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Non-negative matrix factorization using genetic algorithm for
spectral colors
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SUMMARY In this paper we introduce novel methods for non-negative
matrix factorization (NMF) using a genetic algorithm. The methods find
the optimal basis functions for the spectral colors in both spectral and color
spaces. We show that one of the proposed algorithms works as well as
the standard NMF algorithm in spectral space. Further, this algorithm is
modified to obtain a functionality to work in color space which the stan-
dard NMF is currently not capable to provide. The modification involves
optimization in color space reducing the approximation error by a factor of
6 for Macbeth ColorChecker colors. The algorithm can be used in digital
camera design. In addition, we propose an algorithm based on multiob-
jective optimization in both spectral and color space which can be used in
digital image archiving.
key words: Genetic algorithm, spectral colors, Macbeth ColorChecker,
non-negative matrix factorization

1. Introduction

Non-negative Matrix Factorization (NMF) gives a represen-
tation of the latent data structure and reduces the dimen-
sionality of the data. There are at least two good physical
reasons to use the technique for spectrometry and imaging:
Firstly, optical sensors generate non-negative signals, that
may require non-negative decomposition, and, secondly, the
optical color filters can be physically implemented only with
non-negative spectral characteristics [1]. In multispectral
imaging, for example, the technique may be used to cal-
culate the digital camera spectral band characteristics and
is particularly attractive for spectral reflectance estimation
using the Wiener method [2].

NMF solves the problem of non-negative data decom-
position [3–6]. NMF was used in spectral unmixing for
non-resolved space object characterization [3]. NMF and
a related technique called non-negative tensor factorization
(NTF) were used to define the optimal non-negative repre-
sentation of spectral colors for different sets including the
Macbeth ColorChecker (MCC) and Munsell color set [1],
[7]. NMF method represents the measured spectra by a
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few non-negative basis functions. NMF determines non-
negative factors W and Z implementing non-negative fac-
torization of the given matrix X as follows: X ≈ WZ. If
the size of V is the number of wavelengths times the num-
ber of spectra then the columns of W are the basis functions
found minimizing the error of approximation while Z is a
matrix of weights.

Here we mainly study three band systems which are
most popular in camera industry. If the three spectral re-
sponses of the color sensor of a camera are equal to the color
matching functions of the Standard Observer then color is
reproduced correctly. This is not achieved, yet. The rea-
son is that for display and printer control the transformed
matching curves are used [8]. Therefore a further study
for color image acquisition in digital cameras optimized for
color matching functions is required. This can be based on
the NMF approach. For example, the basis functions found
by NMF optimized in spectral space give rough represen-
tation of shapes, wavelength subranges and the location of
the modes for color matching functions (Fig. 1). However,
the published results [1], [7] only reported about spectral
optimization that is rather rough while the accurate approx-
imation of colors is required.

In this paper we propose the genetic algorithm (GA) as
an optimization technique for solving the NMF task. Our
purpose is to find non-negative basis functions to obtain
accurate color reproduction for the given spectral dataset.
The following three novel algorithms are developed: non-
negative matrix factorization in the spectral space, non-
negative matrix factorization regarding the color space, and
optimization in both spectral and color spaces. The first al-
gorithm optimized in spectral space achieves similar perfor-
mance as the standard NMF. Then, this algorithm is mod-
ified to obtain a new functionality to work in color space
which the standard NMF is currently not capable to pro-
vide. The modification involves optimization in color space
and gives much more accurate result.

The paper is arranged as follows: The methodology
is considered in Section 2, the algorithms are discussed in
Section 3, experimental results are given in Section 4, and
conclusions are given in Section 5.

2. Methodology

The GA is known as a search technique for large spaces
and is superior to other optimization methods when require-
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Fig. 1 Spectral curves. a) The CIE 1931 color matching functions of
Standard Observer. b) The normalized basis functions calculated using
standard NMF and optimized in a spectral space.

ments for function features like smoothness, continuity and
differentiability are violated [9]. In addition, the GA con-
cept is easy to understand and implement, works in noisy
environments and supports multiobjective optimization.

The GA contains a population of individuals and as-
sesses the fitness of individuals for each generation. We con-
sider matrices X ∈ Rd×n, W ∈ Rd×r and Z ∈ Rr×n, where
d is the number of wavelengths, n is the number of spectral
colors, and r is the maximum number of basis functions or
the rank of factorization. The number of basis functions can
be less or equal to the rank of factorization. We use the GA
to define the best subset of variables according to the fitness
function:

min
W ,Z

1
2

n
∑

i=1
∥xi −Wzi∥

2

subject to W ≥ 0; zi ≥ 0,
(1)

where xi and zi are the columns of the matrices X and Z,
respectively.

On the other hand, GA provides an elegant way to se-
lect the best variables for color representation minimizing
the color difference. The representation of individuals in
this case is illustrated in Fig. 2. The individuals or chromo-
somes are presented by real valued vectors which live in the
genotype space. The problem specific solutions are located
in the visual phenotype space as colors. The mapping be-
tween the spaces is made using encoding and decoding. The
encoding is usually not used while decoding the real valued
vectors (spectra) helps to evaluate individuals according to
their fitness function. From the spectral color viewpoint the
genotype space corresponds to the physical spectral space,
while the phenotype space relates to the physiological color
space. The decoding is identical to the spectrum-to-color
conversion, used in spectral imaging [10]. Thus, the real
valued vectors/chromosomes are spectra and the problem
specific solutions achieve color difference minimization.

Let f () be a decoding function, i.e. a spectrum-to-color
conversion function, then

∥

∥

∥∆E∗abi
∥

∥

∥

2
= ∥f (xi) − f (Wzi)∥2,

where ∆E∗ab is a CIELAB color difference:

∆E∗ab =
√

(

L∗x − L∗Wz
)2
+
(

a∗x − a∗Wz
)2
+
(

b∗x − b∗Wz
)2. We de-

note |L∗x a∗x b∗x|T = f (x) and |L∗Wz a
∗
Wz b

∗
Wz|

T = f (Wz).
In this case the fitness function in color space is as fol-

lows:
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Fig. 2 Diagram.

min
W ,Z

1
2

n
∑

i=1
∥f (xi) − f (Wzi)∥2

subject to W ≥ 0; zi ≥ 0.
(2)

3. Algorithms

Three algorithms based on fitness functions are considered.
The first algorithm is for the basis functions optimized in
the spectral space (GA-NMF-S). The second algorithm is
for the basis functions optimized in the color space (GA-
NMF-C). The third algorithm uses multiobjective optimiza-
tion for both the spectral and color spaces (GA-NMF-M).
The pseudo-code for all these algorithms is as follows:

t := 0;
initialize P(t);
evaluate P(t);
while not terminate do

P′(t) := select-mates(P(t));
P′′(t) := crossover(P′(t), pc);
P′′′(t) := mutate(P′′(t), pm);
P′′′′(t)) := smooth(P′′′(t), ps);
evaluate(P′′′′(t));
P(t) := P′′′′(t);
t := t + 1;

end
Algorithm 1: GA-NMF-i algorithm, i = S,C,M.

We denote by P(t) a population consisting of individ-
uals, and pc, pm and ps the probabilities for operations:
crossover, mutate, and smooth, respectively. We use two
kinds of populations to define the columns of W , i.e. basis
functions, and the rows of Z. For both populations the se-
quence of procedures presented in Algorithm 1 is the same
and, apart of the operation mutate, all procedures are identi-
cal.

3.1 Initialization

The presented Algorithm 1 is similar to general GA except
for the initialization and the operation smooth. The initial-
ization is important because it may affect the algorithm per-
formance. In our earlier study we used a random initial-
ization of W with Gaussian functions [11]. These functions
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were utilized because of a priori knowledge that the resultant
basis functions should be bell shaped and to provide the di-
versity of population that is is needed for evolution. For this
purpose the Gaussians are more desirable than, for example,
piecewise linear functions. However, the random initializa-
tion of GA, and the standard NMF as well, leads to vari-
ations in results. To avoid the random initialization and to
improve performance of the standard NMF the non-negative
singular value decomposition (SVD) for initialization and
SVD-NMF algorithm were proposed [12]. We adopted this
approach for GA-NMF and modified our operation initial-
ization. For that we use singular value decomposition:

X = USV T ,

where S is the diagonal matrix of singular values, S =

diag(σ1,σ2, . . . ,σn), σ1 > σ2 > . . . ,σn, the columns of
matrices U and V are the left singular vectors and the right
singular vectors of S, respectively, and T is transpose.

Let us assume the rank r of factorization is less than
n, r < n, and compute a fraction (< 90%) of the total data
variance to be retained. The retained variance in percents is
as follows:

∑r
i=1 σi
∑n
i=1 σi

100% < 90%.

Then, we define the matrices Ur = (u1,u2, . . . ,ur) and
Sr = diag(σ1,σ2, . . . ,σr) consisting of the first rth vectors
and the first rth singular values of matrices U and S, respec-
tively.

Finally, we initialize matrices Winit and Zinit as fol-
lows:

Winit = |Ur | , Zinit =
∣

∣

∣SrV
T
∣

∣

∣ .

The rank r defines the maximum number of basis func-
tions. In experiments we use the number rb of basis func-
tions, rb ≤ r.

The initialization made for the standard NMF can be
used to generate only one individual. Therefore, we mod-
ify this approach to initialize the whole population. We
employ the SVD initialization followed by NMF with the
update rule called local non-negative matrix factorization
(LNMF) [12]:

Z ←
√

Z. ∗ (W T ∗ (X ./(WZ))),
W ←W . ∗ ((X ∗ZT )./(WZZT )).

We take each even solution of the first 100 iterations of
the SVD-NMF algorithm to obtain the population size 50.
To determine the population size we follow suggestion that
the optimal population size for problems coded as bitstrings
is approximately the length of the string [13]. Though we
use real valued strings we follow this rule. Hence, the pop-
ulation size, i.e. 50, is approximately defined by the number
of wavelengths, i.e. 61.

3.2 Selection, crossover and mutation

The operation select-mates makes the tournament selection

of parents. The operation crossover is based on uniform
crossover with probability pc = 0.9.

The operation mutate is different for W and Z. For
individuals of W , the gene value wi j is randomly selected
and changed using a random value a ∼ N(0, 1) as follows:
wi j = wi j + 0.0005a. Similarly for zi j, zi j = zi j + 0.2a. When
the valuewi j or zi j become less than zero it is set to zero. The
selected value for probability of mutation is pm = 1/61.

The designed algorithms have the deterministic initial-
ization but selection is still random. Therefore the results
have small variations at each algorithm run which can be
neglected.

3.3 Smoothing

The crossover and mutation may produce abrupt changes of
values in the neighbor genes of the chromosomes that lead
to spiky basis functions. To solve this problem we introduce
the smoothing operation smooth for columns of W and for
rows of Z with a simple averaging window comprising three
elements. Testing shows that a good probability of smooth-
ing is about 10 times less than the probability of crossover,
i.e. ps = 0.1.

3.4 Evaluation and fitness functions

The three proposed algorithms have different operation eval-
uate. For the algorithms GA-NMF-S and GA-NMF-C the
fitness functions are the same as the objective functions:
Eqs. 1 and 2, respectively.

In multiobjective optimization (GA-NMF-M) a Pareto
ranking approach is utilized [14]. The objective value
of each solution is not assigned in this case. The
population is ranked according to a dominance rule in
the objective space. The operation evaluate is replaced
by three operations: evaluateS, evaluateC and rank :

Es(t) := evaluateS (P(t));
Ec(t) := evaluateC (P(t));
rank(Es(t), Ec(t));

The operations evaluateS and evaluateC calculate the
objective functions Es(t) (Eq. 1) and Ec(t) (Eq. 2), respec-
tively. Finally, the solutions are evaluated using the oper-
ation rank which calculates fitness value based on solution
rank in population. We adopt the fitness assignment rank-
ing based on a lower rank corresponding to the best solu-
tion [14, 15].

4. Experiments

The experiments were conducted with MCC spectral colors
in two spaces: spectral and color. The number of wave-
length of spectra was taken at 5nm intervals in the VIS range
(400-700nm). The number of basis functions tested was
three. Two light sources (D65 and Halogen) were utilized
in tests. Three spectral datasets were used in experiments
(Tab. 1). For the paint dataset we increased the number of
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wavelengths originally taken at 10nm from 31 to 61 using
linear interpolation.

Table 1 Spectral datasets. The first dimension of size is the number of
wavelengths and the second one is a number of samples.

Dataset Size
Macbeth ColorChecker 61×24
Munsell color dataset [16] 61×1269
Paint dataset [17] 61×91

4.1 Spectral space

The non-negative matrix factorization was implemented in
spectral space. The Algorithm 1 with fitness function ac-
cording to Eq. 1 and initialization described in Section 3
was used.

The parameters for GA were as follows. The individual
length for columns of W was 61. The individual length for
rows of Z corresponded to the number of samples (Tab.1).
The number of iterations was 200,000, except for the Mun-
sell set it was 1,000,000 iterations. The population size was
50 for all tests.

We make a comparison of GA-NMF-S with a standard
NMF algorithms which can be divided into several classes:
Multiplicative update algorithms, gradient descent algo-
rithms, and alternating least squares (ALS) algorithms. For
these algorithms the statements about convergence (global
or local) have not been proven though the ALS algorithm
will converge to a local minimum in certain special cases
[3]. The multiplicative update algorithms are the first well-
known NMF algorithms which often converge in practice.
They have become the baseline versus the new developed
algorithms. Therefore, the multiplicative update algorithms
were selected for comparison with GA. The statement about
convergence of GA has been neither proved. However, it is
known that GA may have tendency to converge to the lo-
cal minimum. The GA algorithms are widely used to obtain
high-quality solutions for hard complex optimization prob-
lems.

For comparison we give the result for MCC using the
standard NMF algorithm, 200,000 iterations (Fig. 1b) [4].
The result for GA-NMF-S is shown in Fig. 3a. The results
are similar. In addition, the MSE values for each spectral
color are given (Tab. 2). The GA-NMF results are slightly
better than those of the standard NMF. We implemented
algorithms in Matlab and used a 2.5GHz laptop computer
with Windows. The computational time for standard NMF
obtained 101s versus the GA-NMF-S computational time
220s. At this point the most important factor for us is to
achieve an accuracy similar to the standard NMF. At the next
step we will modify the GA-NMF algorithm to obtain the
new functionality to work in color space which the standard
NMF has not. The standard NMF is based on an update rule
working in the physical spectral space and is not capable to
work in color space. It will be shown that the optimal ba-
sis functions related to color space approximate significantly
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Fig. 3 Algorithm GA-NMF-S. a) Three normalized basis functions for
MCC. b) Four normalized basis functions for MCC. c) Three normalized
basis functions for paint dataset. d) The three normalized basis functions
for Munsell dataset.

Table 2 Spectral approximation. MSE for standard NMF and GA-NMF-
S. The table cell order corresponds to the order of color patches of MCC.

Standard NMF, average: 0.0031
0.0005 0.0035 0.0013 0.0010 0.0037 0.0049
0.0045 0.0011 0.0031 0.0017 0.0032 0.0052
0.0014 0.0018 0.0045 0.0049 0.0040 0.0035
0.0125 0.0055 0.0022 0.0008 0.0002 0.0000
GA-NMF-S, average: 0.0014
0.0004 0.0006 0.0004 0.0007 0.0028 0.0037
0.0035 0.0004 0.0005 0.0021 0.0008 0.0033
0.0009 0.0013 0.0024 0.0003 0.0031 0.0034
0.0012 0.0004 0.0003 0.0001 0.0000 0.0000
GA-NMF-M, average: 0.0017
0.0004 0.0006 0.0005 0.0011 0.0034 0.0042
0.0048 0.0005 0.0007 0.0025 0.0006 0.0051
0.0012 0.0014 0.0030 0.0007 0.0040 0.0046
0.0013 0.0005 0.0004 0.0003 0.0001 0.0001

better colors.
Though our main purpose is to study three-band sys-

tems we test the potential of our method also for a four-band
system. We note that SVD initialization define the rank of
matrix factorization [12]. According to this approach the
rank cannot be higher than four, i.e. four basis functions, for
MCC. The result is shown in Fig. 3b.

In addition, we tested other datasets. The results are
shown in Figs. 3c,d. The results for the paint dataset differ
from the previous one. This can be explained by different
colors presented in a set particularly for artistic purposes.
The results for Munsell dataset is much closer to the test
results with Macbeth colors.

4.2 Color space

GA-NMF gives a simple and straightforward way for ma-
trix factorization optimized for color difference. This does
not apply to the standard NMF. We utilized GA-NMF-C
with a fitness function based on color difference (Eq. 2) and
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Fig. 4 Normalized basis functions calculated using GA-NMF-C for
MCC and different light sources: a) D65. b) Halogen.

initialization described in Section 3. The rest GA parame-
ters are indentical to that of GA-NMF-S. The spectrum-to-
color conversion was used for decoding [10]. For conversion
we use the illuminants: D65 and Halogen, and CIE 1931
color matching functions. The results were obtained using
200,000 iterations. The results are presented in Fig. 4 and
Tab. 3.

Table 3 Color approximation, light source D65. The color difference
CIELAB ∆E. The table cell order corresponds to the order of color patches
of the MCC.

GA-NMF-S, average: 6.47
2.10 1.55 2.20 7.90 6.92 12.85

14.24 3.62 4.18 8.75 7.62 11.58
10.93 13.45 11.86 3.25 5.09 16.28

2.22 2.49 2.20 1.96 1.36 0.77
GA-NMF-C, average: 1.14

2.62 0.10 0.14 1.46 1.32 0.64
0.67 1.15 1.72 0.80 1.14 1.42
0.96 0.54 0.80 0.52 1.21 2.85
0.43 1.44 1.31 0.68 0.96 2.37

GA-NMF-M, average: 2.99
2.07 1.51 0.90 2.82 3.97 6.09
4.98 0.84 2.00 4.23 2.33 5.01
1.32 4.68 4.38 2.71 3.12 6.00
2.37 2.00 1.39 1.49 1.59 4.05

From the basis functions and color matching functions
in Figs. 1a, 3a, and 4a, and Tab. 3, one can clearly see
that the basis functions optimized in color space are much
more accurate than in spectral space. For Macbeth colors
∆Eavg is reduced about six times (Tab. 3). The basis func-
tions are quite bell shaped, and better define the wavelength
subranges and modes of the curves. For the long-wavelength
curve the result is still not good but this curve at least ap-
proximately defines the subrange of wavelengths. Surpris-
ingly, the results does not change much if light is varied
(Fig. 4a,b).

In addition, we tested the paint dataset and the Mun-
sell dataset using the GA-NMF-C algorithm given 200,000
iterations and 1,000,000 iterations, respectively. The light
source D65 was used. For the Munsell dataset the basis
functions become more bell shaped (Fig. 5a) than those in
Fig. 3d though the functions are less smooth. The similar
result was obtained for the paint dataset. For GA-NMF-S
(paint dataset) ∆Eavg = 15.05 and for GA-NMF-C ∆Eavg =
7.56. For GA-NMF-S (Munsell dataset) ∆Eavg = 12.53 and
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Fig. 5 Normalized basis functions. a) Algorithm GA-NMF-C for Mun-
sell dataset. b) Algorithm GA-NMF-M for MCC.

for GA-NMF-C ∆Eavg = 8.52.

4.3 Multiobjective optimization

In the final conducted experiment we explored the advan-
tage of GA in multiobjective optimization (GA-NMF-M).
We search the optimal basis functions for both spectra and
colors using criterion based on the Pareto front described in
Section 3. The results are presented in Fig. 5b, Tabs. 2, and
3. The results represent the trade-off between two marginal
cases: spectral and color optima. The algorithm is less accu-
rate than corresponding single objective algorithms in color
space. The multiobjective algorithm can be used in digital
image archiving to help to use one set of basis functions in-
stead of two sets: spectral and color.

5. Conclusions

We developed three new algorithms for NMF using GA. The
first algorithm GA-NMF-S finds the optimal basis functions
of spectral color set in the spectral space. The algorithm
performs as well as the standard NMF algorithm. The sec-
ond algorithm GA-NMF-C finds optimal basis functions for
color space. To the best of our knowledge this is a new re-
sult. The basis functions in this case are closely bell shaped
and shows more accurate the mode locations of the spectral
curves. The algorithm accurately approximates colors. The
third algorithm GA-NMF-M uses multiobjective optimiza-
tion in spectral and color spaces.
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