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The paper includes experimental results obtained using two 
procedures in which signals are presented at random times. A 
simple three-stage theory consisting of a sensory process, 
followed by a response bias, and ending in a response process, 
involving a random delay, and that may or may not have a 
memory, is compared with the data. The free-response procedure 
yielded data that could not be accounted for by a first version of 
the theory in which the crucial assumption about the response 
process was that once a response process is under way it locks out 
all further inputs until the response is made. Alternative models, 
including a race between response processes with the first 
response suppressing all others and a simple first-in first-out 
queue, were equally inadequate. On the assumption that the 
difficulties lie in the complexities of the response process when 
there are two or more inputs close in time, we decided to avoid 
these theoretical difficulties by using a modified reaction-time 
procedure. The initial results are encouraging. The tails of the 
latency distributions appear to be exponentially distributed and a 
theoretical prediction that two of the time constants should be 
the same appears to be supported. The major indications of 
difficulties are inconclusive evidence that the response bias 
parameter may not be constant and, possibly related, that the 
initial portion of the tails may overshoot the predicted value. In 
spite of the possible variation in the bias parameter, estimates of 
the signal-plus-noise to noise-alone parameters increase in a 
systematic manner with signal strength. 

Virtually all sensory discrimination experiments use clearly 
specified intervals of time during which a signal may or may not 
be presented. The 0 need not attend at other times since signals 
are presented only during these specific intervals. A response is 
required shortly after each interval or each group of intervals, and 
the 0's performance is summa[ized as estimates of certain 
conditional response probabilities. For example, in the Yes-No 
design a response occurs after each interval and we estimate the 
probability of a detection (Yes response) conditional on the 
signal being presented and also conditional on its not being 
presented. 

Such experiments are as artificial as they are convenient to 
analyze. Seldom in life do we receive advance warning that a 
signal may shortly occur, let alone know exactly the interval of 
time during which to attend. In most realistic situations, signals 
occur in a highly unpredictable manner, even if they do not occur 
in a perfectly random manner. 

We continue our attempt to develop a r~gorous analysis of 
detection in experiments that try to mimic the temporal 
uncertainty of real life. A first pass at a theory was given in Luce 
(1966); it was followed by an experiment and some additional 
theory in Green and Luce (1967). Here we report a replication 
and a modified experimental design, both using better equipment, 
and we consider various modification$ of the theory. 

GENERAL THEORY 
The contrast between our methods and those used by earlier 

investigators (for example, Broadbent & Gregory, 1963; Egan, 
Greenberg, & Schulman, 1x1; Watson & Nichols, 1966) is 
particularly striking because we ignore the responses that occur 
shortly after other observable events-in particular, those shortly 

after a signal-and concentrate mainly on the tails of certain 
latency distributions. Several different distributions arise by 
considering interresponse times (IRT) and signal-response times 
(SRT) conditioned on various things being true.4 With a Poisson 
schedule-the continuous analogue of a uniform distribution-of 
signal presentations, the theory predicts that the tails of these 
distributions are exponential with time constants that are simple 
functions of theoretical sensory and response bias parameters. So 
our attention is focused, first, on whether the tails are in fact 
exponential and, second, on the numerical values of the 
exponential time constants. Inferences about the sensory system 
and the discriminability of signals are made from these estimated 
parameters. 

To see in more detail what is involved, consider the block 
diagram of Fig. 1, which presents the essential structural 
components of the theory. The "Sensory Process" box represents 
the mechanism responsible for detecting faint signals. In the 
absence of any input signal, the output of this box is generally 
quiet. Occasionally, however, according to a random (Poisson) 
schedule, it yields an output, thereby falsely indicating the 
presence of a signal. We denote the intensity parameter of this 
"noise" process by v. When a signal is actually presented, the 
tendency for the box to issue an output is momentarily increased 
by an amount that depends upon the signal strength; after the 
signal ends, the process returns to its resting Poisson level. In 
principle, the value of the Poisson parameter v could depend on 
many things other than the stimulating conditions and the 
sensory system of the 0 ,  but we shall assume that it depends only 
on these. In particular, we assume that it is unaffected by the 
density of signal occurrences, the values and costs of various 
responses, and the instructions to the 0 .  

The Sensory Process output is fed into the next box, labeled 
"Response Bias," which simply determines with some constant 
and statistically independent probability, b, whether or not an 
alleged detection shall be permitted to initiate a response. We 
hope that b can be treated as independent of changes in the 
sensory input and that much of the individual response variation 
caused by altering instructions and payoffs can be accounted for 
by changes in b. If so, then we can separate analytically the 
response and the sensory processes. Observe that when no signal 
is present the output of the Response Bias box is Poisson, but 
with intensity bv rather than just u. One experimental task is to 

Fig. 1. Functional parts of the general theory. The output 
events of the Sensory Process and Response Bias are assumed to 
be Poisson distributed with the indicated parameters when noise 
or signal-pIus-noise are present at the input. 
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try to verify that the assumed dependencies and independencies 
of b and v are valid. 

The output of the Response Bias is fed into the third box, 
labeled "Response Process," which introduces a delay before the 
observed response occurs. When a reaction is initiated, we assume 
that before the response occurs there is an unobservable delay, 
called the reaction latency, that this latency is a bounded random 
variable, with density r, and that it is independent of the random 
processes in the other two boxes. By a bounded random variable 
we simply mean that for some T > 0, r(t) = 0 for all t < 0 and for 
all t > ~ .  

In addition to these assumptions, we must consider carefully 
the conditions under which a reaction is, in fact, initiated. The 
problem is to know what happens when two or more inputs occur 
so close in time that the response to the first has not yet occurred 
when the second arrives. Various assumptions about what 
happens generate different models within the same general 
theoretical framework. We describe one now and two others later. 
Unfortunately, they all seem to be wrong. 

Lock-Out Model 
A basic question is whether the Response Process box is 

capable of storing an input until a reaction that is under way 
produces a response or whether the second input is "locked out" 
and hence lost. By far the simplest, but almost surely a wrong, 
assumption is that any input arriving while another one is being 
processed is lost. Such a system has no memory, and so each time 
a response is made we can begin our analysis at the time the 
response occurs and all events preceding the response can be 
ignored. This leads to great mathematical simplicity, especially 
when the input to the Response Process is Poisson. Another way 
to view this lock-out model is that whenever the Response 
Process is busy processing an input, a feedback loop to the 
Response Bias box reduces the bias from b to 0; when the 
response is made, it is returned to b. 

Given the lock-out model and a Poisson schedule of stimulus 
presentations, Green and Luce (1967) worked out four, different, 
conditional IRT and SRT distributions. For observed times t 
greater than 7, each distribution is exponential and has as time 
constant either bv + A or bv + bqh, where h is the Poisson 
parameter of the stimulus presentation schedule and q denotes the 
probability that the Sensory Process emits an output when a 
signal is presented. The stimulus presentation parameter, A, is an 
experimental parameter, so it is known. We can estimate bv from 
an estimate of bv + A, and with that known, we can estimate bq 
from the estimate of bv+ bqh. The ratio, q /v= bqlbv, is a 
measure of the signal's detectability not unlike d' in the signal 
detectability analysis of fixed interval detection. Since the 
response bias, b, cancels in determining the ratio q/v, this measure 
of the signal's detectability is presumably independent of 
response bias. 

Test of Lock-Out Model 
Previous free-response experiment. In the earlier paper, we 

reported an analysis of data from an experiment in which signals 
of short duration and fixed intensity were presented according to 
a Poisson schedule. The results were equivocal. 

A key prediction was that all four distributions have 
exponential tails. For one 0 ,  this was approximately true, but the 
other 0 exhibited consistent departures from the exponential. 
Moreover, to do as well as we did, we were forced to set the 
upper bound, 7, on reaction latencies at 2 sec. Although initially 
this struck us as excessively long, we ultimately persuaded 
ourselves that it might have resulted from our inability to 
motivate the 0 s  to respond rapidly. The equipment used in that 
experiment did not permit us to analyze the data immediately 

Fig. 2. Corrected scatter diagrams for the free-response 
experiment of Green and Luce (1967). The figure displays the 
observed vs predicted proportion of responses occurring within 
T = 2 sec of a signal onset given no- observable events within 
T = 2 sec before the signal. The obtained percentage is the 
percentage of response falling within this interval. The predic- 
tion is based on the lock-out model using parameters estimated 
from the tails of several distributions (see text). 

and therefore we could not assess, much less motivate, rapid 
responses. Actually, two other discrepancies seemed far more 
serious. 

First, the proportion of pairs of responses less than 200 msec 
apart was much larger than predicted by the theory. These pairs, 
we argued, probably arose from a failure of the lock-out 
assumption. Rather, the dataesuggested that when a signal arrives 
after a reaction has been initiated, but before the response is 
made, the new arrival is stored and is processed immediately after 
the first response. Naturally, slow reaction latencies increased 
materially the opportunities for this to happen. 

Second, the model consistently failed to predict the 
probability of a response occurring with the T =  2-sec period 
following the presentation of a signal. A comparison of the 
predicted and obtained values is shown in Fig. 6 of Green and 
Luce (1967), but the published "graph is in~or rec t .~  The correct 
scatter diagrams are shown in Fig. 2. As can be seen in the graph, 
the theory tends to predict a greater proportion of responses 
falling shortly after the onset of the signal than is obtained 
experimentally, especially for 0 SW. 

Replication. The present results were obtained in a new 
laboratory with better equipment, including a PDP-9 digital 
computer that controlled the experiment and immediately 
monitored the 0's performance. Among other things, it permitted 
us to provide the 0 s  with immediate feedback. 

We first replicated certain conditions of the previous 
free-response experiment. Despite some minor changes in 
procedure, the same three discrepancies appeared. So, after some 
preliminary testing, we decided to instruct the 0 s  not to respond 
to any detections that occurred while a response was in progress. 
The aim of the change was to determine if the 0 s  could behave in 
a fashion consistent with the lock-out assumption. This 
instruction sharply reduced the proportion of pairs of responses 
close together in time. Nonetheless, we must keep in mind that 
the lock-out assumption is almost certainly wrong when 0 s  are 
left uninstructed on this point. 

We also introduced a system of immediate feedback that was 
aimed at encouraging both fast responses and the adoption of the 
lock-out mode of behavior. The feedback system operated as 
follows. After each response, the computer determined whether 
the immediately preceding event was a signal or a response. If a 
response, one of five lights was lighted. If a signal, the computer 
measured the time between its onset and the response. The first 
light was lit if the time between signal onset and response was 
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Fig. 3. The same as Fig. 2 for the present free-response experi- 
ment with r = 2 sec. The various experimental parameters used to 
obtain the points are indicated, T is signal duration, &-qO is the 
ratio of signal energy to noise power density in decibels and 1/X 
is the mean wait in seconds between signal occurrences. 

b300 msec, the second if the elapsed time was 300-500 msec, the 
third if 50@1,000 msec, and the fourth if elapsed time exceeded 
1,000 msec. Positive rewards were given for latencies in the first 
three categories and a penalty was imposed for responses that 
either preceded the signal (false alarms) or exceeded 1,000 msec. 
Also, a counter, visible to the 0 ,  accumulated the winnings or 
losses during the trial session. Obviously, the penalty for false 
alarms supplemented materially the lock-out instructions. 

Although our experimental control was much improved, 
sizable discrepancies between the lock-out model and the data 
remain. The most notable is shown in Fig. 3 in which the 
obtained and predicted proportion of responses within r = 2 sec 
of a signal are plotted. The failure of the prediction is painfully 
apparent. Only 2 out of the 28 points fall above the predicted 
line, and some of those below it are as much as a factor of two 
below. The various points in Fig. 3 come from a variety of 
experimental conditions using several signal-to-noise ratios, two 
signal durations, 16 msec and 128 msec, and two signal 
presentation parameters, X = 0.1 1 sec-' and 0.22 sec- ' . Most 
points represent the data from a daily run that consisted of four 
15-min sessions conducted during a 2-h period. The actual 
number of stimuli presented depended on the signal density, 
whereas the number of responses depended both on that and on 
the 0 ' s  criterion for making a response. Only those percentages 
that were estimated from at least 100 responses are shown. Some 
of the percentages are estimated from as many as 400 responses. 

Various hypotheses have been explored in an attempt to 
pinpoint the factors responsible for'the discrepancy. Although no 
cause can be blamed with certainty, we are convinced by indirect 
evidence that the basic problem probably lies in the assumptions 
about the response process. Two sources of evidence are the 
following. First, those conqitions, such as a liberal response 
criterion or a high density of signals, that lead to a high density of 
responses exhibited the largest discrepancies between theory and 
data. Second, a detailed chi-square analysis was made of the IRTs 

conditional on no intermediate signal to see just how well the 
exponential distribution fitted the data. I t  was found that when, 
in addition to no intermediate signal, we also required that no 
observable event-either a response or signal-lie in the r = 2 sec 
before the first of the two responses, the chi-square values were 
decreased approximately 30% to about chance levels. This 
strongly suggests that the exponential assumption is not quite 
correct unless the data are for successive responses that are well 
separated in time from other events. 

Neither piece of evidence is completely persuasive that the 
lock-out assumption is the problem, because the same data could 
arise if the sensory system were not homogeneous in time. 
Although it is probably not exactly homogeneous, it seems rather 
doubtful that large inhomogeneities should extend over such 
prolonged periods as 2 sec. 

Alternative Models 
In an effort to understand the discrepancy between the 

lock-out model and the data, we investigated three modifications 
of the theory. Two of them altered the basic assumptions about 
the response process, and the third treated the signal as fmite in 
duration rather than as the idealized point assumed in the initial 
theory. We sketch the details of each model in the appendices, 
but since all the modifications are as ifladequate as the original 
lock-out model in predicting the results shown in Figs. 2 and 3, 
we do not devote much space to them here. 

AU of the models of the free-response experiment predict the 
various IRT and SRT distributions. In the appendices, we derive 
for each model the expected density, fi, for each of the following 
observable times. 

Description of Density 

f,(t) Unconditional interresponse times. 

fi(t) Interresponse times conditional on no signal 
between the two responses. 

f3(t). The times from a signal until the next response 
conditional on no observable event (either a signal 
or response) during the r sec prior to the signal. 
(Note: Other signals may occur between signal and 
response.) 

f,(t) The times t from a signal until the next response 
conditional on no observable event (either a signal 
or response) during the r sec prior to  the given 
signal and on no observable event (a signal) from 
the signal until the response. 

f5(t) The times from a signal to a response conditional 
on no other signal between the previous response 
and the given signal. 

The first four densities are the same as those studied in Green and 
Luce (1967). The fifth density is useful since the various models 
predict slightly different forms for it. We turn now to the first of 
our alternate models. 

Response suppression model. In the response suppression 
model, each input to the Response Process is assumed to initiate a 
reaction. When two or more reactions are under way, they are 
carried out independently and in parallel, as in a race, until a 
response occurs. At that point, all uncompleted reactions are 
terminated without any other response occurring and the whole 
process begins anew. This model, like the lock-out model, has the 
property that there is no memory for events prior to the previous 
response. 
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In Appendix 1, equations are derived for the five IRT and SRT distribution of service-times [Cox & Smith, 1961, pp. 50-581 ."It 
distributions of this model. For t 2 T ,  all of these distributions assumes, as do we, a Poisson schedule of arrivals and an arbitrary 
are exponential with time constants bq = bv + hbq for 1, 3, and 5 density of reaction latencies (i.e., server times). The memory or 
and bv + h for 2 and 4 (Eqs. 7, 10, 13, 16, 17). This is exactly the storage system is of the "first-in-first-out" type: an input 
same as for the lock-out model. Although the expressions for immediately initiates a reaction if none is already in progress; 

differ from those of the lock-out model, the crucial one is similar 
in form, namely, 

where 

In the lock-out model we have R-h/Rbv rather than R-(bWh), 
but we show that this makes precious little difference. 

Observe that for 0 2 0, 

otherwise, the input joins the queue and initiates a reactiononly 
after each of the preceding inputs has led to a response. 

Let bq = bv + hbq be the Poisson parameter associated with the 
combination of noise and signal input with signal density, h. 
Denote the mean reaction latency by 7, i.e., 

Then, provided that p = bqf< 1, it is known that p is the 
asymptotic probability that when a response is made there is at 
least one input in storage waiting to initiate a reaction. Since we 
are confident that T< 1 and estimates of bq are <1, the condition 
p < 1 is met. Equations for fi, i = 1, .-- , 5, are derived in 
Appendix 2 (eqs. 18-22). Again, the tails are exactly as in the 
lock-out and response suppression models. In addition, the 
equation for 

1 9 R e < e e 7  and e - e T < ~ _ e < l .  
is identical to that of the lock-out model. It is true that the 

Thus, equations to estimate R-A 'and Rbv are different, but as the 
argument just given shows, these changes cannot possibly be large 

e - ( b w b 7  < RbwX, R-X/RbV < 1. enough to affect the predictions significantly. 
Finite signal duration model. We began to wonder if our 

Using these upper and lower bounds, we see that the possible difficulties could possibly stem from the idealization of a signal as 
range in values for a point in time when, in fact, the signal duration was, initially, 

about 1/10 sec. So we developed (see Appendix 3) the lock-out 
model on the assumption that each signal could be represented as 
a Poisson process with parameter bp and duration S , where S is so 
small (on the order of 0.1 sec) that SZ and higher powers are 

for the two models is 

Terms of the form (1 - p)p, where 0 9 p 9 1 ,  have a maximum 
value of 114, and so the range is bounded by 

In our data, h < bv, so the range is no greater than 1/16 * 0.06 
(in many cases, it is a good deal less since we have been rather 
generous in our inequalities). It is clear that a shift of 0.06 is 
inadequate to cure Fig. 3. 

Simple queue model. A model with, perhaps, the simplest form 
of memory can be found in the literature on queues under the 
title "the single-server queue with random arrivals and a general 

negligible. 
Since T is at least an order of magnitude larger than 6 ,  this 

change is of small matter. The equations of the finite signal 
duration model which are given in Appendix 3, are somewhat 
different in form from those derived in the original lock-out 
model. However, because A, 6 ,  and bv are all in the neighborhood 
of 0.1, the equations are, to an excellent first approximation, the 
same as those given in the original lock-out model. 

Some of the data displayed in Fig. 3 are based on a duration of 
16 msec rather than 128 msec, in which case the approximations 
of the finite duration model are even closer to the original 
lock-out equation. The data taken at the shorter duration are 
about as discrepant from the theory as those data taken at the 
longer duration. 

Before closing our discussion of alternative models, we should 
mention two others we have thought about, although as yet we 
nave not managed to derive the latency distributions. The first is 
the simple parallel processor, or queue with an infinite ]lumber of 
identical servers, in which every input to the Response Process 
initiates a reaction that always terminates in a response, and when 
two or more reactions are under way they proceed 
independently. The second model-really a class of 
models-assumes that the basic difficulty lies not in the 
assumptions about the Response Process, but in the assumption 
that the response bias is constant. Later data (Figs. 6 and 7) 
suggest that possibly the tails of some distributions may fall off 
faster than exponential, which, if true, probably means that the 0 
becomes impatient with very long interresponse times. Thus, 
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instead of assuming constant parameters, bu and bq, we might 
,Su,ume simple proportiopal increases of the form tv and tq, where 
t is the time since the last response. 

Reaction-Time Model 
Our failure to arrive at a model to explain the free-response 1 data led us to try to mbdivide the difficulties. Could we devise an 

experiment that would permit us to study the sensory and 
,,ponse bias processes without becoming embroiled in the 
rnmplexities of interacting response processes? 

Since the interaction of more than one response process 
appeared to be the main source of our difficulties, we wanted a 
procedure in which the 0 emitted one, and only one, response. 
One way to accomplish this is simply to terminate the experiment 
for some period of time following each response. No signals occur 
and the 0 is instructed not to respond during this interval. In 
effect, this changes the free-response situation to a simple 
reaction-time experiment. There are, however, three rather 
unusual features of such a reaction-time experiment. First, the 
signals are difficult to detect, as in most detection experiments. 
Second, the time from the beginning of each trial to the 
occurrence of the onset of the signal is exponentially distributed 
(random fore-period); this occurs because it is the distribution of 
waiting times from a response to  the next signal in the 
free-response experiment. Third, the signal remains on until a 
response occurs. Under these conditions and with a strong 
motivation for fast responses, many responses occurred before 
the signal arrived. We therefore did not need to introduce "catch 
trials" to estimate the tendency for a false alarm, and, since a 
response always occurred within a few seconds after the signal 
onset, we were not forced artificially to  terminate a trial because 
no response occurred. 

Since the signal stays on until the response occurs, we assume 
that the signal merely increases the Poisson parameter bv, 
associated with noise, to a larger value bp, associated with signal 
plus noise. (We also worked out the theory for the case of 
discrete signals, but the results are simpler in this case.) The 
theory permits us to derive (see Appendix 4) expressions for the 
distributions of the three independent distributions illustrated in 
Fig. 4. On those trials when the response precedes the signal, we 
simvlv measure the time to the response. The distribution of 
the&-times is called the falseakrrm density and is denoted fR.  On 
those trials when the signal comes fust, we measure both the time 
to the signal and the time from the signal to the response. The 
distribution of the former times is called the signal-wait densify, 
fs, and of the latter times, the reaction-time density, fR - s .  
Because the signal-wait density is conditional on the signal 
preceding the response, fs(t) is not the same as the signal 
presentation density, Ae-At. 

The theory predicts that the tails (t > r) of each of these 
distributions is exponential with parameters bv + A, bv +A, and 
b~(Eqs.  35,40,37,  respectively). So we first check for deviations 
from the exponential prediction. If that hypothesis is sustained, 
we then test whether or not the time constants from the tails of 
the f~ and fs distributions are the same. If so, then we estimate 
bu and bp and test whether bplbv is independent of our 
manipulation of the response criterion. Finally, we examine how 
b ~ / b u  varies with signal-to-noise ratio for a fured response 
"terion; this function is of special interest if the ratio is 

TRIAL LIGHT 

Lit1 FALR r\L&RM LdTENCY 

S I G N l L  BEOlNS RESPDNSE K C U R S  

1.111 SKNAL WAIT LATENCY 
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-1- 

fI.llll REACTION TIYE LATENCY 

Fig. 4. Schematic representation of the types of trials that can 
occur in the reaction-time experiment and the three latency 
measures. 

trial began with the onset of a warning light and after a random 
delay (foreperiod) a 1,000-Hz sinusoid was turned on at a zero 
crossing. Both the light and the signal remained on until the 0 
responded by pressing a key, at which point both were 
extinguished and information feedback was provided. When the 
response preceded the signal, the signal was suppressed, the light 
was extinguished, and feedback was provided. After a fixed delay 
of about 1 sec the next trial began. 

The random delay was distributed exponentially with a mean 
waiting time of about 5 sec, i.e., A = 0.22 sec-' . It is well to 
recall that the exponential distribution has the property that if 
the event has failed to occur by time t, then its probability of 
occurring in the interval from t to t + A is independent o f t .  For 
this reason the exponential distribution, but not the various 
others generally used in reaction-time experiments, is the 
appropriate generalization of a uniform distribution on a fmite 
set. 

The feedback was provided by lighting one of five lights. This 
indicated whether or not the response preceded the signal and, if 
not, how quickly it came after the signal. Payoff in points was 
associated with these five categories as follows: 

Category <O D300 msec 300400 msec 40D500 msec >500 msec 

Payoff -c 5 3 1 -c 

We manipulated two experimental variables. 
Signal-to-noise ratio. The noise was held constant at a spectrum 

level of about 50 dB while the signal intensity was varied. The 
signal duration varied from trial to trial since it depended on how 
quickly the 0 responded. Thus we can only specify the signal 
power, P (signal energy per second), to noise power density, No 
(noise power per cycle per second), as the basic independent 
variable. Six signal-to-noise ratios were used in the experiment, 
ranging from 11.5 to 24.5 dB. The lowest level was such that if 
this level were used in a two-alternative, forced-choice design, 
with clearly marked intervals and a signal of I/lOsec duration, a 
typical 0 would perform at the chance level of 50% correct. For 
the highest intensity, this percentage would be about 80%. 
Naturally, it was more difficult to detect a signal in the 
reaction-time experiment because its onset was uncertain; 
however, the fact that it was terminated only by the response 
permitted the 0 to increase his effective integration time. 

independent of b. Response criterion. In a second experimental series, we fmed 
the signal at an intermediate level of difficulty (10 log PINO = 

Reaction-~ime Experiment 16.5 dB) and asked the 0 to vary his criterion for initiating a 
Two 0 s  (one male and one female) were run in a sound-treated response. In preliminary sessions, we attempted to manipulate his 

cubicle. They wore TDH-39 earphones mounted in criterion by varying the cost, -c, of false alarms and too-slow 
Sound-absorbing circumaural cushions, and throughout the reactions. As the two 0 s  differed in their sensitivity to changes in 

there was a background of continuous noise. Each c and as large behavioral changes resulted in rather small changes 
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Fig. 5. Histograms of chi square for a maximum likelihood fit 
of an exponential distribution to  the tails of the three latency 
distributions, T = % sec, measured in the reaction-time distribu- 
tion. Each chi-square value is based on at least 100 points, i.e., at 
least five observations per cell. The expected value of the chi- 
square statistic and the upper two-sigma values are indicated 
on the graphs. 

in the overall payoff, we decided that it would be better to  
manipulate the criterion more directly. We monitored the ratio of 
the number of false alarms to the actual number of stimuli 
presented and we asked the 0 s  to  maintain that ratio in one of 
three regions: 0.3 to  0.5, 1.0 to 1.5, or 3.0 to 5.0. Given that the 
ratio fell within the prescribed region, we counted the number of 
points won according to the above schedule, with c set at unity, 
and we rewarded the winner with a bonus of $0.25 at the end of 
the run. The two 0 s  competed with each other, and could win as 
much as an extra dollar for each 2-h session. They responded to 
this procedure, were highly motivated, and seemed to enjoy the 
sessions. 

Results 
Form of the tails To determine how closely the tails of fR,fs,  

and fR-s conform to  the exponential prediction of the theory, 
we proceeded as follows. We divided each experimental condition 
into first-half and second-half, which, with nine experimental 
conditions and three distributions, resulted in a total of 54 
frequency distributions. Some (e.g., fRPs at the higher 
signal-tenoise ratios) included too few latencies to make a 
meaningful comparison possible; we report only those with at 
least 100 observations. For each frequency distribution, we 
subtracted T =  112 sec from each time, discarded all negative 
results, and calculated the reciprocal of the mean of all the 
positive ones. This gave us the maximum likelihood estimate of 
the exponential time constant for the tail. We then divided the 
theoretical distribution into 20 equally likely intervals and 
compared the obtained and expected numbers in these intervals 
by the chi-square statistic. Figure5 shows the resulting 
distribution of chi square for each 0. The expected value is 19 
and the expected SD is about 6.2. Observer 2's data are somewhat 
less variable and nearer the expected value than are those of 0 1. 
Clearly, the variability is somewhat greater than would be 
expected by chance alone, but since chi square is a notoriously 
sensitive statistic, we are reasonably content with the overall 
pattern. 

In an attempt to see if there might be some systematic 
deviation from theexponential, we averaged the percentages from 
each of the 20 intervals over the various signal-to-noise ratios and 
over the three response criteria. The results of these analyses are 
plotted in Figs. 6 and 7. 

Each panel represents a composite of the particular latency 

distribution, fR ,  fS, or f ~ - s ,  for each 0 in the two experiments. 
The insert in each panel shows the percentage of latencies falling 
within each of the 20 intervals of the theoretical exponential 
density used to fit the data. The expected percentage is 5% and 
the observed percentage usually falls within a range of 4% to 6%. 
These same percentages were used to construct the histograms 
shown in the main portion of the panels. Here the averaged 
observed percentages have been scaled to be proportional to an 
area contained in that interval of the exponential function. Since 
the time scale is linear, the width of these regions containing 
equal areas is narrow for short times and wider for long t i e s .  
The smooth line is, of course, the exponential curve. Despite 
some possible departures of the data from the expected curve, the 
exponential function provides an excellent first-order description 
of the tail of the distribution of times observed in this 
experiment. Lucas (1967) has also presented data from a 
different experimental task indicating that a distribution similar 
to  fR has an exponential tail. 

Two panels display data that may indicate a systematic 
departure from the exponential tail. These occur in the 
reaction-time distributions, fR - s , for the experiment in which 
the signal level was varied (Fig. 6). It appears that more short 
reaction times are observed than would be expected on the basis 
of the theory. Our first thought was that we had chosen too small 
a value for T ,  and so were not at a point where (t) was zero 
thereby contaminating the beginning of the tail distribution by 
the end of the reaction latency. Further reflection indicates that 
this cannot be the explanation. In fact, one can prove, generally, 
that when too small a value of T is used in analyzing these tails, 
the departure must be in the other direction-that is, the observed 
percentage should on the average be less than the predicted value. 

Whether this effect is genuine is not easy to  tell from these 
data. The consistent departure appears to occur largely when the 
signal level is high. (Note that the departure is not as evident for 
either 0 in the second experiment in which the signal level was at 
the middle of the range of levels used in the f i s t  experiment.) At 
high signal intensities there is, of course, little data in the tail 
since most of the responses occur shortly after the onset of the 
signal. However, because the theory does not appear to have any 
easy way to account for this discrepancy, we plan to collect data 
with fairly loud signals and very stringent criteria to investigate 
this problem in more detail. 

Equality of fR and fS tail parameters. According to the theory 
(Eqs. 35 and 4 0  in Appendix 4), the exponential tail parameters 
of fR and fs should be identical. As a tail parameter is estimated 
by the reciprocal of the mean of times beyond T = 112, it does 
not really matter whether we compare the parameter estimates or 
the means, but the means are more convenient since their 
sampling distribution is specified by the theory. The scatter 
diagram of the two means for the two 0 s  is shown in Fig. 8. 
Accepting for the moment the 20 ellipse shown on the graph as a 
reasonable measure of variability, there does not seem to be any 
strong, systematic departure from the predicted equality, but the 
scatter does seem excessive. Clearly, a regression line fit to the 
data of 0 2 would not lie on the main diagonal, but there simply 
is not a sufficiently large range in the values of the means to be 
sure if this trend is real. 

The variability associated with each point displayed in Fig. 8 is 
different. Some of the data points are based on thousands of 
observations; others, on only a few hundred. The insert gives a 
rough indication of the average variability; it was calculated as 
follows. Since each individual time is, by assumption, exponential 
and independent, the sum, and so the mean, of the latencies 
obtained from a single exponential distribution has a gamma 
distribution. Because the ratio of the mean to the SD of a gamma 
distribution is the square root of the number of observations, we 
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Fig. 6. Observed distributions of tail latencies for the three basic distributions in the experiment in which the signal level 
was varied (T= $4 sec). For each condition of the experiment, the expected and obtained percentage of latencies were 
determined for 20 equiprobable intervals of the exponential tails. The height of each rectangle in the histogram is such that 
the area is proportioned to the percentage of response falling in that interval. The inset in the panel is simply the obtained 
Percentage for each of the 20 intervals. Were the data perfect, the height of each rectangle should faU along the exponential 
line and the insert should show a horizontal line at the value of 5%. The graphs on the left are for 0 1, those on the right, 
0 2. 

can easily estimate the SD. For example, if we have a mean of The difference between the two means divided by the sum of the 
2 set and 100 observations, then the SD in the estimate of the variances should then be normally distributed with zero mean and 
mean is about 0.2 sec; with 900 observations it is about unit variance. For 0 1 we found a mean of 0.3 (a positive 
0.067 sec. Thus, the SD along the x and y axes of Fig. 8 can be difference occurs when the mean  off^ is greater than that of fs) 
estimated for each point and averaged over all of them. The insert and a SD of 1.22; for 0 2 the mean was -1.5 and the SD was 2.5. 

that average. Thus, we conclude that some departure from perfect equality 
We can also make the following test. First, as just described, exists, especially for 0 2, but that it does not seem particularly 

the variances of the fR and f s  frequency distributions. serious. 
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Fig. 7. The same as Fig. 6 except that the 0's criteria were varied a t  a constant, intermediate signal level. 

Do criteria changes affect only b? The parameter bp is simply 
estimated by the exponential parameter of the fR-s 
distributions. We estimate bu by averaging the estimates of the 
exponential parameters for fR and fs and then subtracting A. Call 
this average estimate bu. 

One of the simplest assumptions of the theory is that changes 
in an 0's response criterion can be represented by changing the 
value b of the response bias parameter. Thus, if we hold the 
physical conditions constant and induce the 0 to vary his 
criterion, the ratio b p I 6  should be independent of the criterion. 
These estimates, as a function of our three criterion regions, are 
shown in Table l along with range estimates given by 
(bp - o)l(bv + o) and (bp + o)/(bu - o). Both 0 s  exhibit a 

definite decline in the ratio; however, there is plenty of overlap in 
the estimated ranges to include a constant value. Data from more 
0 s  will be needed before a defmite conclusion can be drawn, but 
at present the hypothesis appears suspect. I t  looks as if there 
must be a sensory criterion that affects u and p somewhat 
differently. Such a theory should be developed. 

Dependence of bp/buon signal-to-noise ratio. Had we shown 
that bp/bu was independent of b, then the dependence of this 
ratio on signal-to-noise ratio would be a function of considerable 
importance. As it is, we fear that the function shown in Fig. 9 
would have been somewhat different had it been obLained for a 
different criterion. It is evident that the value of bp/bu is about 1 
for very low signal-to-noise ratios, as it should be, and that it 
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OBSERVER 2 

MEAN LATENCY O f  f R  TAIL 

Fig. 8. Comparison of the mean latency of the tail (7 = '/3 sec) 
of the stimulus-wait and false-alarm distributions. According to  
the theory, the exponential parameters of each of these 
distributions are the same, thus the points should fall along the 
major diagonal. 

Table I 
Estimates of bNbv for Different Response Criteria and of Its Range, 

Using (bg -u) / (bV + U) and (bp + U) / (bV - o) for the 
Upper and Lower Limits 

Criterion* 

Obs. 1 Ratio 1.52 1.31 1.31 
Range 2.31 1.00 1.68 1.01 1.39 1.24 

2.04 1.97 1.20 
3.91 2.42 1.63 1.28 1.12 

Number o f  false alarms/Number of signals presenred 

Stevens (1950) on the threshold of a sinusoidal signal in white 
noise. In both cases the signal was on continuously and the 0 
adjusted its intensity until he could just detect it in noise. At 
1,00OHz, the threshold PINo level was from 16 to 18 dB. 
According to Fig. 9, this corresponds to  a ratio of about 2 in the 
Poisson parameters, which means that in any small interval of 
time, it is about twice as likely for the signal to initiate a response 
as for the noise to  do so. This is an eminently reasonable definition 
of the threshold. 

Mean observed reaction time. According to the model used in 
this analysis, the mean reaction time, as computed from the fR-s  
distribution 

80 I I I I depends only on two statistics of the reaction density ~ ( t ) ,  
namely, the mean reaction latency 

and 

I0 lop PINo 

Fig. 9. The ratio of the two Poisson parameters, b g f i v s  the 
ratio of signal power, P, to noise density, No,  in decibels. 
According to  the theory, as the signal-to-noise ratio increases, the 
ratio of the two Poisson parameters should increase. 

$creases monotonically with that ratio; moreover, the functions 
for the two 0 s  seem similar in shaps but slightly displaced. 
Notice that for b p / S >  1, the log (bplbu) is approxhnately linear 
with dB. 
AS these functions are analogous to  psychometric functions 

measured by more conventional detection procedures, it is 
interesting to compare them with other measures of sensitivity. 
Since our signal is of unlimited duration, the data most directly 
comparable are those of Fletcher (1940) and of Hawkins and 

(see Eq. 38, Appendix 4). I t  is therefore of interest to try to  
estimate the mean reaction latency T from the data collected in 
the various experimental conditions. Starting with Eq. 38, we can 
write 

y i = ( l  - R - i ) x i + T  
where 

TR-S, i - llbgi 

Yi = I + bvi/A 
and 

(& - s ,  i + l/A)bvi/X 
Xi = - 

1 + bui/h 

Thus, for the three criterion levels and six signal levels we can 
estimate xi and yi. The scatter graph of these two parameters is 
shown in Fig. 10. A least squares fit t o  the points yields an 
estimate of i and R-A. The values of 7 so estimated are 292 msec 
and 288 msec for the 0s .  The two 0 s  were also IUII in a typical 
reaction experiment with a very large signal intensity, namely, 
50  dB above the noise power density. The same value of A was 
used so that the uncertainty about the starting t i e  of the signal 
was the same. The mean reaction time was 251 msec for 0 1 and 
223 msec for 0 2. The false-alarm rates were very low-less than 
2%. 

Although the estimated values of i seem rather large, the 
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aR( t )  = G1dt)l[l  - Ga(t)l> 
y; -cl-n-\,xi+T 

.14 l 6  r - 7  OBSERVER I o o I - R - ~  058 292  mrec 
which is the hazard function of &. So, as is well h o w ,  

t OBSERVER 2 0.043 2 8 8  msec i 1 - Ga(t) = exp [-LTJ)(X) dx]. 

(1 1 Since r(t) = 0 for t 2 7 ,  integration by parts shows that 

.o 2 C 
whereris the mean reaction latency, i.e., 

0 . . 
-.a1 I I I 

25 2.5 3.0 3 5 4.0 I t D I A  4.5 T=Jo7tr(t) dt. xi- 

- 
Fig. 10. Estimate o f  the  (unobservable) mean reaction latency, 

r . For  each o f  the  nine experimental conditions, w e  estimated BY dirferentiating Eq. and using Eq. 3, we Obtain 

the  various parameters and  calculated a value of xi  and  yi  accord- 
ing t o  Eq. 38 (also see text).  A least squares fit  of a straight line &(t) = aeCatea? t 2 7 .  

t o  each 0 's  data  yields estimates of ;(the y intercept)-and of 
1-R-A ( the slope). Let the densities 4 be defined as in the section on Alternative Models. 

Let bq = bv + hbq, then by Eq. 5, 

consistency of these estimates over quite different conditions, 
and the correlation of these estimates with means measured under 
very strong signal-tenoise ratios, suggests that this aspect of the 
model deserves further exploration. 

APPENDIX 1 
RESPONSE SWPRESSION MODEL 

Assume that each input initiates an independent reaction latency, d t ) ,  
that d t )  is a continuous density equal to 0 for t > 7, and that the first 
response to occur terminates all other incompleted reactions. Suppose that 
the inputs to the response process arrive according to a Poisson schedule 
with intensity a and that no reaction is under way at time 0. Let k d e n o t ~  
the density and Ga the distribution of times to the next response, and let 
R denote the distribution corresponding to  density r. If the response 
occurs at time t, then we know that there was a fust input a t  x, 0 <x  <t ,  
at which point a race began between that reaction and all of those 
reactions initiated by inputs arriving in the interval (x, t). If we think of x 
as a new origin, then the race is between one random variable with 
distribution R and another with distribution Ga, and the race is completed 

at time t - x. It is well known that the density of the smallest of n 
independent random variables with distribution functions Hi, i = 1, "'. n. 
is given by 

so we see that 

=-ae-atJOtew 2 1 1 1  - R(Y)] I1 - Ga(y)] 1 dy. (1) 

Differentiate Eq. 1, 

Integrating Eq. 7, and solving, 

The IRT density conditional on no intervening signal is 

where, from Eq. 2, 

For the two SRT densities conditional on no observable event 7 sec prior 
to the signal, we locate the signal's occurrence at time 7 and the response at 
time 7 +  t. Since the conditioning is over a fixed interval, it factors from 
both numerator and denominator. It does, however, imply that no reaction 
was in progress at time 0, and so we have a race between noise-induced 
reactions throughout (0 ,7+  t), signal-induced reactions in the interval 
(7, T + t), and, with probability bq, a reaction latency of t sec. Therefore, 
by Eq. 2, 

d 
d --{[I -bqR(t) l [ I  - G b V ( 7 + t ) l [ 1  - ~ & ~ ( t ) l i  

G ( 1  = a -  { 1 - R(t)] [ l  - G,(t)]} a ~ ' ,  ( t )  dt 
dt  f3 (t) = J o m  { 1 - b [ 1 - G + I 1 - Ghbq(t)l 1 dt 

d 
= a ~ ' ( t )  - a ; [R(t)G,(t)]. 

d 7+t t 
-- IIl - bqR(tl] exp [-bvJo R(x) dx - hbqJoR(x) dxll 

Integrate this last equation and note that, since r is continuous, R(0) = 0, - dt 
and by Eq. 1, G1(O1= 0, so e - b ~ ( ~ - 7 )  (12) 
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= ( (1  -bq)e'bqi]bqe-b~t, t>7 .  (I3) (Eq. 4). it is known that p is the asymptotic probability that the memory is 
non-empty when a response is made (Cox & Smith, 1961, p. 53). 

me analysis of f4 is similar except that the condition of no signal in For f , ,  f2 ,  and f5 we locate the previous response at the origin. With 
(7, 7 +  t) means that the term 1 - G)(bq(t) is dropped from the derivative probability p there is an input in memory and with probability 1 - p there 
and the factor e - i t  is added. Thus, using Eqs. 2 and 3 and integatingby is not. In the former c w ,  the density of t is the reaction latency density 
parts twice, r(t); whereas, in the lattcr, it is simply f, of the lock-out model. So we may 

write immediately 

where, as in the lock-out model, 

To calculate f5 we must proceed in greater detail since we bve not 
previously calculated it for the lock-out model. The numerator is 

\ L 

+ e-buxbqr(t) e-bvx(l - bq) /Ot bqe -bq~r ( t  - Y) dy] 1 dx 

J / Thus, 

= ph~t~tme-XxI(x)dr + - PI'- "V epftme-'xr(x) dx 
[bv+'X 

dt  
4 ( t )  = (15) 

+ a hbq do +- '(I - ") bqe-b~tfo t ebqxr(x) dx . 
b v + X  I 

Finally, suppose that the previous reiponse is located at the origin, the 
fust signal at x, and the next response at x + t ,  then by the same sort of 
argument Thus, 

The denominator is evaluated by interchanging the order of integration, 
which is permissible since the functions are continuous and the region of 
integration is a rectangle, and then integrating by parts. The result is 
(1 - bq)(l - Rbv, -A), where RbV, - A  is defined by Eq. 11. For t > 7 ,  we 
substitute from Eqs. 2 and 3 in the numerator, differentiate, and then 
integrate the result to obtain 

APPENDIX 2 
QUEUE MODEL 

Assume that inputs arrive acwrding to a Poisson schedule with intensity 
b, that there is a first-in-first-out memory, and that the bounded reaction 
latency has density r. If p =  b@< 1, where I is the mean reaction latency 

For the two SRT densities conditional on no signal or response during 
the 7sec before the signal in question, f3 and f4, we know from the 
boundedness of the reaction latency that there was no reaction in progress 
at the beginning of the conditioning interval. Thus, the predictions are 
exactly the same as for the lock-out model. 

APPENDIX 3 
LOCK-OUT MODEL WITH SIGNALS 

OF FINITE DURATION 
All assumptions of this model are the same as in the original lock-out 

model, except that the signal is represented as a Poisson process with 
parameter bp - bv (above the noise level bv) of fvted duration 6. The 
interval from the end of one signal to the beginning of the next is 
exponential with time constant h Considering only the signals and ignoring 
the noise, let 0 denote a time when no reaction is in progress and let t be 
the time of the next signal-induced detection. We wish to calculate the 
density g(t) of such detection times assuming no noise-induced detection. 
Observe that any signal that begins before t - 6 cannot possibly have 

Perception & Psychophysics, 1970, Vol. 7 (1) 11 



fathered the detect state. So, if the fist signal occurs at x, 0 <x  < t  - 6; And f o r t  2 6 ,  we have 
which it does with ~ r o b a b i i t ~  he-h and if there is no detection caused 
by the signal that has probability e - @ ~ - ~ v ) S ,  then the process begins 
anew with t - 6 - x sec remaining. Alternatively, if the fist signal begins joTbue-bvxr(r + t - x)dx + e-bUI bpe-bp"l(t - x)dx 

later than t - 6 ,  then it must terminate in a detection. Thus, J06 

+ e - X t ~ ( h ,  b p -  bv, 6). 

Multiply by eht, differentiate, and then multiply by e-h:  

Integrating the numerator fmm 0 to involves integrating the fint 
expression from 0 to 6 and the second from 6 to  09 lntegrating by parts 
freely and simplifying yields e-bUTi(by The final result, then, is 

g'(t).+ hg(t) = ~ e - ( ~ p - ~ ~ ) ' g ( t  - 6). (23) ~ + t  

I 
[bue -bv l  e b u x r ( x ~ x  + bpe-bpt ebpxdx)dx Rby t L 6  

Assuming that 6 is so small-0.1 or less-that terms 6' and higher are 
negligible in Taylor's expansion of g(t - 6), we readily obtain 

Jot I, 
t 

f3(t) = [bve-bvtJtr*tebvxQ)dx + bpe-bptlt-$bpxr(x)dx (28) 
g(t) = a ~ e - ~ h ~ ,  (24) 

when ' + e - b ~ ~ w ~ ~ ~ t ~ 6 ~ ~ ~ ~ ~ b ~ r ~ X ) d X ] ~ R b v ,  t > 6  

1 - e - @ ~ - b ~ ) 6  
a = 

1 + ~ ~ - @ p - b v ) S  ' 
(25) 

f3(t) = e-@"-bn)6A w e - w t ,  t >T+  6. (29) 

The IRT density then is a race between a signal-induced output, with the 
density given by Eq. 24, and a noise-induced output, with density bue-but, 

[ 
to which the reaction latency is appended, so 

Similarly, let 

fl(t)  =Jot-& 1 [ I  - ~ ( x ) ~ e - b v x /  r(t - x)dx  

= (bv+ aA)e-@lmth) e(b-X)yr(y) dy, Jot (26) 

which is exactly the same equation as in the original idealizetl lock-out then 
model if we set w= bU + d. Thus, the estimate of bq in that model and of 
a i n  this one are the same. SO, from Eq. 25 we obtain 4 (t) 

1 +aX6 C= 1+t ln (I-.) 

a aX 
% 1 + S ~ U  +G , for a small, and X6 near zero. 

Since fi is conditional on no intervening signal, i t  is unchanged. I 
In the calculations for 4 . 4 .  and f5. the numerator differs depending on 

+ e-b@blr-(bV+ut-6 h - ~ ~ - 6 e b v X r ( X ) d X ~ , D 4 4  whether t 5 6 .  We set it up explicitly for f3 and simply remark that f4 and t > 6  
f5 are analogous. F o r t  <6,  we have J b J 

Let 
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then Simplifying and integrating by parts, it is not difficult to show that the 
reoction time density is given by 

t , ( b ~ e ~ ~ F - ~ ~ r ( x ) d x  + bpe-bpt/gebpxr(x)d~]/Ds, t C 6  fR-S(t) = Pr(R - S = t 1 S 9 R) 

Observe that when h. 6, and bV are all in the neighborhood of 0.1, as (37) 
the are in Our experiments, then factors of the form ebuS, e w ,  and .-k are 9 virtuwy 1. so all of the exponential factors can be replaced by 
,-(bkbV) whlch, by Eq. 25, is approximately 1 -a = 1 - bq. 
Therefore, E ~ ~ .  29, 31, and 33 are approximately the same as for the 

From Eq. 36. the mean reaction time may be computed by integrating by 

original lock-out model. 
parts: 

APPENDIX 4 
REACTION TIME MODEL 

The model was described in detail in the body of the paper. Locate the 
beginning of the trial at the origin. One mechanism, to be described, results 
in an unobservable output that in turn initiates a bounded reaction latency 
with density r and bound T. The overall response time random variable is 
denoted by R. The output is controlled by a Poisson process that has 
intensity bV from 0 until the onset of the signal and intensity bp>bv 
thereafter. The time from 0 to the signal onset is an exponentially 
distributed random variable S with time constant A. We derive three 
densities. 

The fust is the folse a lum density of times to the response when the 
response precedes the signal, i.e., the density that R = t given that S > R. 
Since S > R ,  we know that a noise output occurred at some time x, 
0 <x <t ,  that the reaction latency was t - x, that no signal occurred in 
(0, t). These events are, by assumption, statistically independent. Thus, 

The other two densities concern the case when S <R. Suppose that 
S = x and R - S = t, and let y be the time of the output that initiated the 
reaction. Thus, the reaction latency x + t - y. The density of y divides into 
two parts depending on the relation of y to x. If y <x, it is ~ I X - ~ ~ Y ,  and 
if Y >x,  then it is ~ C ( ~ - ~ N Y - X ) .  Assuming.independence, then 

R[(R - s = t ) n c t > o ) n c s = x ) ]  

Note that it is proportional to the mean reaction latency,T, and inversely 
proportional to signal strength, b/L 

Next we examine the signal-wait densily of times to the signal 
conditional on the signal preceding the response. The response will follow 
the signal either because no noise output occurs before the signal, which 
has probability e-but, or because one does occur at x <t  and the response 
latency is sufficiently long-t - x + y, where y 2 0 .  Thus, 

From this i t  is routine to show that 
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programs needed to run the experiments and for the programs used to 
analyze the da ta  David E. Rumelhart was kind enough to  read and check 
some of the equations for us. 

2. This work was carried out when DI. Luce was afffiated with the 
University of Pennsylvania and was on leave as an Organization of 

American States Professor at the ~ontificia Universidade Catblica do 
Rio de Janeiro. 

3. Address: Psychology Department, University of California, San Diego, 
La Jolla, California 92037. 

4. We use the convention of referring to observable temporal random 
variabbs as "times" and unobservable ones as "latencies." 

5.The error arose in programming the prediction equation. The 
progammed equation was checked, but regrettably only at values where 
the correct and incorrect prediction were nearly the same. At othervalues 
of the arguments, the predictions are quite different. 
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