to model
functional relations among variables. And third, we pro-
posed that AMT’s limited impact in psychometrics
arises, in part, from the lack of a qualitative theory of
randomness, and AMT’s limited impact in cognitive psy-
chology arises, in part, because of the latter’s limited
concern about structural relations among variables.

Acknowledgments—We thank J.-C. Falmagne and A.A.J. Marley
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