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responding to the two possible types of trials. One unusual feature of the 
design is that the signal, when presented, remained on until the response 
occurred. The reason for using a response-terminated signal was to main- 
tain statistically stationary conditions throughout the listening interval; 
this seems especially important when the effect of a variable deadline is 
studied. Following the response, information feedback was presented for 
.5 sec, and after another .5 sec the next trial began. 

Each of three observers listened binaurally through earphones in a 
sound-treated room. The white Gaussian noise had a spectrum level of 40 
dB. The signal, a 1000 Hz sinusoid, was either weak or intense-20 or 50 dB 
above the noise power density (10 log PIN,,). With weak signals, performance 
is essentially at chance when a response must be made within 300 msec of 
the warning light and is nearly perfect with a 1000-msec deadline. The 
intense signal is roughly at the level generally used in trade-off experiments. 

Each experimental session lasted about 2 hr and consisted of five runs. 
Each run was under one experimental condition (see below) and consisted 
of about 250 trials. A total of six sessions were run, so there are about 
1500 trials per condition. 

We recorded both the time from the onset of a trial to the response 
and the nature of the response. The two independent conditional response 
probabilities. P(Y1s) and P(Yln), were estimated in the usual way. The 
means and variances of reaction-time distributions (MRT and VRT, re- 
spectively) also were estimated in the usual way; MRT and VRT are sub- 
scripted as needed by the presentation, s (signal) or n (noise), and/or the 
response, Y (yes) or N (no). 

In addition to  an hourly wage of $1.88, observers received points 
according t o  a payoff matrix for accuracy and a deadline for speed; 
these are described in the next section. The points were accumulated and 
converted into a bonus at the end of each run on a competitive basis 
among sets of three observers as follows. Let the points accumulated by 
the ith subject on a given run be denoted V,, which was always positive. 
His share of the $0.25 bonus for that run was Vi21Z)=, Vi2. 

111. Experimental Variables 

Aside from the two signal levels, the two major variables were both 
instructional, the one intended to manipulate the speed-accuracy trade 
and the other, the response bias. Any response prior to the warning light 
was fined 25 points; as a result, such anticipations occurred with a relative 
frequency of less than .001. Any response following the prescribed dead- 
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line D was fined 4 points, independent of accuracy. Any response between 
the warning light and D was paid off according to the following matrix: 

where the observers were informed of the value of (X, Y) in each con- 
dition. For reasons that will become apparent, we refer to  this (standard) 
deadline procedure as the sn deadline (signal and noise deadline). 

In one experiment, (X, Y) was fixed at (10, lo), thereby producing a 
symmetric payoff matrix, and D was varied over the values 250, 300, 400, 
500, 600, 800, 1000, 1500, and 2000 msec. The aim of this manipulation 
was to  produce a speed-accuracy exchange. In a second experiment, D 
was fixed at 600 msec and the (X, Y) pair was varied over the values 
(20, 1)(15, 5)(10, 10)(5, 15)(1, 20) points. The aim of this manipulation 
was to generate an ROC curve, but without any speed-accuracy exchange. 
As the data will make clear, both manipulations were successful. 

IV. Models 

As the four models we shall test are described fully in the literature, 
it suffices to suggest their general nature and to state the exact predictions 
to be compared with data. Unfortunately, comparable predictions from the 
models are not available. Our policy is to accept whatever seems to be a 
characteristic prediction of a model, especially predictions of linear rela- 
tions, and to examine the data in an absolute sense without worrying about 
what the other models predict. This is a sound strategy when the data un- 
ambiguously reject a model; it is much more suspect when we are inclined 
to  accept one. 

The fast-guess model (Ollman, 1966; Yellott, 1967) supposes that the 
observer selects on each trial one of two wholly different modes of behavior. 
In one, he pays attention to the signal and responds only when he has 
recognized it. We assume that the probability of a correct response is 
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a and the mean time for it to occur is F , ~ .  In the other mode, the observer 
responds as fast as he can to the onset of the signal, making no attempt to  
identify it; this accounts for the name of the model. He has some bias prob- 
ability b for responding Y,  and the mean response time is u,, where pg 
< p,. The observer uses the first mode with probability q and the second 
with probability 1 - q. Any experiniental manipulation that alterstheprob- 
ability q of paying attention generates a speed-accuracy trade off. 

Let PC and P, denote the probabilities of correct and of error responses. 
Thus, if the signal is presented with probability $, 

and 

Let M, and Me denote the MRTs to correct and error responses. Then 
it is not difficult to  show that 

We use this linear prediction to test the fast-guess model. 

The literature includes a variety of sequential-decision models. Of 
these, Laming's (1968) seems to be the best worked out. The observer 
divides time into a sequence of equal intervals, each ofwhichisthen treated 
as a fixed-interval, yes-no situation. The sensory random variables (RV) 
observed in the several intervals are assumed to be independent and identi- 
cally distributed: of course, the distribution depends upon whether or not 
the signal is present. Two response criteria, /I, and I,, are established. 
The decision rule has the following character. If no decision has been 
reached prior to the ith observation, the mean of all i observations is com- 
pared with the criteria. If it is less than P I ,  respond N; if it is greater than 
p,, respond Y; and if it lies between P I  and P,, collect the (i + 1)st observa- 
tion and proceed as on the ith observation. The onset of the sampling is a 
parameter of the model; it may begin before the onset of the potential 
signal. 

Distinctive quantitative predictions are difficult to come by in any 
sequential model, and so we will content ourselves with two qualitative 
ones. Using Laming's (1968) labeling: 

B. In a two-choice experiment that signal which elicits the 
faster reaction. on average, has the smaller probability of error, and 
conversely [p. 441. 

C'. In two-choice experiments errors are faster than the same 
response made correctly [p. 821. 

This model (McGill. 1967) assumes that the sensory trasducer con- 
verts signal energy into one or more pulse trains, which, for a constant 
intensity signal, are identical Poisson processes, that is, the times between 
successive pulses are independent, identically distributed exponential RVs. 
The common intensity parameter of these Poisson processes is assumed to be 
an increasing function of signal intensity, given that all other stirnutus 
parameters are constant. Put another way, the expected time between 
pulses is a decreasing function of signal intensity. 

The observer selects a time period A during which the number ofpulses 
is counted. This RV is then treated just as likelihood ratio is in  thetheory of 
signal detectability (TSD), that is, if it is larger than some criterion P ,  he 
responds Y, and if it is smaller, he responds N. Two predictions follow 
readily. First, since the time for initiating a response does not depend on 
either the stimulus condition or on the response made, the observed reaction 
time distributions should be the same in all four cells. Second, we derive 
the form of the ROC curve. Let p and u'denote, respectively, the Poisson 
parameters corresponding to s and n, and let z(s) and z(n) be, respectively, 
the normal deviates corresponding to P(Y 1s) and P(Y ( n). Using the normal 
approximation to the Poisson process, the following approximate linear 
relation holds: 

Z(S) E (ulp)lf2 z(n) + A1i2 [ (p - ~ ) l p l i ~ j .  (1) 

This agrees with the prediction of  TSD but, in addition, it predicts exactly 
how the slope of the ROC curve decreases with increased signal intensity. 

As a measure of accuracy, defined'to be the value ofz(s) corresponding 
to z(n) = 0, that is, to P(Y1n) = $. Then the speed-accuracy trade off is 
described in terms of the size A of the subject-controlled observation interval 
by the equations 

M R T  = F + A ,  d' = A'/!  [ ( p  - ~ ) / ~ ' f ' ] ,  (2) 

where 7 is the mean of the residual times not accounted for by the observa- 
tion time. 
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Timing models (Luce & Green, 1972) assume exactly the same pulse 
structure as the counting models. They differ only in the processing of the 
pulses. Instead of assuming that pukes are collected for a fixed time and 
then counted, these models assume that a fixed number of pulses are 
collected and the time required is measured. That time is a RV, which is 
treated much as in TSD except that small values-short interarrival times 
(1ATs)-correspond to the signal rather than to the noise, because the 
shorter the IAT, the more likely it is that a signal is present. 

We must take into account a complication that we could ignore in the 
counting model. We shall suppose that the stimuli activate pulse trains on 
J statistically identical, parallel channels (this, no doubt, is a gross over- 
simplification) and that the observer collects K lATs from each channel, 
for a total of  JK. The response is determined by the mean of all JK IATs, 
and the time of initiation is determined by the slowest of the J channels. 
Thus, the response time depends on J and K separately, not just on JK.  

Independent of the response, it can be shown (Luce & Green, 1972, 
Eq. 23) that the mean reaction time to the signal is of the form 

MRT, = F + h ( J ,  rc)lp, ( 3 )  

where r again denotes the mean residual time. An approximation to this 
function h  is 

where H ( J )  is the mean of the largest of J normally distributed RVs, each 
with mean 0 and variance 1. A table of H i s  given by Tippett (1925). The 
equation for MRT, is the same as Eq. (3).  with v substituted forp. Eliminat- 
ing h  from these two equations yields the testable linear relation 

MRT, = (plv) MRT, + F(1 - plu). (5) 

Obviously, this provides not only a test of the model, but a way to estimate 
plu and, in principle, F. 

A similar calculation of variances yields 

where V(r )  is the variance of the residual distribution. 
Again, using the normal approximation to the gamma, the ROC curve 

can be shown (Luce & Green, 1972, Eq. 31) to be approximately, 
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Although the linear form agrees with TSD and with the counting model, the 
prediction has the striking feature that the slope must begreater than 1 since 
p > L', which is the opposite of what is predicted by the counting model 
[Eq. (2)] and contrary to  almost the entire body of data reported in the 
detection literature. 

Using the same accuracy measure as in the counting model, the speed- 
accuracy trade off is described by Eqs. (3) and (4), together with 

In this case, K is the subject-controlled parameter that affects both speed 
and accuracy. Note that this model predicts approximately the same trade 
off as does the counting model: MRT is approximately linear in the param- 
eter and d' is proportional to its square root. 

V. Data from the sn-Deadline Experiment 

The deadline had the desired effect of varying the MRT from 100 to 
1000 msec; it also affected the variability of the RTs. Figure 1 presents the 
scatter plot of standard deviation versus mean for all of the experimental 
data of this paper (including a deadline procedure not yet described). The 
open circles are data using a large signal-to-noise ratio, where the detection 
of the signal is no problem. The mean reaction times are short, 100-250 
msec, and the variability is about 50 msec. The solid points are data using 
a small signal-to-noise ratio, where the detection of the signal is difficult. 
Although the correlation is far from I ,  it is evident that the standard devia- 
tion tends to increase with MRT. A general rule of thumb is that, forthese 
procedures and the weak signal, the standard deviation is about one-third 
of the mean. This fact must be kept in mind when comparing various con- 
ditions. 

B. P , M ,  - P , M ,  VERSUS P C  - P ,  

The linear prediction of the fast-guess model has been tested lor 
easy-to-discriminate stimuli (Ollman, 1966; Yellott, 1967; Link & Tindall, 
1971). In  general, the fit is impressive except for conditions of extreme 
accuracy (PC a l), in which cases the data points are well above the extrap- 
olated linear curve. Our data for both signal levels are shown in Fig. 2. 
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Fig. 2. Fast-guess analysis of data for sn-deadline conditions: 

10 log PIN, ?- 20 50 

Observer 1 
3 

I I I 
0 2 0.5 1.0 

MEAN REACTION TIME (SEC 
Each point was generated by a different deadline value. The solid points were obtained using 
an easy-to-detect signal. and the open ones using a hard-to-detect signal. Fig. 1. Standard deviation versus mean reaction times for all conditions and Observers: 

(@) 10 log PIN, = 20; ( 0 )  10 log PIN, = M. 1200 I I I I I I I 

Yes 0 No 

Those for the 50-dB signal conform to those in the literature; those for the 
weak 20-dB signal are much more discrepant from the theory. For the latter, 
a linear fit through the origin summarizes only a very narrow range of these 
data. Thus, we conclude that the fast-guess model does not provide an 
adequate description of behavior in a response-terminated, sn-deadline, 
Y-N detection design using weak signals. 

Figure 3 presents the MRT, and MRTn data from thevariabledeadline 
experiment for each response separately. To a good first approximation, the 
stimulus condition does not affect the results. To  the extent that this is so- 
recall that the data are quite variable (Fig. l)-it disagrees with prediction 
C' of the random-walk model and with Eq. (5) of the timing model. It is in 
perfect accord with the prediction of the counting model. 

Fig. 3. The four stimulus-response mean reaction times obtained in the sndeadline 
procedure: (0)  Observer I; ( A )  Observer 2; (0) Observer 3. The small subscript indicates the 
stimulus condition: s for signal, n for noise. The capital letter indicates the response: Y for yes, 
N for no. The open points are for conditions in which the sn deadline was varied. The solid 
points in the insert are the data for the condition in which the criteria was varied for a fixed, 
600-msec deadline. 
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D. THE ROC CURVE 

With a fixed deadline but a variable payoff matrix, the MRTs are 
approximately the same independent of either the stimulus or the response; 
see the insets in Fig. 3. The ROC curves for these conditions are shown in 
Fig. 4. The MRT data are inconsistent with prediction B of the random- 
walk model, and the ROC curves are grossly inconsistent with Eq. (7) of the 
timing model because the slopes are all less than 1. They are consistent with 
the counting model, and we obtain the values 1.19, 2.13, and 1.25 as 
estimates2 of p I ~ .  

Fig. 4. ROC curves. plotted on double probability paper. for a sn-deadline of 600 msec 
(10 log PIN,  = 20); ( 0 )  Observer 4; ( A )  Observer 5; (u )  Observer 6. Each point is obtained 
from a different ( X .  k') payoff condition. 

VI. Intermediate Discussion 

Of the four models, the data clearly favor the counting one. The ques- 
tion is, first, how seriously should we take this and, second, how general is 
the conclusion. 

It is difficult to know whether an adequate repair of the fast-guess or 
random-walk models is possible. The data rejecting the fast-guess model 

'Here and elsewhere when we examine a linear relation between two variables, both 
of which are random. we do both regressions and report the geometric mean of the two 
slopes and the arithmetic mean of the intercepts. 
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suggest that the observer may use more than two states and that, perhaps, 
he enters into some sort of sequential decision making. However, other 
aspects of the data did not support sequential models. It is unclear to 
us how seriousIy to take this since the predictions were simply inequali- 
ties without any indication of the magnitudes of the differences that should 
be found. This is, in fact, typical ofsequential models;theirrandomstructure 
is inherently difficult to analyze, and so unless forced to it, one is inclined 
to search for simpler models. 

Both the counting and timing models are (in this situation) very simple, 
and clearly the counting one is far the better of the two. That being so, 
one can wonder why we ever seriously entertained the timing model and, if 
our reasons seem adequate, what it was about this experiment that forced 
our observers to  abandon timing behavior. Our reasons for considering 
timing models are both general and specific. We showed (Luce & Green, 
1972) that they readily account for a wide range of psychophysical findings, 
including magnitude estimation as well as detection and discrimination. 
One new development was a theory for the detection of the onset of weak 
signals that are presented at random times. Unpublished simulations ofthat 
model seem, at least qualitatively, to account for somepreviousdata(Green 
& Luce. 1970). Thus, we were encouraged to think it an interesting 
idea. 

Why, then, did it fail so badly to account for the sn-deadline procedure'? 
Although the number of IATs collected per channel, K. is independent ofthe 
stimulus, the time to collect them is not. It takes longer to do so on n trials 
than it does on s trials. Therefore, either the observer chooses K sufficiently 
small to  avoid the deadline on n trials, in which case he does not collect 
as much information on s trials as he might have, or he chooses a larger K ,  

thereby reversing the difficulties. Clearly, in this deadline procedure, it is 
much more efficient to behave: if that is possible, as in  the counting model: 
select a time, somewhat less than the deadline, and count pulses in that time. 
This appears to be what all three observers did. 

The next question, then, is this: Can we modify the experimental design 
so that the timing procedure, i f  available, is more efficient than the counting 
one? Once asked, the answer is obvious: impose the deadline on only oneof 
the stimulus conditions. It seems most natural to place it on the signal, and 
so we call this the s-deadline procedure. To  be quite explicit: all anticipa- 
tions are punished; on n triais, all responses after the warning light are 
paid off according to the payoff matrix; on s trials, all responses afterthe 
warning light and before the deadline D are paid off according to the payoff 
matrix, but responses after the deadline are fined. 
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VII. Data from the s-Deadline Experiment 

The fast-guess model again is rejected, as can be seen from Fig. 5 .  As 
this plot seems little different from Fig. 2, we do not discuss it further. 

Fig. 5. Fast-guess analysis o r  data obtained from different s-deadline conditions. 

Figure 6 is the analog of Fig. 3. Obviously, these data are less regular. 
but apparently MRT is no longer independent of the stimulus. The data for 
the N responses agree with prediction C of the random-walk model since 
errors are faster than correct responses, but those for the Y responses go in 
the opposite direction, at  least for the longer reaction times. The basic fact 
revealed by this plot is that MRT, < MRT,, as is shown clearly in Fig. 7. 
These data disagree with the counting model and agree with the timing one. 
The estimates of p / v ,  the slopes of the fitted line, are shown on the graph. 
In principle, the intercept determines r; however, it appears to be too 
unreliable to be useful. It is easy to see why, for if 7 is about .2, then 
F ( ~ / u  - I )  is only about .06 sec. 
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Fig. 6. The mean reaction times for various s deadlines. The figure is analogous to Fig. 3, 
and the same notation is used. 

Fig. 7. The mean reaction time for noise trials versus the mean reaction time for 
signal trials using the s-deadline procedure. Each point was generated by adifferent deadline. 
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Fig. 8. The variance o f  the reaction times for the two stimulus conditions using the 
s-deadline procedure. Each point was generated by a different deadline. 

The variance data are shown in Fig. 8. The theoretical curves are those 
obtained from Eq. (6) using the estimates of plu from Fig. 7 and assuming 
(incorrectly, of course) that V(r) = 0. Given the variability of variance 
estimates, the fits are not bad. 

C. THE ROC CURVE 

Figure 9 presents the ROC curve for these three observers. Observe 
that the slopes are appreciably greater than 1, as predicted by the timing 
model [Eq. (7)] and in contradiction to the counting model [Eq. (l)]. In 
fact, the least-squares estimates of the slope of the ROC curve, which is an 
approximation to the ratio plv, are very close to the independent estimates 
of the same quantity obtained from the MRT (see Fig. 7). Unfortunately, 
this remarkable agreement between two estimates is probably fortuitous if 
the timing model is correct. According to that model, the time taken to 
accumulate JK pulses is a gamma distribution of order JK. It has a mean 
J ~ l p  when the signal is presented and a mean of J ~ l u  when noise alone is 
presented. Thus, the true ROC curve is constructed by integrating the 
gamma distribution. Using the estimates of p l u  = 1.48, obtained from the 
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Fig. 9. ROC curves, plotted on double probability paper. for an s deadline o f  600 
msec. Each point was obtained from a different (X, Y )  payoffcondition. Thedotted curve is 
theexact gamma curve (scc text). 

data for Observer 5 (Fig. 7), and estimating Ju = 32, via Eq. (7) and the 
data of Fig. 9, we obtain the exact prediction for the ROC curve shown 
as the dotted line in Fig. 9. This ROC derived from the gammadistribution 
is nearly linear over the major portion of the scale used in the figure, but 
it has a slope of about 1.20 rather than the least-squares fit to the data 
points of 1.47. 

It is important to understand how this discrepancy arises. These two 
linear ROC curves actually give nearly the same fit to the data. A difference 
of only .01 looms very large in the standard score plots when the actual 
probability is less than .05 or greater than .95, and thus small differences 
at these extremes produce large differences in slopes. Since it is difficult 
to estimate such extreme probabilities accurately and since the normal 
approximation to the gamma has some error, the estimated slope is almost 
surely wrong by a sizable amount. Thus, it is not a very useful statistic 
except to  judge crude qualitative facts such as whether the slope is 
greater or less than unity. It comes as an unpleasant surprise that even 
for gamma distribution of order 50, the normal approximation is suf- 
ficiently inaccurate to  misestimate the slope by 20%. Because the gamma is 
not tabulated for orders beyond 50, we cannot say when this error is 
reduced to, say, 5%. 
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We have estimates of p/v from the MRT data of Fig. 7 and Eq. (5). 
Using the ROC curve and that estimate of plv, Eq. (8) yields an estimate 
of JK. Using the MRT from strong signals as an estimate of F, we can 
select h(J, ~ ) l p  so as to minimize the sum of the squared errors in Eq. 3: 

which yields the estimate 

h MRT, - r + (MRT, - F)(plv) - - - 
P 1 + (plu)' 

Another independent equation is needed to determine all ofthe parameters. 
Since we do not have one, we present in Fig. 10 for each possible value of 
J the corresponding values of K and p,  where the latter follows from Eq. 
(3). The values of F-165, 168 and 173 msec for observers 4, 5 and 6- 
were the observed MRT for a very large signal-to-noise ratio (10 log PINo = 

80). The values of JK were 50 for 4, 32 for 5, and 32 for 6. 

Fig. 10. Values of (a) a and (b) I/{(  for various J values. According to the timing model 
both a and J are integers and the product K limes J is a constant. Its value as estimated from 
the data is shown in the left of the figure. Depending upon the value of J ,  a different l i p  
estimate results, as  shown in the right side of the figure. Thus, for Observer 4, if we assume K is 
3. then the number of parallul channcls J is about 18. and the value \ / / I  is approximately ,033 
sec or about 30 pulses per second per channel. 
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VIII. The d' versus MRT Trade Off 

[Part 6 

Given the widespread use ofd'to summarize sensitivity, a very natural 
way to represent the speed-accuracy trade off is by plotting d'versusMRT. 
Certainly this is an appropriate function for both the counting and timing 

SN-DEADLINE 

OBSERVERS 
ObS I 0 

a s 2  a 

Ob* 3 0 

S- DEADLINE 

Obs 4 

S-DEhOCINE 
S- DEADCINE Obs 6 
- 5  

Fig. 11. Plots of d' versus MRT. T h e  sn deadline has the three observers plotted 
together: (0) Observer 1; ( A )  Observer 2; (0) Observer 3. The s deadline shows d piottcd 
against both MRT, (0 )  and MRT, (+). 
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models. The only difficulty in constructing this function from our data is the 
fact that wedo not have ROC curves for each deadline. However, the models 
say that the slope of the ROC curve is independent ofeitherd in the counting 
model or K in the timing model, so given our one estimate of that slope, we 
can estimate d' at each of the deadlines. This was done, and the resulting 
plots of d' versus MRT are shown in Fig. I 1 .  Because the MRT to sand n are 
quite different in the s-deadline experiment, each of those three observers 
is described by two curves. 

Qualitatively, these graphs exhibit two important features. First, the 
intercept corresponding to d' = 0 is distinctly less in the sn-deadline design 
than in the s-deadlirie one. Second, and far morespectacular, the slope ofthe 
s-deadline curves, even that corresponding to MRT,, is considerably greater 
than that of the sn-deadline curves. Beyond 400 msec, the value of d' for 
the s-deadline is more than double that for the sn-deadline. 

Is this predicted? For the counting model, Eq. (2) immediately yields 

d' = (F) (MRT - 7)"' 

For the timing model, matters are slightly more conlplicated. From Eqs. 
( 3 )  and (4) we may write 

MRT, = [i- + I + ~ ( a ]  + [ K  + [(x + 1)"' - I]H(I)) 
P P 

where we have grouped the terms on the right so that the second one is0 
when K is 0, and hence the first describes the intercept when d' = 0. Obviously, 
the intercept of the timing model, which we believe applies to the s-deadline 
experiment, is greater than that of the counting model, which applies to 
the sn experiment. The difference is [ l  + H(J)]/p. Observe that if we 
neglect [(K + 1) ' I2  - I ]  H(J)Ip, 

MRT, T + l + H ( J )  K 

P 
+ -9 

P 

and so solving for IC and substituting in Eq. (8) we obtain 

Similarly 

,nent. A direct numerical comparison is not possible, however, for two 
reasons. First, the observers are different. Second, the predicted growth in 
the timing model is only approximate. A third point is the empirical curve 
in the sn-deadline experiment does not really agree with the predicted, 
square-root form; it is more nearly linear. This discrepancy could arise 
for either or both of two reasons. First, the estimates of values of d' near 
0 are not very stable, and so those points may be misplaced somewhat. 
Second, for long deadlines it is to the subject's advantage to switch to 
timing behavior and so raise the value of d' above that predicted by the 
counting model. That there may have been a little of this is suggested by 
the slight departure from MRTsy = MRTny in Fig. 3. 

Our conclusion, then, is that these data are about as one would expect 
if the sn deadline invoked counting behavior and the s-deadline, timing 
behavior. Independent of any theory, however, the expirical difference 
in the trade-off functions is striking. 

Several relevant papers have come to our attention in connection with 
the d' versus MRT trade off. The key one is that of Taylor, Lindsay, and 
Forbes (1967) in which it is shown that in a 2 x 2 designd2 is approximately 
linear with MRT. They replotted data of Schouten and Bekker (1967) and 
confirmed that d'2 = A(MRT - r ) .  Lappin and Disch (1972), using easily 
discriminated visual stimuli and instructions to maintain a 25% error rate, 
grouped their data according to RT and then studied five different accuracy 
measures, including d' and d'"vcrsus median RT. There was very little 
difference among them. Other data tending to support the d'? hypothesis 
can be found in papers by Fitts (1966), Pachellaand Fisher(1972), Pachella, 
Fisher, and Karsh (1968), Pachella and Pew (1968), and Pew (1969). 

Terminological inconsistency exists for the function relating a measure 
of accuracy to a measure of response time. We referred to it above as the 
speed-accuracy trade off, as have others; Pew suggested speed-accuracy 
operating characteristic (S-A OC), which seems compatible with the ROC 
terminology; and Lappin and Disch suggested latency-operating charac- 
teristic (LOC), which seems poor both because it has been used in at least 
one other way and because it emphasizes one aspect of the trade off at the 
expense of the other. 

IX. Data from the Second sn-Deadline Experiment 

After completing the above s-deadline experiment, we ran these 
observers in the sn-deadline procedure using a 500-msec deadline and 
obtained their ROC curves. 

We note that the rate of growth in the timing experiment for the s and 
n curves is ~ I u  and ( ~ I v ) ' / ~ .  respectively, times that of the counting experi- 
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Table 1 shows the estimates of MRT, - MRT, for these observers 
in both deadline procedures and the same thing for the first group of 
observers. We note that the sn deadline for these observers does not produce 
the negligible difference observed with the first three subjects run on this 
condition, as we would expect from the counting model, nor is the dif- 
ference as large as that produced by the s-deadline procedure for the same 
observers. Rather the difference suggests some intermediate mode of 
behavior. 

Table 1. MR T, -MR 7, (msec) Averaged over Five Dzfirent 
Conditions ojrhe ROC Curve 

Observer s-Deadline sn-Deadline 

B. THE ROC CURVE 

Figure 12 presents the three ROC curves and, unlike those of Fig.4, 
only one observer exhibits a slope of less than 1. The size of the slopes is 
noticeably smaller than those obtained with the s-deadline condition, but 
not nearly as small as those obtained from the first three observers using 
just the sn-deadline condition (Fig. 4). 

One possible explanation of the change in slope of the ROC curve 
from the s deadline to the sn deadline is that the quality of detection is 
somewhat less in the sn deadline (lower d'). We therefore raised the signal 
level a small amount ( 3  dB) so that the slopes might be compared under 
more identical conditions. Fig. 13 shows the ROC for this condition. The 
slopes for two observers increase, whereas that of the third (Obs. 4) remains 
less than unity. 

Fig. 12. ROC curves, plotted on double probability paper. forObservers4.5 and 6 using 
the sn-deadline procedure. 

80 

';ii 7 0  

4 0  

Obs 5 

Fig. 13. ROC curves using the sn-deadline condition uith signal 3 dB above those used 
in Figs. 9 and 12. 

X. Discussion 

There is little doubt that the s-deadline procedure results in unusual 
ROC data with slopes distinctly greater than 1. These data and the MRT 
data are consistent with the timing model and not with the other models. 
We had hoped, of course, that by changing to the sn deadline, the observers 
would have exhibited behavior similar to the first group ofobservers, which 
we would have interpreted as switching clearly from the timing mode t o  
the counting mode. Both the MRT and ROC data are, roughly, half way 
between the two modes. It is as though the s-deadline training had created 
still another mode of behavior that we do not understand. One suspects 
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that the order of experimental procedures has a strong effect and, at the 
least, we should run a group first on the sn deadline and follow it by an 
s-deadline procedure. In all likelihood, considerable instruction will be 
needed to shift the mode of behavior. 
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