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responding to the two possible types of trials. One unusual feature of the
design is that the signal, when presented, remained on until the response
occurred. The reason for using a response-terminated signal was to main-
tain statistically stationary conditions throughout the listening interval;
this seems especially important when the effect of a variable deadline is
studied. Following the response, information feedback was presented for
.5 sec, and after another .5 sec the next trial began.

Each of three observers listened binaurally through earphones in a
sound-treated room. The white Gaussian noise had a spectrum level of 40
dB. The signal, a 1000 Hz sinusoid, was either weak or intense—20 or 50 dB
above the noise power density (10 log P/N,,). With weak signals, performance
is essentially at chance when a response must be made within 300 msec of
the warning light and is nearly perfect with a 1000-msec deadline. The
intense signal is roughly at the level generally used in trade-off experiments.

Each experimental session lasted about 2 hr and consisted of five runs.
Each run was under one experimental condition (see below) and consisted
of about 250 trials, A total of six sessions were run, so there are about
1500 trials per condition.

We recorded both the time from the onset of a trial to the response
and the nature of the response. The two independent conditional response
probabilities, P(Y|s) and P(Y|n), were estimated in the usual way. The
means and variances of reaction-time distributions (MRT and VRT, re-
spectively) also were estimated in the usual way; MRT and VRT are sub-
scripted as needed by the presentation, s (signal) or n (noise), and/or the
response, Y (yes) or N (no).

In addition to an hourly wage of $1.88, observers received points
according to a payoff matrix for accuracy and a deadline for speed;
these are described in the next section. The points were accumulated and
converted into a bonus at the end of each run on a competitive basis
among sets of three observers as follows. Let the points accumulated by
the ith subject on a given run be denoted V,, which was always positive.
His share of the $0.25 bonus for that run was V2/X}_, V2.

III. Experimental Variables

Aside from the two signal levels, the two major variables were both
instructional, the one intended to manipulate the speed-accuracy trade
and the other, the response bias. Any response prior to the warning light
was fined 25 points; as a result, such anticipations occurred with a relative
frequency of less than .001. Any response following the prescribed dead-
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line D was fined 4 points, independent of accuracy. Any response between
the warning light and D was paid off according to the following matrix:

Y N
s X =10
n L-10 Y

where the observers were informed of the value of (X, Y) in each con-
dition. For reasons that will become apparent, we refer to this (standard)
deadline procedure as the sn deadline (signal and noise deadline).

In one experiment, (X, ¥) was fixed at (10, 10), thereby producing a
symmetric payoff matrix, and D was varied over the values 250, 300, 400,
500, 600, 800, 1000, 1500, and 2000 msec. The aim of this manipulation
was to produce a speed—accuracy exchange. In a second experiment, D
was fixed at 600 msec and the (X, Y) pair was varied over the values
(20, 1)(15, 5)(10, 10)(5, 15)(1, 20) points. The aim of this manipulation
was to generate an ROC curve, but without any speed—accuracy exchange.
As the data will make clear, both manipulations were successful.

IV. Models

As the four models we shall test are described fully in the literature,
it suffices to suggest their general nature and to state the exact predictions
to be compared with data. Unfortunately, comparable predictions from the
models are not available. Our policy is to accept whatever seems to be a
characteristic prediction of a model, especially predictions of linear rela-
tions, and to examine the data in an absolute sense without worrying about
what the other models predict. This is a sound strategy when the data un-
ambiguously reject a model; it is much more suspect when we are inclined
to accept one.

A. Fast-Guess MoODEL

The fast-guess model (Ollman, 1966; Yellott, 1967) supposes that the
observer selects on each trial one of two wholly different modes of behavior.
In one, he pays attention to the signal and responds only when he has
recognized it. We assume that the probability of a correct response is
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a and the mean time for it to occur is u,. In the other mode, the observer
responds as fast as he can to the onset of the signal, making no attempt to
identify it; this accounts for the name of the model. He has some bias prob-
ability b for responding Y, and the mean response time is u,, where u,
< u,. The observer uses the first mode with probability ¢ and the second
with probability 1 - g. Any experimental manipulation that altersthe prob-
ability ¢ of paying attention generates a speed—accuracy trade off.

Let P and P, denote the probabilities of correct and of error responses.
Thus, if the signal is presented with probability 4,

P, = {P(Y|s) + $P(N|n)

and
P, =1-P,

Let M, and M, denote the MRTs to correct and error responses. Then
it is not difficult to show that

PcMc—PeMe:/us(Pc_Pe)-

We use this linear prediction to test the fast-guess model.

B. Tue RANDOM-WALK MODEL

The literature includes a variety of sequential-decision models. Of
these, Laming’s (1968) seems to be the best worked out. The observer
divides time into a sequence of equal intervals, each of whichis then treated
as a fixed-interval, yes—no situation. The sensory random variables (RV)
observed in the several intervals are assumed to be independent and identi-
cally distributed; of course, the distribution depends upon whether or not
‘the signal is present. Two response criteria, 3, and j,, are established.
The decision rule has the following character. If no decision has been
reached prior to the ith observation, the mean of all / observations is com-
pared with the criteria. If it is less than j,, respond N; if it is greater than
B,, respond Y; and if it lies between 3, and j3,, collect the (i + 1)st observa-
tion and proceed as on the ith observation. The onset of the sampling isa
parameter of the model; it may begin before the onset of the potential
signal.

Distinctive quantitative predictions are difficult to come by in any
sequential model, and so we will content ourselves with two qualitative
ones. Using Laming’s (1968) labeling:
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B. In a two-choice experiment that signal which elicits the
faster reaction, on average, has the smaller probability of error, and
conversely [p. 44].

C’. In two-choice experiments errors are faster than the same
response made correctly [p. 82].

C. A COUNTING MODEL

This model (McGill. 1967) assumes that the sensory trasducer con-
verts signal energy into one or more pulse trains, which, for a constant
intensity signal, are identical Poisson processes, that is, the times between
successive pulses are independent, identically distributed exponential RVs.
The common intensity parameter of these Poisson processes is assumed tobe
an increasing function of signal intensity, given that all other stimulus
parameters are constant. Put another way, the expected time between
pulses is a decreasing function of signal intensity.

The observer selects a time period A during which the number of pulses
is counted, This RV is then treated just as likelihood ratio is in the theory of
signal detectability (TSD), that is, if it is larger than some criterion j, he
responds Y, and if it is smaller, he responds N. Two predictions follow
readily. First, since the time for initiating a response does not depend on
either the stimulus condition or on the response made, the observed reaction
time distributions should be the same in all four cells. Second, we derive
the form of the ROC curve. Let x4 and v’ denote, respectively, the Poisson
parameters corresponding to s and n, and let z(s) and z(n) be, respectively,
the normal deviates corresponding to P(Y|s) and P(Y|n). Using the normal
approximation to the Poisson process, the following approximate linear
relation holds:

z(s) = (w/u)? z(n) + AV2 [(u — v)/u"?]. 1)

This agrees with the prediction of TSD but, in addition, it predicts exactly
how the slope of the ROC curve decreases with increased signal intensity.

As a measure of accuracy, defined’ to be the value of z(s) corresponding
to z(n) = 0, that is, to P(Y|n) = }. Then the speed—accuracy trade off is
described in terms of the size A of the subject-controlled observation interval

by the equations
MRT =F + 4, d = AV [(u-v)/u'?], ()

where F is the mean of the residual times not accounted for by the observa-
tion time.
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D. A TiMmINnG MODEL

Timing models (Luce & Green, 1972) assume exactly the same pulse
structure as the counting models. They differ only in the processing of the
pulses. Instead of assuming that pulses are collected for a fixed time and
then counted, these models assume that a fixed number of pulses are
collected and the time required is measured. That time is a RV, which is
treated much as in TSD except that small values—short interarrival times
(IATs)—correspond to the signal rather than to the noise, because the
shorter the IAT, the more likely it is that a signal is present.

We must take into account a complication that we could ignore in the
counting model. We shall suppose that the stimuli activate pulse trains on
J statistically identical, parallel channels (this, no doubt, is a gross over-
simplification) and that the observer collects « IATs from each channel,
for a total of Jx. The response is determined by the mean of all Jx IATs,
and the time of initiation is determined by the slowest of the J channels.
Thus, the response time depends on J and « separately, not just on Jk.

Independent of the response, it can be shown (Luce & Green, 1972,
Eq. 23) that the mean reaction time to the signal is of the form

MRT, = ¥ + h(J, &)/u, (3)

where 7 again denotes the mean residual time. An approximation to this
function A is

h(J,g) =k + 1+ (x + D2 H(J), ©)

where H(J) is the mean of the largest of J normally distributed RVs, each
with mean 0 and variance 1. A table of H is given by Tippett (1925). The
equation for MRT, is the same as Eq. (3), with v substituted for u. Eliminat-
ing # from these two equations yields the testable linear relation

MRT, = (u/v) MRT, + 7(1 — u/v). (5)
Obviously, this provides not only a test of the model, but a way to estimate

u/v and, in principle, 7.
A similar calculation of variances yields

VRT, = (u/v)* VRT; + V(r) [1 — (u/r)*], (6)

where V(r) is the variance of the residual distribution.
Again, using the normal approximation to the gamma, the ROC curve
can be shown (Luce & Green, 1972, Eq. 31) to be approximately,

2(s) = (u/v)z(n) + (J &) (p/v - 1). (N
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Although the linear form agrees with TSD and with the counting model, the
prediction has the striking feature that the slope must be greater than 1 since
# > v, which is the opposite of what is predicted by the counting model
[Eq. (2)] and contrary to almost the entire body of data reported in the
detection literature.

Using the same accuracy measure as in the counting model, the speed—
accuracy trade off is described by Eqgs. (3) and (4), together with

d = (Je) " u/v - 1). (8)

In this case, x is the subject-controlled parameter that affects both speed
and accuracy. Note that this model predicts approximately the same trade
off as does the counting model: MRT is approximately linear in the param-
eter and d’ is proportional to its square root.

Y. Data from the sn-Deadline Experiment

A. VARIABILITY

The deadline had the desired effect of varying the MRT from 100 to
1000 msec; it also affected the variability of the RTs. Figure 1 presents the
scatter plot of standard deviation versus mean for all of the experimental
data of this paper (including a deadline procedure not yet described). The
open circles are data using a large signal-to-noise ratio, where the detection
of the signal is no problem. The mean reaction times are short, 100-250
msec, and the variability is about 50 msec. The solid points are data using
a small signal-to-noise ratio, where the detection of the signal is difficult.
Although the correlation is far from 1, it is evident that the standard devia-
tion tends to increase with MRT. A general rule of thumb is that, forthese
procedures and the weak signal, the standard deviation is about one-third
of the mean. This fact must be kept in mind when comparing various con-
ditions.

B. PM.— P.M_.vERSUS P, — P,

The linear prediction of the fast-guess model has been tested ior
easy-to-discriminate stimuli (Ollman, 1966; Yellott, 1967; Link & Tindall,
1971). In general, the fit is impressive except for conditions of extreme
accuracy (P, = 1), in which cases the data points are well above the extrap-
olated linear curve. Our data for both signal levels are shown in Fig. 2.
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Fig. 1. Standard deviation versus mean reaction times for all conditions and observers:
(®) 10 log P/N, = 20;(0) 10 log P/N, = 50.

Those for the 50-dB signal conform to those in the literature; those for the
weak 20-dB signal are much more discrepant fromthe theory. For the latter,
a linear fit through the origin summarizes only a very narrow range of these
data. Thus, we conclude that the fast-guess model does not provide an
adequate description of behavior in a response-terminated, sn-deadline,
Y-N detection design using weak signals.

C. MEaN REeacTtioN TIME

Figure 3 presents the MRT, and MRT  data from the variable deadline
experiment for each response separately. To a good firstapproximation, the
stimulus condition does not affect the results. To the extent that this is so—
recall that the data are quite variable (Fig. 1)—it disagrees with prediction
C’ of the random-walk model and with Eq. (5) of the timing model. It is in
perfect accord with the prediction of the counting model.
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Fig. 2. Fast-guess analysis of data for sn-deadline conditions:
10 log P/N, = 20 50
Observer 1 o e

2 |A A
3 o m

Each point was generated by a different deadline value. The solid points were obtained using
an easy-to-detect signal, and the open ones using a hard-to-detect signal.
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Fig. 3. The four stimulus-response mean reaction times obtained in the sn-deadline
procedure: (0) Observer 1; (A) Observer 2; (0) Observer 3. The small subscript indicates the
stimulus condition: s for signal, n for noise. The capital letter indicates the response: Y for yes,
N for no. The open points are for conditions in which the sn deadline was varied. The solid
points in the insert are the data for the condition in which the criteria was varied for a fixed,
600-msec deadline.
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D. Tue ROC Curve

With a fixed deadline but a variable payoff matrix, the MRTs are
approximately the same independent of either the stimulus or the response;
see the insets in Fig. 3. The ROC curves for these conditions are shown in
Fig. 4. The MRT data are inconsistent with prediction B of the random-
walk model, and the ROC curves are grossly inconsistent with Eq. (7) of the
timing model because the slopes are all less than 1. They are consistent with
the counting model, and we obtain the values 1.19, 2.13, and 1.25 as
estimates? of u/v.

95
90

8ol
70}
60}
501
40

P(Yls)

Obs 3
5 10 20 3040

Obs 2

| S N S S —
20} Obs | 5 10 20 3040 50

] 1 1 1 1 1 1
5 10 20 30405060 70
P(Y|n)

Fig. 4. ROC curves, plotted on double probability paper, for a sn-deadline of 600 msec
(10 log P/ N, = 20); (0) Observer 4; (A) Observer 5, (O) Observer 6. Each point is obtained
from a different (X, Y) payoff condition.

V1. Intermediate Discussion

Of the four models, the data clearly favor the counting one. The ques-
tion is, first, how seriously should we take this and, second, how general is
the conclusion.

It is difficult to know whether an adequate repair of the fast-guess or
random-walk models is possible. The data rejecting the fast-guess model

*Here and elsewhere when we examine a linear relation between two variables, both
of which are random, we do both regressions and report the geometric mean of the two
slopes and the arithmetic mean of the intercepts.
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suggest that the observer may use more than two states and that, perhaps,
he enters into some sort of sequential decision making. However, other
aspects of the data did not support sequential models. It is unclear to
us how seriously to take this since the predictions were simply inequali-
ties without any indication of the magnitudes of the differences that should
be found. This is, in fact, typical of sequential models;their randomstructure
is inherently difficult to analyze, and so unless forced to it, one is inclined
to search for simpler models.

Both the counting and timing models are (in this situation) very simple,
and clearly the counting one is far the better of the two. That being so,
one can wonder why we ever seriously entertained the timing model and, if
our reasons seem adequate, what it was about this experiment that forced
our observers to abandon timing behavior. Our reasons for considering
timing models are both general and specific. We showed (Luce & Green,
1972) that they readily account for a wide range of psychophysical findings,
including magnitude estimation as well as detection and discrimination.
One new development was a theory for the detection of the onset of weak
signals that are presented at random times. Unpublished simulations of that
model seem, at least qualitatively, to account for some previous data(Green
& Luce, 1970). Thus, we were encouraged to think it an interesting
idea.

Why, then, did it fail so badly to account for the sn-deadline procedure?
Although the number of IATs collected per channel, «, is independent of the
stimulus, the time to collect them is not. It takes longer to do so on n trials
than it does on s trials. Therefore, either the observer chooses « sufficiently
small to avoid the deadline on n trials, in which case he does not collect
as much information on s trials as he might have, or he chooses a larger «,
thereby reversing the difficulties. Clearly, in this deadline procedure, it is
much more efficient to behave, if that is possible, as in the counting model:
select a time, somewhat less than the deadline, and count pulses in that time.
This appears to be what all three observers did.

The next question, then, is this: Can we modify the experimental design
so that the timing procedure, if available, is more efficient than the counting
one? Once asked, the answer is obvious: impose the deadline on only one of
the stimulus conditions. It seems most natural to place it on the signal, and
so we call this the s-deadline procedure. To be quite explicit: all anticipa-
tions are punished; on n trials, all responses after the warning light are
paid off according to the payoff matrix; on s trials, all responses after the
warning light and before the deadline D are paid off according to the payoff
matrix, but responses after the deadline are fined.
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VIL. Data from the s-Deadline Experiment
A. PM.—-P.M, versus P.—P,

The fast-guess model again is rejected, as can be seen from Fig. 5. As
this plot seems little different from Fig. 2, we do not discuss it further.
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Fig. 5. Fast-guess analysis of data obtained from different s-deadline conditions.

B. MEeaN REacTiON TIME

Figure 6 is the analog of Fig. 3. Obviously, these data are lessregular,
but apparently MRT is no longer independent of the stimulus. The data for
the N responses agree with prediction C' of the random-walk model since
errors are faster than correct responses, but those for the Y responses go in
the opposite direction, at least for the longer reaction times. The basic fact
revealed by this plot is that MRT, < MRT,, as is shown clearly in Fig. 7.
These data disagree with the counting model and agree with the timing one.
The estimates of u/v, the slopes of the fitted line, are shown on the graph,
In principle, the intercept determines ¥; however, it appears to be too
unreliable to be useful. It is easy to see why, for if 7 is about .2, then
F{u/v — 1) is only about .06 sec.
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Fig. 7. The mean reaction time for noise trials versus the mean reaction time for
signal trials using the s-deadline procedure. Each point was generated by a different deadline.
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s-deadline procedure. Each point was generated by a different deadline.

The variance data are shown in Fig. 8. The theoretical curves are those
obtained from Eq. (6) using the estimates of u/v from Fig. 7 and assuming
(incorrectly, of course) that ¥(r) = 0. Given the variability of variance
estimates, the fits are not bad.

C. Tue ROC Curve

Figure 9 presents the ROC curve for these three observers. Observe
that the slopes are appreciably greater than 1, as predicted by the timing
model [Eq. (7)] and in contradiction to the counting model [Eq. (1)]. In
fact, the least-squares estimates of the slope of the ROC curve, which isan
approximation to the ratio u/v, are very close to the independent estimates
of the same quantity obtained from the MRT (see Fig. 7). Unfortunately,
this remarkable agreement between two estimates is probably fortuitous if
the timing model is correct. According to that model, the time taken to
accumulate Jx pulses is a gamma distribution of order J«. It has a mean
Jrk/u when the signal is presented and a mean of Jx/v when noise alone is
presented. Thus, the true ROC curve is constructed by integrating the
gamma distribution. Using the estimates of u/v = 1.48, obtained from the
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Fig. 9. ROC curves, plotted on double probability paper, for an s deadline of 600
msec. Each point was obtained from a different (X, Y¥) payoff condition. The dotted curve is
the exact gamma curve (see text).

data for Observer 5 (Fig. 7), and estimating Jx = 32, via Eq. (7) and the
data of Fig. 9, we obtain the exact prediction for the ROC curve shown
as the dotted line in Fig. 9. This ROC derived from the gamma distribution
is nearly linear over the major portion of the scale used in the figure, but
it has a slope of about 1.2 rather than the least-squares fit to the data
points of 1.47.

It is important to understand how this discrepancy arises. These two
linear ROC curves actually give nearly the same fit to the data. A difference
of only .01 looms very large in the standard score plots when the actual
probability is less than .05 or greater than .95, and thus small differences
at these extremes produce large differences in slopes. Since it is difficult
to estimate such extreme probabilities accurately and since the normal
approximation to the gamma has some error, the estimated slope is almost
surely wrong by a sizable amount. Thus, it is not a very useful statistic
except to judge crude qualitative facts such as whether the slope is
greater or less than unity. It comes as an unpleasant surprise that even
for gamma distribution of order 50, the normal approximation is suf-
ficiently inaccurate to misestimate the slope by 20%,. Because the gamma s
not tabulated for orders beyond 50, we cannot say when this error is
reduced to, say, 5%,.
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D. ESTIMATION OF PARAMETERS FOR THE TIMING MODEL

We have estimates of u/v from the MRT data of Fig. 7 and Eq. (5).
Using the ROC curve and that estimate of u/v, Eq. (8) yields an estimate
of Jk. Using the MRT from strong signals as an estimate of 7, we can
select A(J, x)/u so as to minimize the sum of the squared errors in Eq. 3:

[MRT; —7 —h/u]* + [MRT, -7 — (u/v)(h/u)]?,

which yields the estimate

h _ MRT, — 7 + (MRT, — F)u/v)

Iz 1+ (u/v)?
Another independent equation is needed to determine all of the parameters.
Since we do not have one, we present in Fig. 10 for each possible value of
J the corresponding values of « and u, where the latter follows from Eq.
(3). The values of 7—165, 168 and 173 msec for Observers 4, 5 and 6—
were the observed MRT for a very large signal-to-noise ratio (10 log P/ N, =
80). The values of Jx were 50 for 4, 32 for 5, and 32 for 6.
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Fig. 10. Values of (a) « and (b) 1/u for various J values. According to the timing model
both x and J are integers and the product « times J is a constant. Its value as estimated from
the data is shown in the left of the figure. Depending upon the value of J, a different 1/u
estimate results, as shown in the right side of the figure. Thus, for Observer 4, if we assume « is
3, then the number of parallel channels J is about 18, and the value 1/u is approximately .033
sec or about 30 pulses per second per channel.
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VILl. The d’ versus MRT Trade Off

Given the widespread use of &’ to summarize sensitivity, a very natural
way to represent the speed—accuracy trade off is by plotting d’ versus MRT.
Certainly this is an appropriate function for both the counting and timing

S— DEADLINE
Obs 4
o o
L SN—DEADLINE L
OBSERVERS 3
s Obsi o 6k / /
Obs 2 o P
— Obs 3 O - /. /
//
d a- af ./' A
/
L o L
. s ° * MRTg
2+ 20 °° 2+ o /‘ * MRTy
3§ o / ya
L o - /
&° [/
0 AL 1 L S T
o 4 8 12 o 8 2
MRT in sec
S—DEADLINE
S— DEADLINE Obs 6
5
o o]
L]
L N\ \ L >
& 6L
b /—0 pes -
d 4 { .QL
./1’
( I * wA, a
{ \ + MRT, |
2l /& Vs ol
L/
/ L
. ¢ '
L i 3 1 ‘\ L |
o] 4 8 12 0 4 8 12
MRT m sec

Fig. 11. Plots of & versus MRT. The sn deadline has the three observers plotted
together: (O) Observer 1; (&) Observer 2; (O0) Observer 3. The s deadline shows @' plotted
against both MRT, (®) and MRT,, (+).
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models. The only difficulty in constructing this function from our datais the
fact that we do not have ROC curves foreach deadline. However, the models
say that the slope of the ROC curve is independent of either A in the counting
model or « in the timing model, so given our one estimate of that slope, we
can estimate d’ at each of the deadlines. This was done, and the resulting
plots of d’ versus MRT are shown in Fig. 1. Because the MRT to s and n are
quite different in the s-deadline experiment, each of those three observers
is described by two curves.

Qualitatively, these graphs exhibit two important features. First, the
intercept corresponding to d’ = 0 is distinctly less in the sn-deadline design
than in the s-deadline one. Second, and far more spectacular, the slope of the
s-deadline curves, even that corresponding to MRT,, is considerably greater
than that of the sn-deadline curves. Beyond 400 msec, the value of 4’ for
the s-deadline is more than double that for the sn-deadline.

Is this predicted? For the counting model, Eq. (2) immediately yields

-
= ("7,/7) (MRT ~ 7).
For the timing model, matters are slightly more complicated. From Egs.
(3) and (4) we may write

MRT, = [r—+ L+ H(J)] . ['f + [+ D - NHD|
® p

where we have grouped the terms on the right so that the second one is0
when «is 0, and hence the firstdescribesthe intercept when 4’ = 0. Obviously,
the intercept of the timing model, which we believe applies to the s-deadline
experiment, is greater than that of the counting model, which applies to
the sn experiment. The difference is [1 + H(J)]/p. Observe that if we
neglect [(k + 1)V2 — 11H(J)/u,

MRTSET+1+TH(J)+

L
I‘_l, *

and so solving for x and substituting in Eq. (8) we obtain

S AY _ 1+ HD)"
d :(-IT)<ILL|/2) (MRTS—r—T— .
o) -
d:<;> <'u1/2>

We note that the rate of growth in the timing experiment for the s and
n curves is /v and (u/v)"2 respectively, times that of the counting experi-

Similarly

(MRT,, - ﬂ)n.

v
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ment. A direct numerical comparison is not possible, however, for two
reasons. First, the observers are different. Second, the predicted growth in
the timing model is only approximate. A third point is the empirical curve
in the sn-deadline experiment does not reaily agree with the predicted,
square-root form; it is more nearly linear. This discrepancy could arise
for either or both of two reasons. First, the estimates of values of d’ near
0 are not very stable, and so those points may be misplaced somewhat.
Second, for long deadlines it is to the subject’s advantage to switch to
timing behavior and so raise the value of 4’ above that predicted by the
counting model. That there may have been a little of this is suggested by
the slight departure from MRT,y = MRTy in Fig. 3.

Our conclusion, then, is that these data are about as one would expect
if the sn deadline invoked counting behavior and the s-deadline, timing
behavior. Independent of any theory, however, the expirical difference
in the trade-off functions is striking.

Several relevant papers have come to our attention in connection with
the d' versus MRT trade off. The key one is that of Taylor, Lindsay, and
Forbes (1967) in which it is shown that in a2 x 2 design ¢"?is approximately
linear with MRT. They replotted data of Schouten and Bekker (1967) and
confirmed that d'2 = A(MRT - r). Lappin and Disch (1972), using easily
discriminated visual stimuli and instructions to maintain a 25%, error rate,
grouped their data according to RT and then studied five different accuracy
measures, including & and 4’ versus median RT. There was very little
difference among them. Other data tending to support the &’2 hypothesis
can be found in papers by Fitts (1966), Pachella and Fisher(1972), Pachella,
Fisher, and Karsh (1968), Pachella and Pew (1968), and Pew (1969).

Terminological inconsistency exists for the function relating a measure
of accuracy to a measure of response time. We referred to it above asthe
speed—accuracy trade off, as have others; Pew suggested speed—accuracy
operating characteristic (S—A OC), which seems compatible with the ROC
terminology; and Lappin and Disch suggested latency-operating charac-
teristic (LOC), which seems poor both because it has been used in at least
one other way and because it emphasizes one aspect of the trade off at the
expense of the other.

IX. Data from the Second sn-Deadline Experiment

After completing the above s-deadline experiment, we ran these
observers in the sn-deadline procedure using a 500-msec deadline and
obtained their ROC curves.
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A. Mean REactioNn TIME

Table 1 shows the estimates of MRT, — MRT; for these observers
in both deadline procedures and the same thing for the first group of
observers, We note that the sn deadline for these observers does not produce
the negligible difference observed with the first three subjects run on this
condition, as we would expect from the counting model, nor is the dif-
ference as large as that produced by the s-deadline procedure for the same
observers. Rather the difference suggests some intermediate mode of
behavior.

Table 1. MRT, -MRT, (msec} Averaged over Five Different
Conditions of the ROC Curve

Observer s-Deadline sn-Deadline
1 — 4
2 — 3
3 — 27
4 101 35
h) 185 44
6 144 42

B. Tue ROC Curve

Figure 12 presents the three ROC curves and, unlike those of Fig. 4,
only one observer exhibits a slope of less than 1. The size of the slopesis
noticeably smaller than those obtained with the s-deadline condition, but
not nearly as small as those obtained from the first three observers using
just the sn-deadline condition (Fig. 4).

One possible explanation of the change in slope of the ROC curve
from the s deadline to the sn deadline is that the quality of detection is
somewhat less in the sn deadline (lower d'). We therefore raised the signal
level a small amount (3 dB) so that the slopes might be compared under
more identical conditions. Fig. 13 shows the ROC for this condition. The
slopes for two observers increase, whereas that of the third (Obs. 4) remains
less than unity.
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in Figs. 9 and 12.

X. Discussion

There is little doubt that the s-deadline procedure results in unusual
ROC data with slopes distinctly greater than 1. These data and the MRT
data are consistent with the timing model and not with the other models.
We had hoped, of course, that by changing to the sn deadline, the observers
would have exhibited behavior similar to the first group of observers, which
we would have interpreted as switching clearly from the timing mode to
the counting mode. Both the MRT and ROC data are, roughly, half way
between the two modes. [t is as though the s-deadline training had created
still another mode of behavior that we do not understand. One suspects
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that the order of experimental procedures has a strong effect and, at the
least, we should run a group first on the sn deadline and follow it by an
s-deadline procedure. In all likelihood, considerable instruction will be
needed to shift the mode of behavior.
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