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Abstract

Almost all models of decision making assume an underlying boolean
space of events. This gives a logical structure to events that matches
the structure of propositions of classical logic. This chapter takes a
different approach, employing events that form a topology instead
of a boolean algebra. This allows for new modeling concepts for
judgmental heuristics, rare events, and the influence of context on
decisions.

The Kolmogorov approach to probability theory, which defines probability
as a normed σ-additive measure on a boolean algebra of events, has proved to
be a fruitful foundation to understand issues from much of science. But there
are exceptions where, for various reasons, a more flexible theory is needed. The
purpose of doing so usually arises where there is a need to employ a more general
form for the probability function, or to use a more general algebra of events.
Both settings, for instance, occur in quantum mechanics.

This chapter describes a generalization for a normed finitely additive mea-
sure on a topology. The objectives of this extension are to present a new model
of decision making that can incorporate well-documented features of human
judgments of probability and to assess its “subjective rationality.” Finally, the
model’s mathematical relationship to Chichilniski’s (2009) approach for catas-
trophic decision making is described.

∗The research for this chapter was supported by grants FA9550-08-1-0389 and FA9550-13-
1-0012 from AFOSR. The chapter is based on a presentation given at the AFOSR Workshop
on Catastrophic Risks, SRI Stanford, 2012.
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1 Topological Event Spaces

To start by reviewing some of the basic terms, a boolean algebra of events
has the form,

〈B,∪,∩,−, X,∅〉 ,

where B is a collection of subsets of the nonempty set X closed under the set-
theoretic operations of ∪, ∩, and − and where X and ∅ are in B. A topology
has a similar form except that it is not required to be closed under the oper-
ation of set-theoretic complementation, −. Thus a topology has ∅, X, finite
intersections, and arbitrary unions of subsets from B in B. It is useful for appli-
cations to replace − with a different complementation operator called “pseudo
complementation”.

To be specific, let T be a topology. By definition, for each A in T the
pseudo complement of A, denoted as � A, is the largest element B of T such
that A ∩ B = ∅. By elementary properties of “topology”, � A always exists.
With this operation, a topological algebra of events is defined to have the form

〈T ,∪,∩,�, X,∅〉 ,

where X is the universe of T . It is not difficult to show that, with this definition,
a topological algebra of events where each open set is also a closed set is a σ-
boolean algebra of events.

Boolean algebras of events correspond to the classical propositional calcu-
lus in logic, where “c implies d” in a classical presentation corresponds to an
expression of the form (−C) ∪D in a boolean algebra of events. A topological
algebra of events corresponds to a different, well-known logic called the intu-
itionistic propositional calculus. Similar to the boolean algebra of events and
classical logic, the operation ∪ corresponds to disjunction “or”, and the opera-
tion ∩ corresponds to conjunction “and” in intuitionistic logic. But rather than
− corresponding to the “not” operation, for intuitionistic logic, � corresponds
to negation. Unlike boolean algebra of events, the operator corresponding to
intuitionistic implication cannot be defined by a simple formula involving ∪,∩,
and �, although it has a purely topological definition. (For details involving
topological algebras of events and their relationship to intuitionistic logic, see
Narens, 2014b.)

It is this difference in complementation operators that permits the logical
structure of a topological algebra of events to differ from that of a boolean
algebra of events. The following nine statements identify basic properties of �
for a topological event space. While the first eight remain valid by substituting
− for �, we call attention to Statement 9 because it becomes invalid under such
a substitution. (The proofs for these statements can be found in Chapter 9 of
Narens, 2007.)

If 〈T ,⊆,∪,∩,�, X,∅〉 is a topological algebra of events, then the following
eight statements hold for all A and B in X :

1. � X = ∅ and � ∅ = X.
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2. If A ∩B = ∅, then B ⊆ � A.

3. A∩ � A = ∅.

4. If B ⊆ A, then � A ⊆ � B.

5. A ⊆ �� A.

6. � A = ��� A.

7. � (A ∪B) = � A ∩ � B.

8. � A∪ � B ⊆ � (A ∩B).

9. There exists a topological algebra of events 〈Y,⊆,∪,∩,�, Y,∅〉 such that
the following three statements hold:

• For some A in Y, A ∪ � A 6= Y .

• For some A in Y, �� A 6= A.

• For some A and B in Y, � (A ∩B) 6= �A ∪ � B.

A rich and useful concept is the definition of a “probability function,” which
serves as a normed measure. In part, this concept is possible because the algebra
inherent in a boolean algebra of events guarantees a sufficiently abundant subset
of disjoint events. In contrast, the topological algebra of events need not enjoy
this property of having a sufficiently generous subset of disjoint events. Closing
this gap requires altering the concept of “probability function,” which is needed
to provide a decent theory of probability.

The way to do so is to change the finite additivity clause in the definition of
normed, finite measure to an expression that is logically equivalent for a boolean
algebra of events:

For all A and B in the topology, P(A ∪B) = P(A) + P(B)− P(A ∩B) .

With this change of definition of “normed, finitely additive measure”, P applied
to a topological algebra of events T is called a probability function on T .

2 Boundaries of Topological Events

Many applications of Kolmogorov probability theory begin with a topological
event space from which a special boolean algebra of events is selected. Along
with this algebra, a measure is chosen that assigns the probability of 0 to the
boundary of an event. Thus the measure allows the boundaries of events to be
ignored.

In applications of topological event theory, however, we may not wish to
ignore these boundaries. Instead, the boundaries, although “small,” could carry
substantive interpretations that cannot be ignored. In other words, when as-
signing probabilities, it may be important to assign positive values to some
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boundaries, including their parts and even isolated boundary points. As shown
below, doing so allows for richer concepts to be developed in purely event terms
that are not feasible when using a boolean algebra of events. In this chapter
this is done for the specialized concepts of ambiguity and vagueness.

(0,0)

(2,2)

X = B⋃C⋃DC
B

D

Figure 1: U = {X,B,C,D,∅} , is a six element topological algebra
of events with universal set X and an open set C with the “thick”
boundary B − C.

These notions are illustrated with Figure 1, which describes a topology T
consisting of 6 open sets; each set also is an open set in the Cartesian plane
with the Euclidean topology:

• The (open) sets B, C, and D have the Euclidean areas of, respectively 1
4 ,

1
8 , and 3

4 . Geometrically, sets B and C are centered at the point (0,0),
while D is centered at the point (2,2).

• The other open sets are X = B ∪D = B ∪ C ∪D (which is the universe
of T ), C ∪D, and ∅.

Note that �B = �C = D and B = �� B = �� C. This last expression
illustrates that it is possible to have �� C 6= C, which is condition 9 in the above
list. Also note that the T -topological boundary of C (i.e., the set of points a of
X such that each element of T containing a intersects C and X −C) is B −C.
Further note that although X 6= C ∪D, it is true that ��(C ∪D) = X.

For each event E in T , if P(E) equals the area of E, then P is a probability
function on the topological algebra of events T . Because P(X) = 1 and �C = D,
it follows that

P[C ∪ (�C)] =
1

8
+

3

4
< 1 = P(X) . (1)

Equation 1 is a probabilistic form of a well-known principle of intuitionistic logic
that violates the law of the excluded middle coming from classical logic. That
is, this example violates the condition C ∪ (�C) = X.
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It is clear what causes the inequality in Equation 1; the boundary B − C
of C ∪ (� C) is ignored. This missing term has value for certain applications
such as for human judgments of probability. For example, in Chapter 10 of
Narens (2007), it is interpreted as potentially clear instances of C and cognitive
non-instances of � C. Such instances are ignored in the cognitive calculation of
the participant’s subjective probability of C ∪ (� C).

Figure 1 illustrates a “thick” boundary, which is but one choice. Also the
“measure method” for constructing the probability function P is only one way to
construct probability functions for topologies. Of relevance for what follows is
that a geometrically “thick” boundary is not needed in order to have a boundary,
or part of a boundary, to behave as though it has a positive probability. Even
individual points that are open sets can be assigned positive probabilities. In
other words, a probability function on a topological algebra of events need not
be produced in a usual mathematical way to derive a measure from a topology.

3 Application to Judgments of Probability

Many psychological experiments involving human judgments of uncertainty
have the participants judge conditional probabilities that are of the forms A|Y
and B|Y, where A, B, and Y are descriptions, respectively, of the events A,
B, and Y , with A and B being disjoint and A ⊆ Y and B ⊆ Y . Descriptions
are used here, because many experimental paradigms involve situations where
different descriptions of the same event can lead to different results.

To provide an example, suppose the above event A is partitioned into the
four events C,D,E, F with respective descriptions C, D, E, F. Suppose
participants make judgments that are sufficiently separated by time and design
so that the judgments do not influence one or another of

P(A|Y), P(B|Y), P(C|Y), P(D|Y), P(E|Y), P(F|Y) .

The problem is that, rather than equality, many experimental studies show that

P(C|Y) + P(D|Y) + P(E|Y) + P(F|Y) > P(A|Y) , (2)

with

P(B|Y) +P(C|Y) +P(D|Y) +P(E|Y) +P(F|Y) being substantially > 1 . (3)

As an example of Equations 2 and 3 consider the following experiment of Fox
& Birke (2002):

(Jones Versus Clinton) 200 practicing attorneys were recruited (median
reported experience: 17 years) at a national meeting of the American Bar As-
sociation (in November 1997). Of this group, 98% reported that they knew at
least “a little” about the sexual harassment allegation made by Paula Jones
against President Clinton. At the time of that the survey, the case could have
been disposed of by either A, which was an outcome other than a judicial ver-
dict, or B, which was a judicial verdict. Furthermore, outcomes other than a
judicial verdict can partition A into
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(A1) settlement;

(A2) dismissal as a result of judicial action;

(A3) legislative grant of immunity to Clinton; and

(A4) withdrawal of the claim by Jones.

Each attorney was randomly assigned to judge the probability of one of these
six events. The results are given in Table 1

(A) other than a Judicial verdict .75
(B) judicial verdict .20

Binary partition total .95

(B) judicial verdict .20
(A1) settlement .85
(A2) dismissal .25
(A3) immunity .0
(A4) withdrawal .19

Five fold partition total 1.49

Table 1: Median Judged Probabilities for All Events in Study

The Jones versus Clinton example illustrates the core idea of the much inves-
tigated empirically based theory of probability judgments called Support Theory,
which is due to Tversky & Koehler (1994) and modified by Rottenstrich & Tver-
sky (1997). Chapter 10 of Narens (2007) employs algebras of topological events
to provide a foundation for Support Theory and to model its empirical results.

This foundation is based on topological algebra of events that includes con-
siderations about boundary points. The basic premise is that in making a judg-
ment of probability, participants use cognitive heuristics like those proposed in
various seminal articles of Kahneman and Tversky (e.g., Tversky & Kahneman,
1974), and that these heuristics can be modeled through topological considera-
tions.

For probability judgments the availability heuristic is particularly important.
In this heuristic, the participant judges the probability of an event E in terms of
the evidence for the occurrence on E and evidence for the non-occurrence of E.
Namely, the judgments are based on the number and ease that instances of E are
brought to mind by the event’s description E as compared to the number and
ease that non-instances of E are brought to mind by not E. In addition to avail-
ability, Chapter 10 of Narens (2007) models the “representativeness heuristic”
by reducing it to the availability of properties of instances of an event. While
it is beyond the scope of this current chapter to present a thorough discussion
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of Narens’ foundation for Support Theory this brief description is intended to
indicate the important kinds of cognitive instances of an event and their role in
judgments based on the availability heuristic.

In general, the most important kind of cognitive instance of E is a clear
instance base on E. These “instances” are the ones that come to mind; they are
the ones that a participant views as definitely belonging to E when provided
with the description E. The set of clear instances (to be denoted by CI) based
on E is modeled as an open set CIE(E) in a topology T . The simpler notation
“CI(E)” is employed when it is obvious that the set of clear instances are based
on E. A similar convention holds for the notation “CC(E)” that is presented
next.

The cognitive complement of the set of instances of E, CC(E), consists of
all instances that come to mind that are viewed by the participant as clearly
not being clear instances of E. As with CI(E), it is assumed that CC(E) is an
element of T . It is also assumed that the structure of T is such that the pseudo
complement of CI(E) with respect to T , � CI(E), is the set of all instances
i (in the domain X under consideration) such that if i were presented to the
participant as an instance described by E, then she would consider it to be clearly
not an instance of E. (Note the counterfactual nature of the definition of �
CI(E).) It is assumed that

CC(E) ⊆ �CI(E) .

This inclusion is a natural consequence of the meaning of “clear instance”. Of
interest, which is explored next, is that this expression need not be an equality.

Before considering other kinds of “instances”, it is useful to describe what
�� CI(E) corresponds to. It is assumed that T is such that �� CI(E) is the
set of all instances i (in the domain X under consideration) such that if i were
presented to the participant as an instance described by not E, then she would
consider it to be clearly not a clear instance of not E. In particular, each clear
instance of not E is not in CI(E), and thus

CI(E) ⊆ �� CI(E) and CC(E) ⊆ � CI(E) .

Because these expressions are of containment, but not necessarily of equality,
the elements of [��CI(E)] − CI(E)] are of particular interest. These elements,
which are called potential clear instances of E, are possible clear instances of E
that do not come to mind when judging the probability of E when presented
the description E; mathematically, this statement means that although these
elements are related to CI(E), they are not in this set. Theoretically, they are
responsible for empirical observations of Equation 2 when the availability heuris-
tic plays a primary role in probability estimations: A more specific description
F of a subevent F of an event E is likely to bring to mind more clear instances
of F than the subset of clear instances of F brought to mind when doing a
probability estimation of E with a description E of E.

Indeed, it is the mathematical boundary structure, where even if a boundary
point for a set is not in the set it still shares aspects of the set’s structure, that
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provides an appropriate framework to describe two additional and important
kinds of “cognitive instance” — ambiguity and vagueness. Element i is said to
be a weakly ambiguous instance of E if and only if when making a probability
judgment of E with E, i is an element of the boundary of CI(E) and CC(E).
Notice, i is not in either CI(E) or CC(E).

Similarly, i is said to be an vague instance of E if and only if when making
a probability judgment of E with E, i is an element of the boundary of CI(E)
but it is not an element of the boundary of CC(E).

A weakly ambiguous instance comes to mind in the judging of both E and
not E and the participant is aware of this. Because of this awareness, it is
neither a clear instance of E nor a clear instance of not E. A distinction is made
between weakly ambiguous instances and another kind of ambiguous instance
called “strongly ambiguous”. Consider a situation where a participant judges
P(E |E or F) and later judges P(F |E or F), where the conjunction E and F
describe the empty event. Then i is said to be strongly ambiguous instance of
these judgments if and only if it is a clear instance of E when (E |E or F) is
judged and it is a clear instance of F when (F |E or F) is judged.

Our reading of Tversky & Koehler (1994) suggests that Support Theory has
participants ignoring weakly ambiguous and vague instances in their calculations
of probability estimates. However, their calculations take into account strongly
ambiguous instances, causing the sum,

P(E |E or F) + P(F |E or F) ,

to be an increase over what one would expect from standard probability theory,
because of the strongly ambiguous instances that happen for both E and F.

In Support Theory, a participant’s estimation P(A|A∪B) of the conditional
probability A|A ∪B, where A ∩B = ∅, is computed by the formula,

P(A|A ∪B) =
S(A)

S(A) + S(B)
, (4)

where S is a function with nonnegative real values. Tversky & Koehler (1994)
calls S a support function. Equation 4 have been used by Luce, (1959) and
others to model choice situations where P is an observed probability function
instead of a subjective estimation. Below, it is generalized slightly to model
situations where a subject’s probability estimations violate finite additivity.

The availability heuristic assumes that S(A) and S(B) are determined, re-
spectively, by ease and number of instances of A and B come to mind when
presented with appropriate instructions to the participant using descriptions A
and B. Note that such instructions are asymmetric with respect to A and B:
During this phase of the experiment, the participant is instructed to estimate
the conditional probability of A given A ∪ B, while no instruction (during this
phase of the experiment) is given to estimate the conditional probability of B
given A ∪ B. The form of these instructions allows for asymmetric approaches
for calculating S(A) and S(B).
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In terms of the foundational concepts presented here, this asymmetry be-
comes more apparent. The reason is that the above foundation replaces Equa-
tion 4 with

P(A|A ∪B) =
S[CI(A)]

S[CI(A)] + S[CC(A)]
. (5)

An important difference is that Equation 5 includes the possibility that the
structure of T is such that CC(A) 6= CI(B). This provides the possibility for
structurally asymmetric cognitive processing of A and B in the estimation of
P(A|A ∪B), e.g., the clear instances A can be processed without consideration
of the clear instances of B, but the processing of CC(A) requires also processing
a relationship between A and B describing which clear instances come to mind
that are instances B but not instances of A. It is assumed that subjects employ
the processing described by Equation 5. For some situations, this results in
different predictions than the formula

P(A|A ∪B) =
S[CI(A)]

S[CI(A)] + S[CI(B)]
.

Topological modeling of events is a promising alternative to boolean mod-
eling for describing subjective probability estimations. The reason is that its
internal “logic” matches better with the forms of cognitive processing entering
into the estimations. This assertion becomes apparent when memory is involved.
In particular, one of the more robust empirical findings in memory research is
that, for the vast majority of times, recognition is easier than recall.

In fact, one of the simplest models of recall memory, which is called the
generation-recognition theory of recall, relies on this fact. The model assumes
that in response to a recall task of the “Name the wild African animals” type,
the participant generates a set of animal names (the generation phase) and
selects those that she believes are names of wild African animals (the recognition
phase).

In contrast, the recognition task presents a list of animal names and asks to
participant to select those that name wild African animals. This approach elim-
inates the need to generate possible names, which makes recognition generally
an easier and more accurate task (in terms of percent correct) than recall.

Narens (2009) shows that the logical relationship of recognition and recall
can be nicely modeled in a topological algebra of events by the operation of
pseudo complementation, �: To see how this is done, in the topological algebra
T , let E be a set of items that is recalled from a category E or a set of items
that is recognizable as belonging to a category E. For example, the universe of
T can be the set of animals, E a description of the category of African animals,
and E the items recalled with description E. By definition, � E is the set of
items of not E that is recognized. As E is a description of the category of
African animals, it follows that � E is the set of animals that is recognized as
being non-African. In turn, �� E becomes the set of items of items of not not
E that is recognized, which coincides the set of items of E that is recognized.
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By properties of pseudo complementation,

E ⊆ (�� E) .

When E is a set of recalled items of E, it is a subset of recognized items of E.
As these examples demonstrate, because various concepts derivable in topo-

logical algebras of events have structural correspondences with notions coming
from cognitive psychology, a topological algebra of events can be an attractive
alternative to a boolean algebras of events. Although Kolmogorov probability
theory can be avoided for measuring uncertainty on a boolean algebra of events
by using systems of weights on events instead of probabilities, such weightings
do not have sufficient logical structure to provide a foundation for a subjective
probability theory with a rich mathematical calculus for manipulating and cal-
culating measurements of uncertainty. It is precisely having such a calculus that
makes Kolmogorov probability theory so useful in applications. Narens (2007,
2014b) show that topological algebras of events have rich probabilistic calculi.

4 Rationality

It is claimed by many that rational decision making under uncertainty re-
quires that a particular model of decision making, the Subjective Expected Utility
Model—or SEU for short—must hold. This model assumes that the decision
maker has a a utility function u over outcomes and lotteries and a fintely addi-
tive Kolmogorov probability function P over events such that for all lotteries

L = (a1, A1; . . . ; ai, Ai; . . . ; an, An) ,

where ai is a pure outcome, Ai is an event, and “ai, Ai” stands for receiving ai
if Ai occurs, and

u(L) =

n∑
i=1

P(Ai)

P(A1) + · · ·+ P(An)
· u(ai) . (6)

Equation 6 is called the SEU Model for L.

Note that in Equation 6,

P(Ai)

P(A1) + · · ·+ P(An)

is the subjective conditional probability of Ai occurring given that
⋃n

i=1Ai has
occurred.

The basis for claiming the rationality of SEU rests on axiomatizations for
which the individual axioms are argued to be rational, for example, the famous
axiomatization of Savage (1954), or the axiomatization of a conditional form of
SEU by Luce & Krantz (1971).
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Humans tend to violate SEU in systematic ways. While economics generally
consider these examples to be violations of rationality, some have argued that for
human decision making, SEU is an inappropriate model of rationality. Instead,
it is proposed that rationality should be evaluated in terms of a form of opti-
mality that takes into account various constraints the decision maker encounters
while making decisions. These include cognitive constraints like limitations of
memory and the ability to make complicated mathematical calculations as well
as inherent biological constraints such as the effects of emotion generated by the
decision task on the final decision. Forms of rationality that take into account
constraints like these are called bounded rationality (Simon, 1957).

This section focuses on situations where the decision maker experiences dif-
ferent states while making decisions about lotteries, and it develops a notion
of “rationality” for these situations. This form of rationality, which is called
cognitive rationality, is illustrated in Figure 3. It is distinguished from the ra-
tionality inherent in the SEU model called objective rationality and illustrated
in Figure 2.

Objective
Lotteries

Objective
Actions

Subjective
Lotteries

Decision

Intended
Actions

Objective
Coherence

Subjective
World

Figure 2: Objective Rationality

Both Figures 2 and 3 are concerned with a situation where lotteries from a
set of lotteries L are presented to a participant. The elements of L are called
the objective lotteries; they can be considered to be part of the everyday world.

For purposes of evaluating utilities, the participant needs to interpret them
subjectively. From a mathematical perspective, objective rationality assumes
there is an isomorphism between each objective lottery and a particular sub-
jective representation that is used for calculating utilities. Namely, each item
of an event in an objective lottery has a corresponding isomorphic item in the
subjective representation.
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Objective
Lotteries

Objective
Actions

Subjective
Lotteries

Decision

Intended
Actions

Objective
World

Subjective
Coherence

Figure 3: Subjective Rationality

While subjective rationality also assumes the existence of subjective rep-
resentations of objective lotteries, the representations are not required to be
isomorphisms of objective lotteries. They must, however, have the logical form
of lotteries.

Both objective rationality and subjective rationality assume that each sub-
jective lottery is an input to a decision process. The outcome of the decision
process has two steps. The first yields intended actions, which then yield ob-
jective actions that take place in the everyday world. For this discussion, the
intended actions can be assumed to produce preference orderings on the subjec-
tive lotteries, -obj for objective rationality, and -sub for subjective rationality.

The intended actions are carried out in the everyday world producing prefer-
ence orderings on objective lotteries, -′obj for objective rationality and -′sub for

subjective rationality. Objective rationality assumes that its subjective lotteries
with the ordering -obj is isomorphic to objective Lotteries with the ordering

-′obj. Subjective rationality does not make this assumption.

Notice how the principal difference between objective and subjective ratio-
nality is the kind of coherence that relates lotteries with preference orderings.
Objective rationality assumes that -′obj is objectively coherent in that it demon-

strates the following consistency with SEU: There is a utility function uobj on

the set of outcomes occurring in objective lotteries and a probability function
Pobj on the set of events occurring in objective lotteries such that

(i) each objective lottery satisfies the SEU Model (Equation 6) with uobj and

Pobj, and
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(ii) for all objective lotteries K and L,

K -′obj L iff uobj(K) ≤ uobj(L) .

Subjective reality assumes a similar kind of consistency for -sub. Specif-
ically, -sub is subjectively consisent if and only if there is a utility function
usub on the set of outcomes occurring in objective lotteries and a probability
function Psub on the set of events occurring in objective lotteries such that

(i) each objective lottery satisfies the SEU Model (Equation 6) with usub and
Psub , and

(ii) for all objective lotteries K and L,

K -sub L iff usub(K) ≤ usub(L) .

The participant is assumed to enter into various states. Let S be the set
of such states. It is important to understand how changes of state affect her
subjective representations of lotteries and her subjective preference ordering.
The following notation is useful for this. For each s in S and each objective
lottery L = (a1, A1; . . . ; ai, Ai; . . . ; an, An), let

Ls = (as1, A
s
1; . . . ; asi , A

s
i ; . . . ; a

s
n, A

s
n)

denote the participant’s subjective representation of L when she is in state
s. Various theories of subjective rationality can be formulated by postulating
relationships among ai, Ai, a

s
i , A

s
i , and ati, A

t
i for states s and t. The following

are the relationships postulated by a theory of Narens (2014a) called descriptive
subjective expected utility or DSEU for short, where

LS = {Ls | s ∈ S} = the set of objective lotteries .

Suppose s and t are arbitrary states in S, T is a topological algebra of events,
P is a probability function on T , and u is a real valued function on the set of
outcomes of objective lotteries. Then the following hold:

• Subjective rationality holds for LS .

• Invariance of lotteries: Each subjective lottery is a lottery with pure out-
comes. (This holds automatically, because it is a consequence of subjective
rationality. It is stated here to emphasize that for subjective rationality,
the concept of “being a lottery” remains invariant under changes of state.)

• Invariant utilities of outcomes: u(as) = u(a) for each outcome a of each
objective lottery.

• Invariance of disjointness of events across states: For each event A of
each objective lottery, A is in the topology T and

As ⊆ �� A and At ⊆ �� A . (7)
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Note that in the principle of invariance of disjointness of events across
states, the topology T and the pseudo complementation operator � de-
pends on the subject. (Also note that it implies that if C and D are
distinct events occurring in some objective lottery, then Cs ∩ Dt = ∅.
This is part of the reason that this assumption is called “invariance of dis-
jointness of events across states”. It provides a much stronger constraint
than invariance of lotteries. Also note that it provides a strong—but in
applications a workable—constraint on the subjective representations of
an objective event: They are related by Equation 7.)

• Subjective SEU with invariant probability and invariant utility across states:
For all objective lotteries L = (a1, A1; . . . ; ai, Ai; . . . ; an, An),

u(Ls) =

n∑
i=1

P(As
i )

P(As
1) + · · ·+ P(As

n)
· u(ai) . (8)

(Note that P and u do not depend on the state s.)
The idea behind the DSEU is to produce a model that satisfies much of

the experimental literature designed to violate SEU while retaining much of
the rationality expressed by SEU. Another approach in the economic literature
for generalizing SEU replaces SEU’s utility function with a family of utility
functions, where the utility of an outcome can vary with state. This approach is
reasonable for some situations, and DSEU can be easily modified to incorporate
it as an additional feature. However, there are many situations where it is
unreasonable to think that the driving force for the failure of SEU is due to
changes in utilities of outcomes. This appears to be likely for most situations
involving emotional states, where changes in subjective probabilities appear to
be a more reasonable choice.

5 Connections

An interesting feature of the above discussion is how the described method
permits positive weights to be attached to boundary elements. Namely, part of
the strength of this approach comes from the ability to assign added weight to
important events that might otherwise be ignored.

A similar concern partly motivated the work of Chichilniski (2009), where
she examined decision analysis in settings that include rare but catastrophic
events. As she accurately points out, a weakness of standard expected utility
approaches is that the small likelihood (the measure) of an horrific event could
cause it to drop out of the decision analysis.

To see how this can happen, suppose an event has the extremely large neg-
ative utility of −M where M has an arbitrary large value. But if the likelihood
of this event is very rare, say M−10, then in expected utility considerations the
event becomes the unnoticeable −M 1

M10 = − 1
M9 . Stated in other words, with

standard expected utility considerations, rare but crucially important events
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(such as earthquakes, attacks such as 9/11) might not receive sufficient consid-
eration when it is part of a standard policy/decision analysis.

Resolutions for this kind of difficulty are immediate: The goal is to find ways
to attach stronger, more commensurate attention to these concerns. This can
be done through concepts involving the double negation operator �. To review
how this can be done, let the standard, everyday events be represented by E. In
this setting, rare, possibly catastrophic events can be treated as being contained
in the boundary of E: It can be shown that in many topologies

boundary of E ∩ boundary of (�� E)− E

contain subsets of points that are natural candidates for representing rare, pos-
sibly catastrophic events. As described in the first section of this chapter, a
difficulty with boundary events is that, with standard probabilistic approaches,
they tend to be lost by being assigned a probability of zero. But similar to ap-
proaches described earlier, positive values can be attached to subsets contained
in boundary of E ∩ boundary of (�� E)−E. However, unlike to the approaches
described previously, such subsets in this case are not like events considered in
these earlier approaches: They are not elements of the underlying topology.

Using this approach to boundaries, it becomes a direct exercise to convert the
utility approach described in the last section into one that handles these kinds of
subsets of boundaries. This is because the measure of a set supporting rare but
important events (that is, an event C contained in the subset of boundary points
[E ∩ boundary of (�� E) − E]) can be assigned a weight commensurate with
its actual importance, while retaining the measures of the non-rare events in
E. This allows for an establishment of a coherent probability function without
the use of inappropriate values coming from the mathematical structure of an
adopted, but perhaps inappropriate decision method.

A new kind of interpretation needs to be given to the rare event C described
just above. From the perspective of the decision method used for calculating
E, C has very small but non-specifiable, non-infinitesimal chance of occurrence.
Its non-specifiability puts it outside of the subsets determinable by the decision
method with definite probabilities, whereas it is still described by E, and there-
fore is contained in �� E. A natural place for it is as a subset of the boundary
of E ∩ the boundary of (�� E)− E. As such, C is not an open subset of E or
an open subset of �� E, that is, C /∈ T . Events of (�� E) − E are assigned
probabilities by a new method. This gives rise to two probability functions, P1

by the old decision method for events in T and P2 by the new method for events
contained in (�� E)− E for each E in E . Let

C = {C |C /∈ T , C is an event, and for some E in T , [C ⊆ (�� E)− E]} .

A probability function P is then defined on the boolean algebra generated T ∪C
having the following properties:

• On T , P = P1.

• On C, P = P2.
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• On T ∪ C, P is defined as the following weighted average: There exists
0 < α < 1 such that for all E in T and C in C,

P(E ∪ C) = αP1(E) + (1− α)P2(C) .

Although Chichilniski adopted a different approach, it is interesting to note
some of the similarities. She noted that if the utility function u is assumed
to be in Lp, p ≥ 1, (that is, the space of functions f(x) where

∫
|f(x)|p dx

is bounded), then the above same effect can occur causing an important rare
event to be ignored. While the above example with the negative utility of −M
occurs on a set of measure M−10 will be picked up by placing the analysis in
L11 (because now

∫
|u(x)|11 dx includes the computation |−M |11(M−10) = |M |

where the |M | value is noticed). But the same problems would be ignored in
this space if the supporting measure is M−20 (because now the computation
|−M |11(M−20) = |M |−9 where the spike is ignored). In other words, a realistic
issue is that, a priori, it is not known what would be the underlying measure of
a serious rare event.

On the other hand, no matter how small the supporting measure, if it is
positive, then this event will be picked up for functions in L∞ (where the norm
of a function can be viewed as being given by the supremum of |f(x)| over sets
of positive measure). With the above choice where u can have the negative
utility of −M , no matter how small the supporting set for this value, if it has a
positive measure, then the | −M | value will dominate attention.

The next step is to find a way to determine the underlying measure and
to find ways to assign positive values to small events. As a review to describe
what is done, the well known Riesz representation theorem (e.g., Dunford and
Schwartz (1957)) states that a linear functional L(f) for f ∈ Lp can be repre-
sented as L(f) =

∫
f(x) g(x) dx for a particular g(x) ∈ Lq where 1

p + 1
q = 1. That

is, the linear functional can be identified with an element in the dual space of
Lp, which is Lq; the linear functional has the representation of a scalar product
(which is an integral here).

While the 1
p + 1

q = 1 dual space representation holds only for finite p, q > 1,

it suggests with Chichilniski’s setting of p = ∞ (so 1
p = 0 or 1

q = 1) that the

dual space (which defines the underlying measure) should involve L1. It does;
the dual space for L∞ is the combination of L1 with bounded, finitely additive
signed measures that are absolutely continuous with the underlying measure.
(See p. 296 of Dunford-Schwarts (1957).) These finitely additive measures,
which normally are difficult to use, are what provide the extra structure where
positive weights can be assigned to objects of small size. In this way, the decision
structure confronts and incorporates the rare but significant events into the
decision analysis.

There is a certain similarity in how the two approaches elevate the impor-
tance of small but highly relevant sets; both incorporate a sense of the double
dual, or double negation. In a degenerate topological space where every open
set is also a closed set,

E = (�� E) ,
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and the topology becomes a boolean algebra of events. That is, certain degen-
erate topological models would require a set to be equal to its second negation.
A richer setting arises by adopting a modeling environment where the double
negation introduces new sets through

E ⊆ (�� E) .

As shown, the identity of these new sets vary with what is being modeled; they
can range from the modeling of ambiguity or vagueness to providing a way to
attach appropriate attention to rare but crucial events.

A similar mathematical effect occurs with expected utility theory with the
duality operation. Here, the Lp spaces are reflexive in that the dual space for Lp

is Lq and the dual space for Lq returns to Lp. That is, a fairly normal modeling
environment is where a space equal to it second dual. But a richer setting arises
by adopting a modeling environment where the second dual contains, but does
not equal, the original space. This is the effect of assuming that the utility
functions are in L∞; the dual of this space, or the second dual of L1, introduces
the new finitely additive measures that can be used to handle rare but crucial
events.
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