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This paper presents an axiomatization of subjective risk judgments that leads to a represen- 
tation of risk in terms of seven free parameters. This is shown to have considerable predictive 
ability for risk judgments made by 10 subjects. The risk function retains many of the features 
of the expectation modeIs--e.g., a constant number of parameters independent of the number 
of outcomes-but it also allows for asymmetric effects of transformations on positive and 
negative outcomes. This arises by axiomatizing independently the behavior with respect to 
gambles having entirely positive outcomes and those with entirely negative outcomes. Com- 
plex gambles are decomposed into these, and zero outcomes, using the expected risk property. 
The resulting risk function compares favorable with other functions previously suggested. It is 
also demonstrated that preference judgments are distinct from risk judgments, and that the 
theory does not apply as well to the former. 0 1986 Academic Press, Inc. 

INTRODUCTION 

Ever since expected utility models were shown to be empirically inadequate, 
interest has attached to finding other explanatory variables. One of the most 
prominent is the familiar, but undefined, concept of risk. Theories of choice that 
incorporate risk as a central concept-the most prominent being Coombs’ portfolio 
theory of preference-have not achieved wide acceptance because a descriptively 
adequate measure of risk has not been developed. Some of Coombs’ (1969, 1975; 
Coombs & Huang, 1970a, 1970b) intuitions about subjective risk*.g., that the 
riskiness of equal expected value gambles should increase monotonically with the 
amount to be lost-were incorporated by Pollatsek and Tversky (1970) as axioms 
of risk judgments in a risk system closely related to an extensive structure. This 
model yielded a scale of risk for a money gamble that is a linear combination of its 
mean and variance. Coombs and Bowen (1971a), however, showed that Pollatsek 
and Tversky’s risk measure is not empirically adequate because, despite the fact 
that perceived risk is indeed affected by both the expectation and variance of a 
gamble, they alone are insufficient to determine risk. In particular, by using trans- 
formations that maintained expectation and variance unchanged, they found risk 
varied systematically with the skewness of a gamble. 
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Subsequent to the failure of Pollatsek and Tversky’s risk measures few new 
suggestions have been made. One approach was to look at the effect of certain 
transformations of a gamble of its perceived riskiness. The experiments of Coombs 
and Bowen (1971a, 1971b), Coombs and Huang (1970a, 1970b), and Coombs and 
Lehner (1981), for example, followed this paradigm. Lute (1980, 1981) took this 
approach one step further by deriving some risk measures equivalent to certain 
functional equations relating the perceived risk to transformations on the gambles. 
He considered, first, the effect of a change of scale and, in particular, studied the 
two simplest possibilities, additive and multiplicative. Second, he considered two 
ways in which the density function representing a gamble might be aggregated into 
a single risk value. The two simplest possibilities seemed to be, first, a form 
analogous to expected utility integration, which resulted in an expected risk 
function already suggested by Huang (1971a) and, second, the density undergoing a 
transformation before integration. From the combination of options considered at 
these two choice points, four distinct possible measures were derived. Lute left 
examination of their descriptive validity to empirical investigation. Two sets of 
investigators have undertaken that task. 

Weber (1984a, 1984b) set out to test Lute’s assumptions. The first choice point, 
an additive or multiplicative effect of a change of scale on risk, was found to be 
indeterminate in the absence of sign dependence between the risk of the original 
gamble and the effect of the change of scale (Weber, 1984a). Turning to the second 
choice point, the second assumption considered by Lute, namely, that of density 
undergoing a transformation before integration, leads to risk functions that are 
insensitive to a change of origin of the random variable representing the gamble. 
This simple fact ruled out all measures of this type because it had been shown 
empirically that the subjective risk of a gamble is significantly affected by a change 
of origin (Coombs & Bowen, 1971a; Weber, 1984a). Of the expected risk functions, 
the additive one led to expectations of the logarithm of the random variable and the 
multiplicative one to expectations of power functions. The former function could be 
ruled out on a priori grounds because of its unreasonable behavior close to zero, 
namely, that the scale approaches negative infinity. The variables of the expected 
logarithmic risk function, parenthetically, provided a poor fit of subjective risk 
ratings (Weber, 1984b), primarily because of the insensitivity of moments, in this 
case E(loglXI), to the direction of transformations. This property which has led to 
the rejection of moments as useful variables in preference models (Coombs & 
Lehner, 1984; Payne, 1973) also seems to limit their role in models of risk (Coombs 
& Lehner, 1981). The risky choice literature gives growing support to the 
assumption that people treat positive and negative outcomes differently (Coombs & 
Lehner, 1984). As discussed by Lopes (1984), a separate consideration of gains and 
losses is often found in applied work (Fishburn, 1977; Holthausen, 1981). 

Independently, Keller, Sarin, and Weber (1985) also investigated Lute’s four 
cases. They observed that two of the four have the property that risk is unaffected 
by adding a constant to all outcomes, and they too disconfirmed this property. Of 
the two expectation forms, they also rejected the logarithmic form, concluding as 
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did Weber (1984a, 1984b) that the main option is some variant on the expectation 
of a power of the outcomes of the gamble. This, of course, rests upon the 
assumption that risk satisfies the property that it can be computed from the risk of 
component gambles using an expected risk calculation. They studied this directly 
and showed what amounts to a risk version of the Allais paradox. Since we will 
invoke the expected risk property as part of the present axiomatization, their data 
make clear that it is not correct in detail. It may be possible to generate a subjective 
expected risk version, but we have not done so. 

A variant of the most viable of Lute’s (1980, 1981) risk functions, i.e., integration 
after a power transformation of positive and negative outcomes separately, is 
axiomatized in this article. Axioms 1 and 3 and parts of 2 and 4 are structural and 
thus are empirically less interesting properties. Indeed, Axioms 1 and 3 could be 
omitted altogether if we simply assumed as the domain of discourse all possible 
money gambles. Axiom 2 allows the risk function to retain the benefits of expec- 
tation models, namely, a constant number of parameters regardless of the number 
of outcomes, a property not shared by risk dimension models of the kind suggested 
by Payne (1973). The assumptions made to that end seem at least plausible. The 
crucial assumption that gambles are split into positive, negative, and zero com- 
ponents in the determination of risk is incorporated in Axiom 4. We do this by sup- 
posing, in effect, that changes of scale among gambles all of whose outcomes are 
positive result in a risk ordering that can be represented additively, and that the 
same is true for gambles all of whose outcomes are negative. It appears that the 
most problematic aspect of this assumption is the Archimedean property. 

The present model differs from the earlier ones of Lute in two ways. First, it 
accepts the expected risk property [although that has been called into question by 
Keller et al. (1985)]. Second, and most important, it modifies the assumption about 
the impact of change in scale to take into account the fact that subjects seem to 
deal with the positive and negative outcomes rather differently. Otherwise, it is in 
the same spirit as the earlier work. The representation is somewhat more complex, 
as is the proof. 

Another, related, avenue has been pursued by Fishburn (1982, 1984). From a 
relatively complicated set of relatively elementary axioms, he derived a risk function 
that is multiplicative in two factors, one based on the distribution of gains and the 
other an expectation of a transformation of the distribution of losses. Even his most 
specific result involves four free functions, and so it is not possible to compare his 
result directly with either our risk function or the others that have been proposed, 
all of which involve only free constants. In general spirit, Fishburn’s axiomatization 
and ours are similar, differing in two major ways. We definitely postulate that risk 
is an expectation, and he does not although one of his factors is, and we make far 
more use of resealing random variables, i.e., multiplication of the outcomes by a 
constant factor, than he did. The net effect is that our axioms are somewhat easier 
to state, our result is far more specific, and it arrives at a measure that is additive 
over gains and losses rather than multiplicative. 
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AXIOMS 

In this section we formulate axioms for a qualitative theory of risk orderings and 
in the next we derive from them the possible numerical risk measures that can arise 
as representations. Of the two types of measures that are mathematically 
admissible, we show that one has a property which is clearly incorrect empirically, 
and so we are left with a single family of measures. 

Our basic domain will be taken to be a set 9 of gambles of money, which we 
may therefore interpret as a set of random variables where the real numbers are 
identified with amounts of money. And we assume that the decision maker involved 
has an ordering according to risk, 2, of the pairs of random variables in 9. Thus, 
2 is a binary relation over 9. 

AXIOM 1. For each X andY in 9, a in Re+, c in Re- {0}, andp in [0, 11, each 
of the following random variables is also in 9: 

(i) aX where Pr(aX <x) = Pr(X d x/a). 

(ii) Xo,Y where Pr(Xo,Y < z) =pPr(X d z) + (1 -p) Pr(Y Gz). 

(iii) c where 

Pr(c 6 x) = 0, 

= 1, 

(iv) X, where for c > 0, 

Pr(X,. <x) = 0, 

= XJC, 

= 1, 

if x<c, 

if x2c. 

x < 0, 

o<x<c, 

c < x. 

and for c -c 0, 

Pr(X, Gx) = 0, x< -c, 

= 1 + x/c, -c<xdO, 

= 1, 0 < x. 

It is clear that we could simplify Axiom 1 by simply assuming that Y contains all 
random variables; the present version makes clear, however, exactly what is needed 
to prove the result. It is also clear that we could treat the properties of Axiom 1 as 
simply a definition of the domain of discourse rather than as an axiom. It is a minor 
matter of taste how it is handled. 

LEMMA 1. If Axiom l(i) holds, a, b > 0, and X is in $9, then a(bX) = (ab)X is also 
in 3. 
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ProoJ Pr[a(bX) <xl = Pr[bX 6 x/a] 

= Pr(X <x/ah) 

= Pr[(ab) X <xl, 

so a(bX) = (ab)X. It is obviously in ‘3 by Axiom l(i). 1 

LEMMA 2. Zf Axioms l(i) and (ii) hold, a > 0, p is in [0, 11, and X, Y are in 9, 
then a(Xo,Y) = (ax) o,(aY) is also in 9. 

Proof: Using Axioms l(i) and (ii) freely, 

Pr[u(Xo,Y) 6 z] = Pr(Xo,Y d z/a) 

=pPr(X < z/a) + (I -p) Pr(Y <z/a) 

=pPr(aX<z)+(l-p)Pr(uY<z) 

= Pr[(aX) o,(aY) i z], 

which proves the equality, and it is in $3 by Axiom l(i). 1 

AXIOM 2. The family (‘3, 2, op jp E C0S 1 7 satisfies an axiom system for a mixture 
space so that there is a real representation R such that R is order preserving and for 
all X, Y in Y andp in [0, 11 

R(Xo,Y) =pR(X) + (1 -p) R(Y). 

This axiom, which was first postulated for risk by Huang (1971a), bears some 
comment. We assume the reader is familiar with the expected utility literature and, 
in particular, one or another of the axiom systems that have been given for a 
mixture space (see, for example, Fishburn, 1970). Usually these axioms are taken to 
be postulates for a concept of utility of gambles, but as is well known this has 
encountered empirical difficulties. Indeed, that is one of the reasons that risk, 
together with other properties of the gamble such as expected value, has come to be 
examined as a possibly relevant concept. The key assumptions of a mixture space 
that have been some source of difficulty for utility theory are the assumption that 
2 is a weak order, and so is transitive, and, possibly, the monotonicity property 
that if X 2 Y, then for every p in (0, 1) and 2 in 9, 

xo,z 2 Yo,Z. 

(This property is often referred to in the utility literature as strong independence or 
as the substitution principle; in the axiomatic measurement literature, it is called 
monotonicity.) Care must be taken in concluding whether existing data show 
violations of monotonicity, per se. Some examples, such as the Allais paradox 
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(Fishbum, 1970, p. 109), which violate expected utility theory only implicate 
monotonicity indirectly. Specifically, the paradox is a violation of the property: 

Xo,Z 2 Yo,Z iff xo,z 2 Yo,sz. 

This can be decomposed into two separate statements. The first is monotonicity: 

Xo,Z 2 Yo,Z iff (Xo,Z) o,z 2 (YOJ) OS& 

and the second may be described as a probability accounting equation: 

(Xo,Z) 0,z - xo,,z. 

What the experiments demonstrate is that monotonicity together with a correct 
probability analysis of compound gambles does not hold. The move from expected 
utility to subjective expected utility preserves monotonicity but abandons the 
probability accounting. For a much more detailed study of these matters, see Sec- 
tion 7 of Lute and Narens (1985). 

If one contemplates the riskiness of gambles, it seems plausible that risk should 
exhibit both transitivity and monotonicity. It is, of course, another matter whether 
in fact people’s judgments of risk do. A number of empirical studies have reported 
data in which the expected risk hypothesis is sustained (Aschenbrenner, 1978; 
Coombs, 1975; Coombs & Bowen, 1971b; Coombs & Meyer, 1969; Huang, 1971b). 
In contrast, Lehner (1980) made an assumption about risk that is not necessarily 
consistent with expected risk. For a gamble in which the outcomes are k + x, k, and 
k-x with probabilities p, 1 - 2p, and p, respectively, he assumed the risk to be a 
monotonic function of p and x. Under expected risk, it is easy to see that the risk of 
the gamble is [R(k + x) + R(k - x) - 2R(k)] p + R(k), which is clearly monotonic 
in p but need not be in x. 

As was noted above, Keller et al. (1985) showed that the expected risk property 
is not a fully satisfactory assumption. We do not yet know if monotonicity itself 
fails for risk or if a subjective expected risk hypothesis is viable. If so, it remains to 
develop a theory like the present one for that assumption. 

DEFINITION 1. Let B+ denote the subset of random variables in 3 for which all 
realizable outcomes are positive and $- the subset for which all realizable out- 
comes are negative. The restrictions of 2 to 9+ and to Y- are denoted, respec- 
tively, 2 + and 2 -. 

Note that if a > 0 and X is in $? + and Y is in Se, then aX is in g+ and aY is in 
Ee-. 

DEFINITION 2. If X is any random variable for which Pr(X > 0) > 0, then its 
positive projection X + is defined by: 
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Pr(X + < x) = Pr(0 < X < x)/Pr(X > 0), 

= 0, 

if x > 0, 

if x< 0. 

If Pr(X < 0) < 0, then its negative projection X- is defined by: 

Pr(X- <x)= 1, if x> 0, 

= Pr(X < x)/Pr(X < 0), if x< 0. 

LEMMA 3. Suppose X is a random variable with X+ and X- its positive and 
negative projections, if they exist. Let q = Pr(X > 0) + Pr(X < 0), and ifq > 0, let p = 
Pr(X > 0)/q. Then, 

x=(x+0,x-)0,0. 

ProoJ: Observe that Pr(X<O)=q(l -p) and Pr(X<O)=q(l -p)+(l -q)= 
1 -pq. Let X’ = (X +opX - ) 0~0, then we show that X = X’ simply by calculating 

Pr(X’<x)=pqPr(X+ bx)+ 1 -pq, if x > 0, 

= 1 -pq, if x = 0, 

=(l-p)qPr(X-6x), if x CO, 

=Pr(O<X<x)+Pr(X<O), 

= Pr( X < 0), 

= Pr( X < x), 

if x > 0, 

if x =O, 

if x < 0, 

= Pr(X <x). 1 

This result motivates the following assumption. 

AXIOM 3. For each X in $9, either it has no positive projection X + or X + is in 
22 +, and either it has no negative projection X- or X- is in CV. 

Axiom 3, as Axiom 1, would be unnecessary if we assumed 9 to consist of all ran- 
dom variables. One referee suggested that Axiom 3 can be derived from the 
preceding axioms, but we have not seen how to do it. 

AXIOM 4. The structures (Re + x 9 + , Z+) and (Re+ xY~, 2 -) are each 
conjoint structures satisfying the following conditions, where X, Y are both in 9+ or 
both in 9- and a, b, b’, b” in Re+ : 

(i) Independence: X 2 Y iff aX 2 aY, and aX 2 bX iff aY 2 bY. 

(ii) The ordering induced by independence on Re+ is 2, i.e., aX 2 bX iff a 2 6. 
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(iii) Restricted solvability: if b’Y 2 aX 2 b”Y, then there exists b in Re+ such 
that bY - ax. 

(iv) Archimedean: if 1X > lY, then there exists a in Re+ such that aY 2 1X. 

The major assumptions here, aside from the richness of the space of gambles for- 
ced by restricted solvability, are independence and the Archimedean property. The 
first part of independence says that the relative risk ordering of two gambles that 
are entirely positive or entirely negative, is unchanged by a shift in the units of play. 
So, for example, if the 5&50 gamble between 50 cents and 10 cents is viewed as 
more risky than a 75-25 gamble between 30 cents and 20 cents, then the same risk 
ordering will hold if the cents are changed to dollars, i.e., a = 100. The second part 
says that if, for a particular gamble all of whose outcomes are positive (negative), 
one choice of unit is seen as more risky than another unit, then that ordering will 
be true for any other gamble all of whose outcomes are positive (negative). 
Although these properties seem plausible to us, they require empirical verification. 
Assuming independence, the second condition says that riskiness for gambles that 
are entirely positive or entirely negative is an increasing function of the scale value. 
This, too, is plausible. 

The solvability condition, which is asserted only for the continuum representing 
the possible scale transformations, is a way of saying that risk is a continuous 
function of scale changes. For if solvability did not hold, there would have to be a 
gap in the measure of risk, destroying its continuity. Recall that Axiom 2 also 
involves a solvability condition, namely, that if Z 2 Y 2 X, then there is p in [0, l] 
such that Zo,X -X. We do not know if, in the presence of the other axioms, these 
two solvability conditions are independent axioms. 

The Archimedean property is also stated just for the scale dimension, and it is of 
the classical form: given any two gambles with one riskier than the other, it asserts 
that for a sufficiently large change of scale, the less risky one can be transformed 
into one that is more risky than the other gamble. So, for example, suppose X 
denotes the gamble of winning $1 with probability l/2 or winning $1000 otherwise 
and Y denotes the sure outcome, which is a gamble, of winning $1, so in dollar 
units Y = 1. Assuming X > 1, which is plausible, then the axiom says that for some 
sure outcome $a, a = al 2 X. Many feel that this is in error. They argue that any 
sure win has no risk, i.e., R(a) = 0 for a > 0. But if that is so, then by induction on 
Axiom 2 any gamble in 9 + has risk 0 and so the structure Re + x ‘?J +, 2 + ) is 
trivial. This would reflect itself in the following representation theorem as A( + ) = 
B( + ) = 0. The data presented later (see Table 2) do not support this prediction at 
all. So either the intuition about the Archimedean axiom is incorrect or the rest of 
the structure is in error. 

In proving the main theorem, we will establish that both restricted solvability 
and the conjoint Archimedean property hold separately on CC?+ and on CC-. 

It is, perhaps, surprising that we do not impose the Thomsen condition, which is 
necessary for there to be an additive representation of a conjoint structure, but that 
property turns out to be a consequence of our other assumptions. 
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The final axiom simply postulates that the risk function of Axiom 2 is well 
behaved near 0. 

AXIOM 5. For each real c, R(c) is bounded as c approaches 0. 

We do not know of any way to restate this property in terms of the primitives of 
the system. 

REPRESENTATION THEOREM 

THEOREM. Suppose ‘3 is a set of random variables, 2 a binary relation on Y, and 
for each p in [O, l] op is a binary operation on Y such that (3, 2, op)po c0, 11 
satisfies Axioms 1-S. Then the real representation R of Axiom 2 is of the form: for 
each X in 3, 

R(X) = A(0) Pr(X = 0) + A( + ) Pr(X > 0) + A( - ) Pr(X < 0) 

+B(+)EIXk(+)lX>O] Pr(X>O)+B(-)EIIX(k’-‘IX<O] Pr(X<O), 

where A(O), A( +), A( -), B( +), B( -), k( +), and k( -) are constants with 
k(+)>O, andk(-)>O. 

ProojI We first show that (Re + x %+ , 2 + ) satisfies the Thomsen condition. 
We omit the superscript + on 2. Suppose aY N bZ and bX N cY, then by indepen- 
dence [Axiom 4(i)] and Lemma 1, 

(ca) Y = c(aY) - c(bZ) = (cb) Z 

(ac)Y=a(cY)-a(bX)=(ab)X. 

Since ac = ca, 

b(cZ) = (bc) Z = (cb) Z - (ca) Y = (ac) Y - (ab) X = (ba) X = b(aX), 

whence by independence aX - cZ. 
Next we show that restricted solvability holds on the g+ component (it is 

assumed on the Re+ component). Suppose bY’ 2 aX 2 by”. Then by the axioms of 
a mixture space and Lemma 2, there exists a p such that 

aX - bY’o,bY” - b(Y’o,Y”). 

So Y = Y ‘op Y” suffices. 
To show the conjoint Archimedean property, consider first a standard sequence 

{a,} on Re +. By definition, for some Y > X, a, + 1X N a,Y. We show, by induction, 
that a, = a,(a,/a,)fl- ‘. The assertion is clearly true for n = 1. Observe that by the 
defining relations and Lemma 1, 

aOa,+,X-a,a,Y=a,a,Y-a,a,X. 
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Thus, by Axioms 4(i) and (ii), a,,an+ 1 = a,ar, and the result follows from the induc- 
tion hypothesis. Since Y > X, it follows from Axiom 4(ii) that al/a,, > 1. So, by the 
Archimedean property of numbers, any bounded standard sequence is finite. For 
the other component, a standard sequence {X,} satisfies ax, + 1 N bX,, b > a. Thus, 
by Lemma 1 and independence, X,, I N (b/a) X,, and so by induction X, + 1 N 
(b/a)” X,,. Suppose that for all integers n, Z > X,, then in particular Z > X,, and so 
by the Archimedean assumption [Axiom 4(iv)] there exists real c such that cX, 2 
Z > (b/a)” X,. So, by independence and Axiom 4ii, c > (b/a)“, which can be true 
only for finitely many n, proving that the bounded standard sequence is finite. 

To show that the first component is essential, consider any a > b. By Axioms 1 (i), 
4(i), and (ii), for any X in 9+, aX > bX. To show that the second component is 
essential, note that Y = UX > bX = Z. So, for any c > 0, cY > cZ, showing that the 
second component is essential. 

By Theorem 6.2 of Krantz et al. (1971), the conjoint structure (Re + x 9 +, 2 + ) 
has an additive representation S+ + T+. If we select the linear transformation so 
that S’( 1) = 0, then from the fact that 1X = X, we see that S+ + T+ and T+ agree 
on Y+ in the sense that [S’ + T+]( 1X) = S+(l) + T+(X) = T+(X). 

By Axiom 2, the entire mixture space has a representation R. Since both R and 
Tf are order preserving over Q +, then for that domain there is a strictly increasing 
functionf such that R =f( T+ ). By Lemma 2 and properties of R and T+, we see 
that 

f{ T+ b(Xo,YH ) = RMXQY 

= RC(uX) qWH 
=pR(uX) + (1 -p) R(aY) 

=~f[IT+(ax)l+ (1 -P)SCT+(WI 
=pf[s+(a)+T+(X)l+(l-p)fCs+(u)+T+(Y)]. 

Equally well, 

.I-{ T+ C4XqJ’H > =fCS+(a) + T+ (Xo,Y)I 

=f{S+@) +f-’ PWQOI > 

=f{~+(~)+f-‘CpR(X+(1-p)R(Y)I) 

=f(s+(a)+f-‘{~fCT+(X)l +(I -~)fl:T+W)l)). 

Equating, taking f-l, and setting T+(X)=x, T+(Y)=y, and S’(u)=z, we see 
that f satisfies the functional equation 

480/30/Z-7 
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AczCl (1966, pp. 152-153) dealt with this functional equation, showing that its 
possible solutions are: 

f(x) = cx + d or f(x)=c?+d, c > 0, k > 0. 

By an exactly parallel argument using Q-, one shows the existence of a 
representation T- with the property T-(ax) = S-(a) + T-(X), and R and Tp over 
‘ST are either linearly or exponentially related. 

Applying Axiom 2 to the decomposition stated in Axiom 3, 

R(X)=pqR(X+)+(l-p)qR(X-)t(l-q)R(O) 

= Pr(X > 0) R(X+) + Pr(X < 0) R(X- ) + Pr(X = 0) R(0). 

We consider the three terms separately. For the positive part, we know that R is 
related to T+ either linearly or exponentially. Consider the former case first. For 
a > 0, 

R(aX+)=cT+(aX+)+d=c[S+(a)+ T+(X+)] +d=cS+(a)+ R(X+). 

so, 

R[(ab) X’] = cS+(ab)+ R(X+) 

= R[a(bX+)] 

= cS+(a) + R(bX+) 

= c.!?+(a) + cS+(b) + R(X+), 

whence S+(ab)= S’(a) + S+(b). By Axiom 4(ii), S+ is a strictly increasing 
function of a, and so (Aczel, 1966, p. 41) the solution is for some C > 0, 

S+(a) = C log a. 

Consider the random variable X, defined in Axiom l(iv), and note that since a > 0, 

Pr[(l/a)X,=x)=Pr(X,=ax)=l, if axin [O,a]iffxin [0, l] 

= 0, otherwise. 

By Axiom 2, R and so T+ is an expectation, hence the relation 

T+ [(l/a) X,] = S+( l/a) + T+(X,) 

coupled with the distribution function of X, yields, 

D = f’ T+(x) dx = -Clog a + f: T+(x)( l/a) dx, 
0 
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where in a minor abuse of notation we write T+(a) for T+(a). By Axiom l(iii), 
T+(a) is defined for each a > 0. Differentiate this with respect to a: 

0=-C/a+ T+(a)/a+(-l/a2)f: T+(x)dx. 

Solving for the integral, substituting into the preceding equation, and solving for 
T+ (a) yields, 

T+(a)=D+C+Cloga. 

Using the expectation property of Axiom 2, 

T+(X+)=lm T+(x)Pr(X+ =x)dx 
0 

=D+C+CE(logX+) 

=D+c+cE(logx~x>o). 

For a > 0, T+(a) = D + C+ Clog a, so substituting R = CT+ + d, we see that R is 
not bounded as a approaches 0. Thus, by Axiom 5, this case is impossible. 

Turning to the exponential case, one carries out exactly the parallel argument to 
show, first, 

exp S+(ab)=exp S+(a) exp S+(b), 

whence for some k( + ) > 0, 

exp S+(a) = &+). 

Next, carrying out the parallel argument on the same special case as before, we find 
that 

exp T+(a) = [ 1 + k( + )] D’ak(+), 

where D’ = s; exp T+(x) dx and so 

R(X+)=cexpT+(X+)+d=A(+)+B(+)E(Xk’+’lX>O), 

where A(+)=d and B(+)=c[l+k(+)] D’. 
To obtain the results for X -, one follows exactly the same line of argument, of 

course taking into account the fact we are dealing with negative quantities and so 
absolute values must be used. 1 
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DISCUSSION 

The plausibility of axioms underlying the Theorem make the risk function 

R(X) = A(O) Pr(X = 0) + A( + ) Pr(X > 0) + A( - ) Pr(X < 0) 

+B(+)EIXk(+)JX>O)] Pr(X>O)+B(-)EIXk’-‘lX<O] Pr(X<O) 

a reasonable candidate. We refer to is as CER, standing for conjoint, expected risk. 
Weber (1986) ran several experiments on subjective risk and obtained results 

which motivated the development of the present axiom system. One of these 
experiments, however, allows a test of the present model. The details of the 
experiment are described there. Suffice it to say here that subjects rated the risk of 
30 gambles by marking locations on a line. Each gamble consisted of two indepen- 
dent repetitions of the same two outcome gambles, and these were all generated 
from a single basic gamble by three families of transformations. The first yielded 
five different levels of skewness, the second two shifts of the origin, and the third 
three values of scale. Ten student subjects, five of each sex, made the judgments on 
four separate occasions. For each subject, regression coefficients were selected by 
numerical search so as to maximize the proportion of variance accounted for. This 
was done for the variance expectation (V-E) measure of Pollatsek and Tversky 
(1970) and the risk dimensions (R-D) of Payne (1973) as well as for CER. The 

TABLE 1 

Values of R2 for Three Risk Measures Obtained from Risk Judgments of 30 Gambles (Weber, 1985) 

Subject 
R-D” V-Eb 

(26 4) (28 d! 1 

CER‘ 
(24 df) 

Average 
Reliability 

1 .30 .45 .56 .49 
2 .41 .65 .71 .I1 
3 .24 .34 .45 .42 
4 50 .63 .71 .69 
5 .39 .60 .82 .69 
6 .55 .72 .80 .82 
7 .46 .66 .I5 .71 
8 .40 .51 .64 .41 
9 .39 .55 .65 .44 

10 .43 .61 JO .64 

’ R - D is the risk dimensions of Payne (1973). 
b V-E is the measure aV+ bE, where E is the expected value and V is variance of the gamble, of 

Pollatsek and Tversky (1970). 
’ Although the general CER measure involves seven parameters, the gambles all had Pr(X = 0) = 0, 

and so A(0) was not relevant. 
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TABLE 2 

Values of the Parameters in the CER Model of Risk 

Subject A(+) At-1 B(+) B(F) k(+ 1 k(F) 

1 -13.0 128.7 
2 -261.5 73.8 
3 - 197.8 49.4 
4 -44.7 219.3 
5 - 408.2 44.9 
6 -4.9 259.9 
1 - 30.8 250.2 
8 -258.6 42.5 
9 -221.7 88.4 

10 - 304.2 19.4 

-255.5 412.1 
- 163.0 367.6 

- 32.4 182.6 
-317.5 446.8 
- 175.0 341.2 
-413.8 472.9 
- 406.7 478.6 
- 289.8 387.7 
- 134.5 446.9 
- 182.9 392.8 

.lO .20 

.20 .20 

.30 .30 

.25 .30 

.lO .15 

.20 .30 

.25 .25 

.25 .30 

.20 .25 

.20 .50 

results, along with the average reliability of the data between replications, are 
shown in Table 1. Without exception, the R* values of the regression are ordered 

R-D < V-E < CER % Reliability. 

It should be noted that different numbers of free parameters are involved, being 4, 
2, and 6, respectively; the latter being one less than in the theory because there were 
no zero outcomes. Given the reliability of these data, much improvement on CER is 
not to be anticipated. Additional experimentation is required to test it further. 

Table 2 shows the values of the six parameters of the CER model for the risk 
judgments. The values of k( + ) and k( - ) are both rather small and nearly the 
same. In fact, requiring k( + ) = k( -) reduces R* by at most 0.01 for these data. 
Before either of these “facts” are taken seriously, experiments must be run in which 
the outcomes span a much larger monetary range than the - $8.40 to + $8.40 used 
in this experiment. 

Some on hearing about this model are extremely skeptical about the positive part 
of the gamble having any bearing on its riskiness. They feel that all positive gambles 
are equally risky-or really, riskless. We examine Table 2 to see the degree to which 
subjects agree with this belief. The only clear pattern we have noticed is that sub- 
jects 1, 4, 6, and 7 all have values of A( - ) substantially larger than the IA( +)I, 
whereas for the other subjects IA( + )I is both larger than A( - ) and larger than 
IA( + )I of these four subjects. However, the weights B( + ) and B( - ) are both sub- 
stantial with no clear differential pattern. 

Slavic (1967), in a comparison of perceived risk and preference, found that the 
two judgments were determined by different aspects of the gamble. We may check 
this for these data since Weber (1986) also had the subjects judge preference for the 
same set of gambles. Table 3 shows the average correlations between their risk and 
preference judgments. Observe that all correlations are negative, indicating that 
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TABLE 3 

Values of the Risk-Preference Correlations and of R* for the CER Fit to the Preference Judgments for 
the Same Subjects and Same Gambles as in Table 1 (Weber, 1986) 

CER Model 

Subject 
Risk-preference 

correlation Preference R2 
Risk RZ - 

preference RZ 

1 -.65 .41 .15 
2 -.75 .61 .16 
3 - .64 .36 .09 
4 -.62 54 .17 
5 -.74 .67 .15 
6 -.87 .71 .09 
7 -.71 59 .16 
8 -.62 .48 .16 
9 -.71 57 .08 

10 -.69 .58 .12 

subjects generally preferred the lower risk gambles. In some cases, the squared 
correlation approaches the magnitude of the reliability coeflicients for risk 
judgments, but for most subjects it is substantially lower. To test further the dis- 
tinctiveness of risk judgments from preference ones, the CER measure was also fit 
to the preference ratings. These results are also shown in Table 3. The overall fit of 
CER is poorer for preference than it was for risk, with the differences in R2 varying 
from .08 to .17. 

The six parameters of the CER model for preferences are shown in Table 4. Two 
things are notable. First the subjects all seem moderately similar, with both the 

TABLE 4 

Values of the Parameters of the CER Model of Preferences 

Subject A(+) A(-) B(+) W-1 4+ 1 h-1 

1 233.1 - 82.8 64.0 - 49.7 .90 .15 
2 285.7 - 136.9 60.1 - 144.8 1.10 .20 
3 147.9 -55.1 24.9 -43.3 1.40 .20 
4 309.3 - 157.8 53.4 - 95.6 1.25 .15 
5 352.0 - 149.4 42.5 - 151.5 .80 .25 
6 316.2 - 167.3 75.6 - 127.3 .95 .30 
7 352.7 - 138.7 102.0 - 149.2 1.50 .30 
8 264.5 - 131.7 44.2 - 145.2 1.10 .20 
9 225.4 - 141.7 73.8 -214.5 1.10 .20 

10 299.1 - 104.6 59.9 - 183.4 .90 .35 
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positive and negative parts of the gamble having comparable weights. The most 
striking difference from the risk model is that the ratio of k( + ) to k( - ) is substan- 
tially larger than for risk, which agrees with Slavic’s results. The expected value of 
the positive part, which corresponds to k( + ) = 1, but not of the negative, seems to 
play an important role in these preference judgments. 

The risk function axiomatized here can also be evaluated against previous 
empirical evidence regarding subjective risk judgments. Coombs and Bowen 
(1971b) reported that when two gambles are convolved, the risk of the resulting 
gamble is not an additive function of the risk of the two component gambles. This 
fact was an additional strike against Pollatsek and Tversky’s (1970) risk function as 
well as eliminating Coombs and Huang’s (1970a) polynomial model of perceived 
risk because both models predicted additivity. It is easy to see that the present risk 
function does not predict such additivity. 

Another instance where CER seems to provide a superior prediction of empirical 
phenomena is the effect of a change in expected value on risk. One of Coombs’ 
(1972) assumptions about risk was that relative order remains unaffected by 
changes in expected value. Payne, Laughhunn, and Crum (1980), on the other 
hand, claim to have brought about a reversal in relative risk by increasing the 
expected value of two gambles by the same amount. It is not difficult to construct 
examples where, with the right choice of parameters, CER predicts such reversals. 

It should be noted that, for the parameter values estimated by Weber (1985), the 
present risk function can take on negative values when the positive outcome con- 
tributions outweigh the negative outcome contributions. This is in direct contrast to 
Axiom B4 of Fishburn (1982) which restricts risk functions to positive values and 
postulates that gambles without losses have zero risk. This axiom, which is part of 
all risk measures axiomatized by Fishburn (1982, 1984) in his comprehensive 
catalogue, in fact rules out all models that are additively separable in gains and 
losses. Instead, Fishburn considered multiplicatively separable representations 
which allow for an effect of gain on risk without changing his assumption that risk 
is zero when no loss is possible. This assumption, however, seems questionable. The 
role of aspiration level in preference has received considerable attention in recent 
years (e.g., Kahnemann & Tversky, 1979). If risk were related, for example, to the 
probability of not meeting one’s aspiration level, then one should have to dis- 
criminate, with regard to risk, gambles with only positive payoffs whenever one’s 
aspiration level exceeded the lower bound of the range of payoffs. 
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