UTILITY THEORY

by Duncan LUCE

These lectures will deal with utility theory, viewed in
psychological perspective. Motivation has had little formal
mathematical treatment in psychology proper; most of the ma-
thematical work has been done in economics and statistics.

Consider a situation in which a person has the opportunity
to accept or reject a money gamble. A possible first assumption
is that the decision criterion used is the expected money return :
accept a gamble if its expected return is positive. But no one
behaves in this way. This is shown, for example, by the St.
Petersburg Paradox. Suppose a fair coin is tossed until a
head appears (on trial n) and the gambler is then paid 2".dollars.
How much would a person pay to play this game once ? The
expected money return is infinite, so that this criterion would
dictate that any sum, no matter how large, would be paid. Yet
everyone has a limit above which he would not pay to play.
Bernoulli accounted for this fact by suggesting that the utility
of money increases with money, but at a decreasing rate, and
that expected utility, rather than expected money return, is
the criterion.

1. The Von Neumann-Morgenstern Theory of Utility

Economists have long sought to attach such utilities to
goods - numbers that would allow goods to be treated in terms
of classical economics. Traditional numerical representations
in economics were unique only up to a monotonic transformation :
they contained only ordinal information. Utility theory was
advanced with the 1947 edition of von Neumann and Morgenstern's
Theory of Games. Instead of considering choices between pure
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alternatives of commodities or of quantities of money, as was
done traditionally, they considered choices between gambles,
and utilized the probabilities involved in the gambles to
further specify the utility representation. The main intuitive
idea was that utility was something whose expected value people
maximized, and the aim was to find plausible assumptions about
humans that would lead them to behave this way, in terms of
some appropriate utility function. (This approach is to be
contrasted with one where a set of observed properties of behavio:
is the starting point). Psychologists have later asked whether
the assumptions hold, i.e. whether people do in fact behave in
terms of the theory.

1.1 Outline of the Theory

We have
(1) a Boolean Algebra, E, of events and a probability
measure, P, over E. E is dense in the sense that : given

T e [01], JeeEar(e) =TT.

(2) From E and an implicit set of pure alternatives we
compose a set of gambles (plus pure alternatives) G : if

a ,beG and €c¢E then aebeC . (" aeb " is

interpreted : pure alternative a if € occurs; alternative b
if e does not occur).
(3) There is a binary ordering relation, = , over the
elements of G, representing preference or indifference.
( > represents preference, "~ represents indifference).
Now we want to find a set of axioms about the preference
relation, such that an appropriate structure is imposed on G ;
in particular we want to be able to derive the following
representation theorem :

Representation Theorem : Function u:G—reals,
such that

(1) aZbe—u(a) = u(b)
(ii)  u(aeb) = u(a)ple) + u()[T - p(e)l .




57

Any utility function must have property (i), i.e. must
preserve the ordering of preferences. Property (ii) is the
expected utility property. Before giving a set of axioms,
we state two preliminary results.

Definition : A binary relation R on a set G
is a weak ordering if for a,b,c,6G , aRa
(reflexive), if gRb and bRc then aRc
(transitive), and for any Qb either aRb
or bRQ (connected).

Theorem 1 : If the representation theorem
holds, then & 1is a weak ordering.

Proof. Follows immediately from (i).

Theorem 2 : If u, u* are two representations
satisfying the theorem, thenﬂ K>0C > u=Ku%C
i.e. the representation is unique expect for

its zero and unit, giving an interval scale.

Proof. Let a,beG, gasb, ula) = A, u(b)= B,u*(o.)=.A*,

u* (b)=B*9 5 t )
g A=B oo BA _-AB Note that K>0 by a>b
"-A_;‘TB* ’ = A —B* .
and (i).
Consider any x€G . We wish to show u(x) = Eu*(x)+C.
There are five cases : we consider the one where xajb.

By (i),u(x)>u(a)>u(db) . Thus J 77 €[0,1 > u(a)
T ulx) + (I-/u(b) . By density of E,e € E3P(e) =T .

Hence wu(a) = P(e)u(x)+ [I-P(e)]u(b).By (II), u(a) = u(xeb),

and so a ~ xeb . By the same argument u®*(a) = u*(xeb),

and u*(a) = P(e)u®(x)+ [i-P(e)] u®(b) . Solving this equation
and its parallel equation for P(e)and equating gives

A~B = A* - p*
u(x)-B u* (x)-B*

Solving for u(x) gives the desired result.
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To determine what conditions (axioms about T ) will
make possible such a representation, the method is to consider
what properties the representation theorem implies about A ,
and choose from this set a subset, reasonably minimal and plau-
sible. We shall give one such possible set of axioms, for the
special case when G has a maximum and minimum element. The
restriction is not severe for practijical cases, and generalization
is easy. Our axioms, then, are
Al. 2 is a weak ordering. (Theorem 1) (Even this may not be

true of humans).

2. G : Ja,beG > for all xeG, a3 X 3 b.
(Mlax. and Min. elements)

A3. If X2y3Rz, then o e E 2 xelzmy.
(continuity assumption) (This may not be reasonable
where one outcome is incommensurate with others, e.g.
let x = §2., 3y = $1., z = death).

=
A4, If xwy and A € E then Xod YWYz and 2XX vz XY.

AS5. If x>y then XXy AXBY «—>P) >P (p).
46. For «, p.¥,8e &, ir P(d)= PLOPRI+ pcpyli-PC)]

then (xo(y)¥ (xpy) v x dy.
(consider the compound gamble. x occurs if both 77, ol
or if B but not 2 occur. By the relation among
probabilities, then, P(x)=P(d). The axiom says that
either implicitly or explicitly, people can compute
compound probabilities, and so is a very strong
assumption. Without it or an equivalent the represen-
tation theorem cannot be proved).
Sketch of Proof of the Representation Theorem. Define

u(a) = 1, u(d) = 0. Let xeG ., By 42 aZIXAD .

By 43, J« 3 x~vadb Define u(x) = P («) We must now
show that u behaves properly :

Property (i): Let y~apbd as above for x. XRy<—>

axbzapb (by A 4)e—PK)=P(g) (by 4 5)<=>u(x)Zu(y)
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(definition of u).
Property (ii): We have shown how to represent x,y in terms
of a,b.x Yy ~ (aXB)¥(a Bb) (byA4) ~vadb (by a6, whered
is such that A6 holds). Hence u(xiy):u(w5})= Pcs)
(by definition)= P(A)P(¥) +[1- PLT P(RI= v OO POY)+uUly) [-P7].
Another consequence of the representation theorem, first

proved by Kemeny and Thompson and later by J. Pfanzagl (Naval
Research Logistics Quarterly 6, 1959, 283-94) follows.
Suppose we have gambles involving money, and m (a~b) is
the amount of money indifferent to the gamble a b

Theorem 3. If Mm[(a+c)o (b+c)l= m (aqb)+c

(consistency assumption) and if the utility

function, u, is continuous and satisfies

the expected utility hypotheis, then, either

a. u(x) = ax + b, (8>0) or

b, u(x) = o’ +b (aro A>1 or o <o, A<l).

Note that we are forced to make the consistency assumption
in experiments, since a person's wealth changes during an
experiment, in his mind if not in his pocket.

1.2 Testing the theory : The Mosteller-Nogee Experiment.

In the first part of this experiment, subjects could
either accept or reject each of a series of gambles of the
form xo/ 5¢ Each event was defined by a set of 5 numbers,
analogous to a poker hand. Possible sequences were ranked,
as in poker. In accepting the gamble, the subject was betting
that the set of numbers generated by a throw of 5 dice would
be better than the stated combination. The subject had before
him a chart giving for each combination the probability that
the dice would do better. The experiment consisted, for each
event and each subject, of varying x until an indifference
point was found.

Results of the experiment were as follows : The curve
of probability of accepting the bet versus x was not a step
function, as assumed by the von Neumann theory, but was more
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akin to a normal ogive; preference seemed to be variable rather
than fixed. Defining the indifference point as that value of x
for which the gamble was accepted half the time, Mosteller and
Nogee were able to calculate a utility - of - money function
for each subject. The resulting curves were qualitatively
different from subject to subject.

In the second part of the experiment, subjects were offered
choices between gambles. Two sets of predictions were made, one
using expected utility as the criterion (based on the utility
functions) and one using expected money return. When the gambles
differed only a small amount in their expectations (in utilities
or in money) neither prediction method succeeded. When diffe-
rences were large, the utility criterion led to better predictions
than did the money criterion. It is hard to say how strong is
the support given by this experiment to the expected utility
hypothesis.

Later work has proceeded in two directions. The von Neumann-
Morgenstern theory assumes subjective values, but not subjective
probabilities. In one type of work the probability assumption
is replaced by something weaker. The second type of work takes
seriously the observation that preference is not a step function --
that people are not algebraic. Since preference behavior often
seems to be stochastic, a possible theory of preference should
be also. The alternative is to develop an error theory for
the algebraic model. This alternative is difficult, partly
because errors depend strongly on the choices offered. For
example, when choices are between pure sums of money, no error
theory is needed. This argument leads to the development of
a theory that is intrinsically stochastic.

2. Possible Forms of the Utility Function

In Theorem 3 above we stated that a consistency axiom for
u, together with the expected utility axiom and the continuity
of u, imply that u must be a member of a restricted class of
functions. The consistency axiom has, however, been questioned,
and there is some evidence against it. We shall discuss other
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assumptions that lead to a different restriction on the
possible utility functions.

An important aspect of any scale is the set of admissible
transformations of the scale, i.e. the set of transformations
that do not alter the information represented by the scale.
The scales that have been most studied have been interval
scales (arbitrary zero and unit) and ratio scales (arbitrary
unit); the corresponding sets of admissible transformations
are the positive linear group and the affine group, respecti-
vely.

Theories may be divided into two classes, measurement
theories uand substantive theories. A measurement theory
describes "unitary" relations among objects or events; it
includes a set of axioms about primitive experimental operations
that can be checked experimentally. (Examples are axioms
about the behavior of weights on balances,and the axioms A1-6
given above about preferences for gambles). If the axioms
are satisfied, then some representation in terms of a known
mathematical system is possible. A substantive theory states
a relationship between two measurement theories. (The measu-
rement theories for mass and acceleration are related by
Newton's second law, a substantive theory).

Suppose that we have two confirmed measurement theories,
producing numerical scales, and a substantive theory relating
them. ZILet u be the function relating the independent variable
x and the dependent variable u(x). If both variables are
ratio scales, and if we assume u to exist, do we know anything
about it ? We do, if we are willing to accept certain assump-
tions about internal consistency : (1) admissible transforma-
tions of the independent variable induce only admissible
transformations of the dependent variable, and (2) the form
of u is independent of the choice of units for dependent and
independent variables.

In particular, suppose we have two ratio scales, and a
continuous non-constant u maps ratio into ratio. Then x-—kx
is admissible, u—sku is admissible, and so we must have u(kx) =
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K(k) u(x). But this restricts u, for let x = 1. Then K(k) =
ulic) . Thus u(kx) = u(k) u(x) . Define v(x) = log u(_x) .
u(1) u(1) u(1)  u(?) u(1)
Then v(kx) = v(k) + v(x). This is a well known

functional equation with v(x) = a log x as its unique continuous
solutions. Thus u(x) =aXxP ig the only possible form for u.

A utility function transforms a ratio scale (money) into
an interval scale (utiles). For the first, x-=kx is admissible;
for the second u—sku + C (k > 0), is admissible. We must
therefore have

u(kx) = K(k)u(x) + C(k), K(k) > O
To facilitate the proof, we assume additionally that u is
differentiable. (The result is also true for u continuous only).
Then

u' (loo)k = KE(k)u'(x)

giving u' (kx) = K@) u'(x). By the result above, this equation
has the unique so18tion u' (x) = X xP , and so we get

ax’+c, (B ?‘ - ’_2

ue) - alogx+c, ( B= -1

The utility of money is either a power function of money with
an additive constant, or a logarithmic function of money with
an additive constant.
Are the functional equations acceptable ? The only way

to avoid them is to multiply the ratio scale x by a constant,

;\ whose units are the inverse of the units of the ratio
scale; the relust is dimensionless. 1In this case, multiplying
x by a scale factor, k, need not impose a transformation on u(x);
we need only change A to A/K ., An example of this
situation in physics is given by radioactive decay laws : time
is variable, but an associated constant has the dimension time.
It is a problem why certain laws of physics are expressible
without forcing the quantities to be dimensionless in this way,
and others are not thus expressible. 1If we do not assume
dimensionless money as the independent variable, and we assume
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the existence of a utility function, then the possibilities
are restricted as above. The second form is the one origi-
nally postulated by Bernoulli, but there is some weak evidence
favoring the first.

3. A Probabilistic Utility Theory

Mosteller and Nogee found that subjects' choices were
not consistent for a particular gamble; a gamble was accepted
on some trials, rejected on others. On the other hand, the
behavior was lawful in the sense that the probability of
acceptance changed in a regular way with the expected payoff.
This sort of result has been found in every behavioral study
of choices between gambles. Two alternative explanations are :
(1) At any moment the probability of acceptance is a step
function with a single step, but past choices influence the
location of the step. This can't be disproved, but it is
hard to treat the combination of complicated choices and
learning. (2) The behavior that we observe is not changing;
the learning phase has passed. But it is intrinsically
probabilistic. ("Intrinsic" is used in the sense that we do
not attempt to explain the source of the probabilistic quality).
The second explanation leads to theories, Lf) while the
following is an example.

Assume a set T of alternatives, and the existence of
PT(x), x € T, the probability that alternative x is chosen

when set T is presented. (Contrary to the evidence, we are
here assuming that the order in time or space in which the
elements of T are presented is irrelevant; the theory can be
modified to include this, but we will not do so here). Now
we assume the usual probabllity exioms :

PT(x) > 0, ;PT(X) = 1, PT(S) - ;PT(::).

Can any more be said ? There must be some interconnection
between the probability measures for different sets T. For
example if T = {x,y,z,w} and S = {X,y,Zj , then we
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expect some relation between probabilities of choices in T and
S. The simplest assumption is one of independence, and is given
by the Choice Axiom :

Pn(x)
Pp(8)

for xeScT if Pp(x | 8) =

exists then Ps(x) = PT(x | sS).

Thus, if we know that the choice is confined to S, then the
probability of choosing x is the same as if S had been presented.
We are assuming a connection between the two probability measures,
PS and PT' If we attempt to test the choice axiom directly, we

run into order problems, and so we must either insure that our
experiments include no order effects, or else generalize the
theory to include order. We consider some of the consequences
of the axiom, which lead to indirect tests.

Theorem 1
(1) if PT(x) £ 0

then Ps(x) £ 0

(ii) if PT(X) = 0 and PT(S) £ 0,
then Pg (x) =0

(iii) if PT(Y) =0, y#£0,
then Pp(x) = PT—{;?(X)

(iv) if Py(y) # O for all y e T,
then PT(x) = PS(X)PT(S).

Theorem 2 If PT(y) # 0 for all ye T,

and we define P(x,y) = P X,y (x), then
9
(1) for x,y,z, € (x,y) P(y,2)P(z,x) =
P(x, Z)P(Z,Y)P(y,x)

(ii) ja a ratio scale v:T —>reals,
vV (X)

> Ps(x) = —
>_viy)
ye&s
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We note that (i) asserts that the intransitivities x> y > z >x
and x> 2>y >x have equal probability and that it implies the

condition of strong stochastic tramsitivity, i.e.,

P(x,y)'

if P(x,y)?_% and P(y,z)>= ; then P(x,z)= P(y,2)

To specialize this theory to the utility problem, we

consider the question of choices between gambles, and make
use of the leverage provided by a "decomposition axiom™ about
such choices. The choice axiom is applied both to sets of
pure outcomes and to sets of chance events. The decomposition
axiom is an independence assumption (weaker than the expected
utility hypothesis) that allows conclusions about a choice
between gembles by decomposing it into a choice between out-
comes and a choice between events. Consider the gambles a Xb,

a,pb . The first would be chosen over the second under the
conditions a > b (preference) and o> 8 (judged probability)
or a{ band X<P . Let P(a,b) = probability that a is
preferred to b, Q(o{,P ) = probability that ¥ is judged more
likely than P , P(ae{ b, a ¢} b) = probability that the:
first gsmble is chosen over the second. Then we can state the

Decomposition Axiom

P(aab apb)= Pla,b) QB+ P(ba)@Bx)-

We mentioned above that superimposing an error theory
on an algebraic utility theory was difficult because the
error phenomenon is uneven; although gambles are not perfectly

discriminated, pure outcomes are. The present theory produces
such unevenness automatically, as shown by the theorem to
follow. Assume, for theorems 3 and 4, the choice axiom for P
on sets of 3 or fewer gambles, the choice axiom for @ on sets
of 3 or fewer events, and the decomposition axiom. Define

2 X3P = @(xP) 2 _?'; . Let A be the class of pure

outcomes and E the class of events, so that G = A x E x A.
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Theorem 3 If JabeR 3 Plab) # (7;2")

I then ~ is an equivalence relation having
at most three equivalence classes.

Since ot B &— Q(APB)= zL/ the subject thinks events
in an equivalence class all have the same probability. The
limitation to three classes seems contrary to our experience,
and so the theorem suggests that either our axioms or the
condition of the theorem must be false. If the latter, then
we have the unevenness mentioned above, between pure outcomes
we can have only perfect discrimination of preference, or
indifference. The strength of this result suggests that despite
their apparent plausibility, the choice and decomposition axioms
are so strong as to be "almost inconsistent". If we believe
that the probabilities for pure outcomes can differ from O, é;

1 then the theory must be discarded, but there is little
evidence for this. The next theorem has more direct experimental

consequences.

Theorem 4 Suppose a, b, ¢, d, « 4 > P(a,b) =
P(c,d) = 1 and gambles {a,dbl apb,cad,epdf

where <o, B  are chosen so that there is
confusion between any pair. Then P (ad bcad) = PCapb, CPd).

Proof By the decomposition axiom,P(adb, apb)= QG .B)
and P (Cod, cBd) = Q(.B)

and so they are equal.

By Theorem 2, there is a representation in terms of scale values,
and

v (adb) - V (cad)
V{o.ob)+v(aBb) ViaAd ) rvepd)
: v {(aab) yies d)
This gives —v(apb) = FlcBa) and the result follows.
An experimental interpretation is as follows : Suppose

we offer a choice between adb and ¢Ad where a >c¢ >d > b,
and we vary P(& ). Then the graph of P (adb, c¢Xd)

versus P(® ) consists of a series of ascending steps from O
to 1, rather than a continuous curve. The theory does not
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specify the number or width of the steps, making statistical
tests difficult. However, Luce and Shipley have performed
such an experiment and find evidence favoring a step function
over a logistic (ogival) curve. The statistic used is the
number of reversals : if events are numbered i along the

P (o) axis and N; is the number of times the first gamble

th

is accepted with the i event, then Ni - N. < 0 is called

i-k —
a reversal. The results favor Theorem 4, and thus the
assumptions leading to it.

4. Utility Theories with Subjective FProbabilities

Work since von Neumann and Morgenstern's has proceeded
in two directions. An example of the first - probabilistic
theories - was discussed above. We will now consider the
second - algebraic theories incorporating subjective proba-
bilities.

W. Edwards has discovered severdl results concerning
utility theories with subjective probabilities. The first
has to do with the type of utility measurement required by
such a theory. Let us define a subjective expected utility

as m
E qS‘. u,
t= 1

where u; is the utility and di the subjective probability,

corresponding to the event i. Let us consider the relevant
scale types for the utilities and probabilities. (In the
von Neumann-Morgenstern theory, probabilities admit no
transformations, and utilities admit positive linear trans-
formations). Suppose to begin with that both scales admit
linear transformations, ,

B =X Pp, L= anth
and that for the two sets of events, i =1, 2, ..., m and
i=m*1, n*2, ..., m*n the relation

Z¢‘L£ = idm4jllm+j
L= J=1
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holds. Let us require the property that the equality must then
also hold for the transformed variables, i.e.

m
Sda = N Gty
L= J=1

The problem is what restrictions are imposed by this property
on the admissible transformations. We have

Ao T Bd +Xb G AP T U R IR
S5 . - +~mBb .
= 03 o U+ k5 I P ¢ a2 Up +Mp

The first terms of each member are equal by definition, and
so we have

D(b/%t ¢L' ‘_‘}Z¢m+j) +a’/8 (Z;_L{.-Jzamv.)+(n-m)18b;0

With sn additive probability scale, the first parenthesis must
be zero. The second and third parentheses can be made either
positive or negative, by appropriate choices of events and
their numbers. We thus have either a = b = O orp = 0. The
condition a = O cannot be allowed, and so P = O, giving

ratio scale for probabilities. If the probability scale is
non~additive then we also have b = O and so utility must also
pe a ratio scale. It is difficult to measure utility on a
ratio scale; a natural zero is not evident. We conclude that
it is difficult to keep the expected utility hypothesis when
non-additive subjective probabilities are introduced.

Edwards has also shown that plausible restrictions on the
relation between subjective and objective probabilities leads
to another sort of difficulty. We begin by noting that sub-
jective probability is very likely not a simple monouunic
function of objective probability; the way events are described
matters, as well as their objective probabilities. However,
let us assume that we can group events into classes and define
a subjective probability measure over each class so that a sort
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of monotonicity (defined by assumption 3 below) obtains
within classes. If E is the universe of events, we have a
mapping r + E —>integers by which the classes, Er’ are
defined, and E = U E_. The mapping Yo+ E. —> [0,1]
defines subjective probabilities for events within the

rth class, and the mappings ‘H. induce a mapping k}/ :
E ~—)[0,1] on the universe of events. In addition we
have a mapping p:E —)[0,1] , the objective probability

measure. We assume
(1) p is completely additive
(2) E is non-atomic : if 'o(H) 7(0 ,d cfls
o< p(BY< p(A).
(3) ‘P‘. has the following property :
For §>0, 30>0% 1r Re B, and
P(H)< 3 then %(ﬁ)< E.

(That is, we can find an event A with
a sufficiently small objective
probability so the corresponding
subjective probability is small).

4) qj has the following property :
if p(A) = 0 or 1,

then LP (A) = O or 1 respectively.

Theorem 5 If J event H 3 ¢ (H)+# P(H))
then for any p, o<p<l,
Tevents A, B > P(H):' P
and p(B) < p (R)
but § (8)> P () +p (1-p) 1 (H)-p(H| -
Thus, if the subjective and objective measures differ, then

it is always possible to find a pair of events, one with a
given objective probability, such that the inequality of
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subjective probabilities is opposite in direction from the
inequality of objective probabilities. Under these conditions,
then, a non-trivial subjective probability measure must be non-

monotonic.

Theorem 6 If the image of E under the
mapping r is finite, them Y =p

Thus if events are grouped into classes, each with its own
subjective probability measure as above, non-trivial subjective
probability measure requires an infinite collection of events.
We would prefer the theory to hold for finite sets of events,
corresponding to what is possible experimentally.

Edwards' results show difficulties in the subjective
probability approach. With an additive measure of subjective
probability, an infinite set of events is required. And even
with a non-additive measure, utility must be measurable by
means of a ratio scale.

Two ways of avoiding these difficulties are shown in the
work of Savage, and of Davidson, Suppes and Segel. Savage does
this by assuming there is no "objective probability" but only
the subjective variety. Davidson et al do it by assuming a
sparser set of events.

Savage thinks that the utility and probability problems
lie together at the foundations of probability; without a
utility measure we cannot talk about probability. He assumes
a set of states of the world (events), a set of possible actions
and a consequence for each state-action combination, and considers
the problem of choosing among actions. His axioms state consis-
tency assumptions about such choices, plus the existence of a
sufficient richness of events. There are no axioms about
probabilities. From the axioms, Savage finds that (1) there
exists a mapping of the states onto the closed unit interval
which satisfies the usual probability axioms, (2) there exists
a mapping of the consequences onto the real numbers which
behaves like a utility function (values correspond to the

ordering by choice), and (3) combining the two, one action is
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preferred over another if its expected utility is greater.
The probability measure is obtained from a single subject
and is thus "subjective™; "objective probability" arises
from consensus about choices for certain situations.

Davidson, Suppes and Segel use the choice situation
represented by the pay-off matrix

I 11
o |a c
AL d

where the subject chooses the column, and then a chance event,

& , chooses the row. They first find a particular event -
one whose subjective probability is g — and then hold it fixed
and observe how subject's choices depend on the payoffs. The
particular event,(X* s is chosen by using the degenerate
choice situation represented by

I II
o * a b
J’, b a

and finding an event for which the probability that the subject
chooses column I is g; this event is defined to have subjective
probability g. If, in the more general choice situation, column
I is preferred, then we must have
u(ax*b) > u(cx*d)

And if the expected utility hypothesis is correct, then
W Ca)PE*) + U(b)g (X*)> wu (¢)dEK*) + wuld)p>).
Since g = g, we get

u(a) + u(d) > ule) + u(d)
The cases of interest are those where equality holds. By
assigning zero and unit utilities to two outcomes and using
this method repeatedly, utilities can be assigned to a set
of outcomes. The problems dealt with by Davidson et al are,
first, developing an axiom system in terms of which the method
is Jjustified, and secondly, determining whether the relevant

experiment can be effectively performed.



