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The essential character of what is classically considered, e.g., by N. R. Campbell, 

the fundamental measurement of extensive quantities is described by an axiomatization 
for the comparision of effects of (or responses to) arbitrary combinations of “quantities” 

of a single specified kind. For example, the effect of placing one arbitrary combination 
of masses on a pan of a beam balance is compared with another arbitrary combination 

on the other pan. Measurement on a ratio scale follows from such axioms. In this paper, 

the essential character of simultaneous conjoint measurement is described by an 
axiomatization for the comparision of effects of (or responses to) pairs formed from 

two specified kinds of “quantities.” The axioms apply when, for example, the effect of a 
pair consisting of one mass and one difference in gravitational potential on a device that 

responds to momentum is compared with the effect of another such pair. Measurement 

on interval scales which have a common unit follows from these axioms; usually these 
scales can be converted in a natural way into ratio scales. 

A close relation exists between conjoint measurement and the establishment of 
response measures in a two-way table, or other analysis-of-variance situations, for 

which the “effects of columns” and the “effects of rows” are additive. Indeed, the 
discovery of such measures, which are well known to have important practical advan- 

tages, may be viewed as the discovery, via conjoint measurement, of fundamental 
measures of the row and column variables. From this point of view it is natural to regard 

conjoint measurement as factorial measurement. 
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INTRODUCTION 

Norman Robert Campbell (1920, 1928) emph asized the conceptual importance, to 
physics and, for him at least, to any science worthy of the name, of a particular form 
of additive measurement. For four decades this emphasis has had a profound influence. 
In many respects this has been healthy, but in others it may have been unduly restric- 
tive. It seems to us important to reduce these restrictions in several ways, among them 
by finding: 

(1) a more reasonable treatment of experimental errors (which Campbell 
assumed were bounded), 

(2) a formulation covering measkr. ments and scales th, ‘_ :ossess thr co:-: 
ventionally desirable properticns :lnly approximag:;y, *,; 

(3) treatments of kinds of funda-:.icntal measurement Lay< J on operation3 
other than unrestricted, side-l$y-side combination (which we shall ca;; 
concatenation) of the things temg measured. 

This paper contributes to the third of these tasks. 
In the axiomatization to follow, we begin with an ordering of pairs of objects that 

represents their effects or a subject’s responses to them. But, unlike the classic theories, 
these objects are not treated as elementary; rather, each is assumed to be adequately 
described by an ordered pair of components. For example, they might be physical 
objects with components of mass and gravitational potential or pure tones with com- 
ponents of energy and frequency. It is not assumed that the objects themselves or 
either of their components can be concatenated in any natural way. The’ role usually 
played by the concatenation operation is replaced by the fact that the objects 
are ordered pairs. From the axioms we give, simultaneous measurement on interval 
scales is obtained for each kind of quantity separately and for their joint effects. In 
many situations, it is possible, by added information or by an added postulate, to 
convert these into ratio scales; often an exponential transformation is first introduced 
to convert from an additive to a multiplicative representation. 

Extension of these results to the simultaneous conjoint measurement of three or 
more quantities is direct, and will be discussed elsewhere. 

I. REPRESENTATION THEOREMS 

If o represents an operation of concatenation, it is well known that fundamental 
extensive measurement, as described by Campbell, corresponds to, but is not axioma- 
tized in terms of, the existence of a real-valued function X that “measures” the several 
quantities and their concatenations in such a way that X(A o B) = X(A) + X(B) 

and that X(A) < X(B) is equivalent to A < B. This is to say that the axioms, e.g., 
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Holder (1901) and Suppes (1951) describe situations in which the “effects of” or 
“responses to ” A, B, and A o B can be given numerical expression (in a suitably 
invariant way) so that the effect of A o B is the sum of the effects of A and of B, and 
so that the numerical measure of A is less than or equal to that of B if and only if the 
effect of A is less than or equal to the effect of B. 

Conjoint measurement corresponds to, but is not axiomatized in terms of, the exist- 
ence of two real-valued functions v and # that “measure” the effects of the two 
classes of variables in such a way that the over-all effect of (A, P) is the sum of the 
“effect” of A as measured by p and of the “effect” of B as measured by $. Thus, the 
numerical proposition v(A) + +4(P) < p(B) + +4(Q) is equivalent to the statement 
“the effect of (A, P) is less than or equal to the effect of (B, Q).” The parallel to 
measurement by concatenation is clear. 

A simple graphical way to display the simultaneous effects of two factors is in a 
two-way table, where the rows correspond to the values of one factor, the columns to 
the values of the other factor, and the entries correspond to the effects of, or responses 
to, their joint presence. The conclusion from the axioms of conjoint measurement is 
that we can “measure” the effect, or response, quantitatively in such a way that 
(a) the observed ordering of the cells is preserved by the natural ordering of the 
numbers assigned, (b) the measure for any cell is the sum of a function of its row com- 
ponent and another function of its column compoment, and (c) each of these functions 
is unique up to the positive linear transformations of interval measurement. Thus, 
we are able, at a single stroke, to measure both the factors and the responses. 

In these terms, the axioms may be roughly described as follows. The first states 
that the given ordering of cells satisfies mild consistency conditions, including tran- 
sitivity. The second axiom requires that each of the two factors be sufficiently extensive 
and finely graded so that, given any cell and any row (or column), we can find a 
column (or row) such that the new cell thus defined has the same effect or produces 
the same response as the originally given cell. The third axiom we turn to in a moment. 
The fourth is an Archimedean condition that states that no nonzero change is “infini- 
tely small” when compared with any other change. 

In terms of rows A, F, and B, and columns P, X, and Q, the third axiom can be 
represented graphically by: 

P X Q 

if then 

,P X Q 
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where the cell at the tail of an arrow dominates (has at least as large an effect as) the 
cell at the head. The verbal interpretation is that if a change from A to F overbalances 
a change from X to Q, and if a change from F to B overbalances one from P to X, 
then the over-all combined change from A to F to B overbalances the combined change 

from P to X to Q. 

II. ADDITIVITY IN A NEW LIGHT 

Seeking response measures which make the effects of columns and the effects of 
rows additive in an analysis. If-variance situation has become increasingly popular 
as the advantages of such p > Amonious descriptions, whether exact or approximate, 

have become more apprcciaiL i. In spite of the practical advantages of such response 
measures, objections have bet::1 raised to their quest, the primary ones being (a) that 
such “tampering” with data i:: somehow unethical, and (b) that one should be inte- 
rested in fundamental results not merely empirical ones. 

For those who grant, in the situations where it is natural, the fundamental character 
of measurement axiomatized in terms of concatenation, the present measurement 

theory overcomes both of these objections since its existence shows that qualitatively 
described “additivity” over pairs of factors of responses or effects is just as axioma- 
tizable as concatenation. Indeed, the additivity is axiomatizable in terms of axioms 

that lead to scales of the highest repute: interval and ratio scales. 
Moreover, as we will illustrate by a simple example, the axioms of conjoint measure- 

ment apply naturally to problems of classical physics and permit the measurement of 

conventional physical quantities on ratio scales. 
In the various fields, including the behavioral and biological sciences, where factors 

producing orderable effects and responses deserve both more useful and more funda- 

mental measurement, the moral seems clear: when no natural concatenation operation 
exists, one should try to discover a way to measure factors and responses such that 
the “effects” of different factors are additive. 

III. A MECHANICAL EXAMPLE 

Consider a simple mechanical example of conjoint measurement involving the joint 
effects of mass and gravitational potential difference in producing momentum. Let a 
pendulum hanging in vacua be fitted with auxiliary horizontal arms that end in sticky 
pans, and arrange it so that pairs of spherical pebbles of the same material can be 
dropped on the pans simultaneously from repeatable points of release. We record, 
qualitatively, the altitude of release and identity of each pebble and the direction of 
the first swing of the pendulum. Such a device is, in essence, a two-pan ballistic 
pendulum that permits us to compare momentum transfer. I f  A and B represent 
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altitudes of release, or, more precisely, differences in gravitational potential between 
the release points and the pans, and P and Q represent masses of the pebbles, then 
the device allows us to compare directly the effect of (A, P) with the effect of (B, Q) 
when the two pebbles are dropped simultaneously. (The usual precautions to have 
lever arms of equal magnitude are assumed.) 

If our axioms apply to this device, as they would according to classic mechanics, 
then it follows that suitable functions of both mass and difference in gravitational 
potential can be measured on interval scales, Moreover, by assuming that the pendu- 
lum compares momentum and that momentum is the product of a function of the 
differences in gravitational potential with a function of mass, then it can be shown 
that our interval scales are the logarithms, to some base, of these two functions. 

If we take antilogarithms (= exponentials), to any base, of the interval scale measure- 
ments, the results will be ratio scale measurements of positive powers of mass and 
difference in gravitational potential. As will be shown, the interval scales have a 
common unit; accordingly, if the antilogarithms are to the same base, these powers 
will be the same. Thus, with these physical assumptions, our axioms provide a method 
for the simultaneous fundamental measurement of momentum, mass, and gravitational 
potential; measurement of the same general nature as that usually given for mass 
using an ordinary two-pan balance. 

All three of these physical quantities can, of course, be measured in conventional 
manners susceptible to concatenation. For example, differences in gravitational 
potential can be compared by dropping in vacua pebbles of matched mass into two 
liquid-filled vessels in a differential calorimeter. (Such a comparison is surely not less 
clumsy than that of the ballistic pendulum.) We do not claim that conjoint measure- 
ment supersedes classic measurement by concatenation, but only that neither is more 
fundamental than the other. 

Other standard physical quantities can be equally easily measured by conjoint 
techniques. A beam balance with many pans permits conjoint measurement of weight 
and distance from a pivot to the pan support. A differential calorimeter permits 
conjoint measurement of resistance and quantity of charge, or of displacement and 
force exerted. Any direct comparison of photon numbers or light intensity permits 
conjoint measurement of effective slit aperture and source brightness. In all of these 
cases, the axiom system holds, and conjoint measurement provides measures, on 
interval scales, that are logarithmically related to the conventional physical measures. 

IV. BEHAVIORAL AND ECONOMIC EXAMPLES 

That we can devise alternative ways to measure familiar physical quantities is 
philosophically interesting, but is of little practical significance to physics as long as 
conventional measurement based on concatenation is possible. In the behavioral and 
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biological sciences, however, these new methods may be of considerable importance. 
Many of the quantities that one would like to measure, and that many scientists have 
felt it should be possible to measure, do not come within the scope of the classical axio- 
matization because no one has been able to devise a natural concatenation operation 
(e.g., cf. Cattell, 1962). Usually, however, the stimuli being scaled have at least two 
distinguishable aspects, each of which affects the judgment’being made. For example, it 
appears that subjects can order pure tones according to their loudness, and consider- 
able evidence shows that loudness, so determined, depends upon both intensity and 
frequency. But it is far from clear how to define a concatenation of the pure tone 
(I, F) of intensity Z and frequency F with another pure tone (I’, F’). However, if a 
subject’s ordering of tones according to loudness should satisfy our axioms, then our 
results show that one can then assign measures to intensity, frequency, and tones such 
that the “loudness” of a pure tone is determined by the sum of an intensity contribu- 
tion and a frequency contribution. Under these circumstances, by taking exponentials, 
“loudness” of tones could be equally well viewed as the product of intensity and fre- 
quency components. Whether the subject-determined orderings in this or any other 
case actually satisfy our axiom system is an empirical problem about which little is 
now known. 

More generally, a question raised throughout the social and behavioral sciences is 
whether two independent variables contribute independently to an over-all effect or 
response. The usual approach is to attach to each pair of values of the variables a 
numerical measure of effect that preserves the order of effects and then to test for 
independence using an additive statistical model, probably one of the conventional 
analysis of variance models. When dependence (interaction) is shown to exist, one is 
uncertain whether the dependence is real or whether another measure would have 
shown a different result. Certain familiar transformations are often applied in an effort 
to reduce the danger of the second possibility, but they are unlikely to approach 
exhausting the infinite family of monotonic transformations, so that one cannot be too 
sure of the reality of an apparent interaction. Our results show that additive inde- 
pendence exists provided that our axioms are satisfied; of these, the most essential one 
from a substantive point of view is the cancellation axiom, which is also a necessary 
condition for an additive representation to exist. Thus, one could test the cancellation 
axiom by examining a sufficiently voluminous body of ordinal data directly, without 
introducing any numerical measures and, thereby, test the primary ingredient in 
additive independence. In some applications this should be more convincing than 
present techniques. 

It should be noted that the adjective “additive” is important throughout the above 
paragraph. There can be a form of multiplicative independence in which, because y 
and II, assume both positive and negative values, the representation v(A) ,cl(P) cannot 
be converted into an additive representation by a logarithmic transformation. In these 
cases, as is easy to see, the cancellation axiom does not hold. An appropriate modifica- 



SIMULTANEOUS CONJOINT MEASUREMENT 7 

tion of our cancellation axiom has been developed by Roskies (1963) which, when 
coupled with our results, leads to an essentially multiplicative representation. 

Within economics, the problem of establishing a “cardinal” (interval or ratio) 
measure of utility over commodity bundles is classical. When the bundles have only 
two components, the ordering and indifference relations can be displayed by the fami- 
liar graphical device of indifference curves. The cancellation axiom, which has been 
used by Adams and Fagot (1959), Debreu (1959, 1960), and Suppes and Winet (1955) 
in this connection, can be expressed as follows: If we fix any two indifference curves, 
we may form inscribed flights of stairs from alternating horizontal and vertical seats 
cut off by the two given indifference curves. If now we take any two such flights of 

INDIFFERENCE CURVES 
USED IN CONSTRUCTION 

CURVES WHICH MUST 
BE INDIFFERENCE CURVES 

FIG. 1. The cancellation axiom illustrated for indifference curves. If two “flights of stairs” 

are inscribed between two indifference curves, as shown, then alternate intersections lie on the 
same indifference curve when the cancellation axiom is true. 

stairs, which will intersect one another repeatedly, the cancellation axiom states that 
alternate intersections lie on the same indifference curve. Figure 1 illustrates this for 
two particular indifference curves and two flights of stairs. 



LUCE AND TUKEY 

V. THE FINITE AXIOMS: 

ORDERING, SOLUTION, AND CANCELLATION 

The first steps in our formal development rest upon only three axioms; the fourth or 
Archimedean axiom is needed only at a later stage. In this section we state the first 
three and draw some of their more direct consequences. 

Let ,s? be a set with typical elements, A, B, C, =**, F, G, H, *em and B a set with 
typical elements P, Q, R, *a*, X, Y, 2, *-‘; then .d x 9’ consists of pairs (A, P), 
(A, Q), (B, Q), etc. Let 2 be a binary relation on such pairs. [Thus > is equivalent 
to a subset of (~2 x 9) x (,F3 x 9).] 

(VA) ORDERING AXIOM (AXIOM 1). > is a weak ordering, i.e.: 

(VB, REFLEXIVITY), (A, P) > (A, P) holds for all A in .d and P in d, 

(VC, TRANSITIVITY), (A, P) > (B,Q) and (B,Q) 3 (C, R) impt$ (A, P) > (C, R), 

(VD, CONNECTEDNESS), Either (A, P) 3 (B, Q), or (B, Q) 3 (A, P), or both. 

(VE) DEFINITION. For A, B in JZZ and P, Q in 9, 

(A, P) = (B, 8) if and 4~ ;f (A, P) 2 (B, Q) and (B, Q) 3 (A, P> 
(A, P) > (B, Q) if and only if not [(B, Q) >, (A, PI]. 

(VF) SOLUTION (OF EQUATIONS) AXIOM (AXIOM 2). For each A in J#’ and P, Q 

in 9, the equution (F, P) = (A, Q) h as a solution F in &, and for each A, B in d and P 

in B the equation (A, X) = (B, P) has a sohtion X in 9. 

(VG) CANCELLATION AXIOM (AXIOM 3). For A, F, B in &’ and P, X, Q in 9, 

(A, X) 3 (F, Q) and (F, P) 3 (B, X) imply (A, P) 2 (B, 8). 

We now begin with: 

(VH) THEOREM. If axioms 1 to 3 hold, then (A, P) > (B, P) for any P in 9 implies 

(A, X) > (B, X) f or all X in 8, and (A, P) > (A, Q) for any A in ~9 implies 
(F, P) 3 (F, Q) for all F in JZ?. 

PROOF. By the first of VF, there exists an F in JJ! such that (F, X) = (A, P). 

But (A, P) > (B, P), and, by transitivity, (F, X) > (B, P). Together with (A, P) = 
(F, X) this implies (A, X) > (B, X) by VG. The second statement is proved simi- 
larly. 

Together, these results justify: 

(VJ) DEFINITION. I f  axioms 1 to 3 hold, define A > B if, for some P in 9, and 
therefore for all P in 9, (A, P) > (B, P). Similarly, define P 3 Q if, for some A in -Qz, 
and therefore for all A in sl/, (A, P) 3 (A, Q). Define A = B if and only if A > B 
and B >, A. Define A > B, P = Q, and P > Q accordingly. 

(VK) THEOREM. I f  axioms 1 to 3 hold, then both the relation > over & and the 
relation >, over d are weak orderings. 

(VL) THEOREM. I f  axioms I to 3 hold, A > B and P 3 Q imply (A, P) 2 (B, Q). 
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PROOF. If A 3 B and P > Q, 

(4 Q) 3 (4 Q) (by W 

(B, P) 3 (4 Q> (by VW 

C-4 P) 3 (4 Q) (by VG). 

REMARK. We often refer to uses of V J and VL as “by transfer.” 

REMARK. Since > on & x 8, 3 on &‘, and > on 9 are all weak orderings, the 
corresponding = are equivalence relations, and it is an immediate consequence of VL 
that A = A’ and P = P’ imply (A, P) = (A’, P’), although the converse need not 
hold. There are thus two equivalent interpretations for all that follows: (a) A, P, and 
(A, P) refer to equivalence classes, and the solutions of VF are unique; (b) A, P, and 
(A, P) are elements some of which may be equivalent, and the solutions of VF or of 
chains of such equations are unique up to equivalence. We shall leave both alternatives 
open by saying, where appropriate, “unique up to =.” 

The axioms we have introduced are not too different from those used in theories 
of measurement based on a concatenation operation. The ordering axiom is about 
as weak as might reasonably be expected. Requiring “negative” as well as “positive” 
solutions to equations is a stronger assumption than is made in the concatenation 
case, as we shall comment upon later. The cancellation axiom is our substitute for a 
commutativity axiom about concatenation. It is not easy to judge its strength heuristic- 
ally, but in terms of the discussion at the end of Section I, it does not appear to be 
unusually strong. 

VI. DSS’S AND THE ARCHIMEDEAN AXIOM: CONCLUSIONS 

The central tool in classical measurement by concatenation is the notion, and free 
constructability, of standard sequences (ss) of magnitudes corresponding to an arith- 
metic progression. The corresponding notion here is the following: 

(VIA) CHARACTERIZATION. A doubly in$nite series of pairs {Aj , P,}, i = 0, * 1, 
f 2, ‘..9 with Ai in ~2 and Pi in B, is a dual standard sequence (dss) provided that 

(VIB) (A,,‘ , P,) = (A, , P,) whenever m + n = p + q for positive, zero, or nega- 
tive integers, m, n, p, and q. 
A dss is trivial if for all i either A, = A, or Pi = P,,, in which case both hold by 
transfer. 

Under axioms 1,2,and 3, dss’s are as freely constructable as ss’s are under Campbell’s 
axioms. (This is proved in Section IX.) 

The necessary Archimedean axiom can now be stated as: 

(VIC) ARCHIMEDEAN AXIOM(AXIOM 4). I f  {Ai , Pi} is a non-trivial dss, B is in JJ/, 
and Q is in 9, then there exist (positive OY negative) integers n and m such that 

(4 3 Pn) 2 (8 0) 2 (4, > Pm)- 
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We now indicate our main results, leaving more general statements of the results 
and their proofs to later sections. 

(VID) ARCHIMEDEAN EXISTENCE THEOREM. I f  axioms I to 4 hold, there exist 

real-valued functions q and I/ defined over STI and 9, respectively, such that 

(VIE) #) + 4(X) 3 y,(G) + W’) if and only if(F, X) 3 (G, Y>, 

(VIF) p(F) > v(G) if and only ifF > G, and 

(VIG) #(X) 3 #(Y) if and only if X > Y. 

COROLLARY. Under the hypothesis of VID, 

(VII-J) if iFi , Xi> is any dss and n is any integer, the following are all equal: 

vtF,J - #‘oh KK) - tvGl)~ 

n + [VW - dFd, n * FfWd - WGJl. 
NOTE. This theorem and its corollary are the special case of XIIB for which 
p = 1 = q, r = 0. 

(VIJ) ARCHIMEDEAN UNIQUENESS THEOREM. If q, # and q*, #* are two pairs of 
functions satisfying VIE-VIG, there are constants a > 0, b and c, such that 

v*(F) = a - v(F) + b 

4*(X) 2 a - #(X) + c 

Consequently, 9 measures the elements of J& and $I measures the elements of 9 on interval 

scales with a common unit. 

NOTE. This theorem is the special case of XIIG, for which p = 1 = q and Y = 0. 

If either (a) we have a distinguished pair of elements F,, in LZJ’ and X0 in B for which 
it is reasonable to require v(F,) = 0 = 4(X,,), or (b) we find it reasonable to exponen- 
tiate v(F) and I/J(X), using Q(F) = ePfF) and Y(X) = e’+‘(X) as measures of F and X, 
we will have measured the elements of S? and B on ratio scales. [In case (a), these 
ratio scales even retain a common unit!] 

VII. RELATIONS TO MEASUREMENT BY CONCATENATION 

To the best of our knowledge, this is the first axiomatization of simultaneous con- 
joint measurement, and it is the only entirely algebraic theory based on an ordering of 
ordered pairs of elements from distinct sets. Thus no direct comparisons can be 
made with other measurement axiom systems. There are, however, various ways of 
interpreting within our system axiomatizations of a concatenation operation. For the 
axiomatizer, rather than for the user of measurement, there is some interest in what 
follows from our results, and in discovering which of our axioms fail to hold under 
such interpretations. 
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In the first interpretation, we let both &’ and 9 consist of the elements to be con- 
catenated and we let (A, P) t) A o P. If we now consider a standard (e.g., cf. Suppes, 
1951) axiomatization of mass or length measurement, it is not difficult to see that our 
axioms 1 and 4 follow from the usually assumed weak ordering and Archimedean 
axioms. Our cancellation axiom 3 can be established as follows: 

Suppose that (A, X) 2 (F, Q) and (F, P) 2 (B, X); then from commutativity and 
associativity we have 

(AoP)o(FoX)=(AoX)o(FoP) 

3 (F 0 8) 0 (B 0 4 

=(BoQ)o(FoX). 

Applying the usual right cancellation axiom, A o P > B o Q, i.e., (A, P) 3 (B, Q), 
thus proving axiom 3. 

The existence of solutions to equations, axiom 2, is somewhat more subtle. The 
problem arises from the fact that in the usual axiomatizations of concatenation the 
equation A o X = B has a solution X if and only if A < B, whereas there is no such 
restriction in our system. 

This difficulty is avoided in the second interpretation, by taking both & and d 
to consist of the concatenatable elements, their formal negatives, and a formal zero, 
0, and by extending the definition of concatenation, defining A o (- B) > C to 
mean A 3 C o B and taking A o 0 to be A. This extension does not lead to incon- 
sistencies, and axiom 2 holds in this augmented system, which, of course, does not 
itself satisfy the axioms for nonnegative measurement. 

Applied directly, our results yield two functions p and 4 which are only constrained 
to be internal scales, which seems weaker than the classical results. As we now show, 
this is not really so. Because A o B = B o A, we have v(A) + c/(B) = y(B) + $(A) 
for all A, B, so y(A) - #(A) is constant. And A o 0 = A for all A uniquely defines 0, 
so that the added condition, which we are free to impose, ~(0) = 0 = #(O), requires 
v = # and restricts their common freedom to that of ratio scales. Thus, this inter- 
pretation of concatenation in terms of conjoint measurement does lead to the full 
strength of the classical results. 

A third interpretation is also illuminating. Suppose & consists of the concatenable 
elements and 9 consists of all real numbers. For positive integers p, q, choose 

and 
(A,p)tt A”’ o A’“’ o ... o A’y’, where all A’i’ = A, 

(B, q)H B’l’ o B’2’ o ... o B(q), where all B(j) = B. 

For other positive numbers P, Q, the relation between formal symbols (A, P) 3 (B, Q) 
is defined to mean (A, p) > (B, q) for all p, q with pQ > qP. The extension to non- 
positive P, Q is made as usual. Once the existence of X(A) has been established by 
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the usual proof, it is relatively easy to establish axioms 1 to 4, and (A, 0) can again 

be used to convert the interval scale into a ratio scale. 
Finally, it is of considerable interest to try to interpret conjoint measurement in 

terms of concatenation. The simplest approach is to treat conjoint measurement as a 
scheme of very limited concatenation. 

Let us suppose that A consists of labels for certain “rows,” and that P consists of 

labels for certain “columns.” Consider all “shifts” from one cell to another, e.g., 
from (A, P) to (B, Q). Certain pairs of shifts can be combined in a natural way, e.g., 
“(A, P) to (B, Q)” and “(B, Q) to (C, R>” clearly ought to produce “(A, P) to 

(C, R).” I f  we think of [A, B] as the class of shifts {(A, P) to (B, P) / some P}, 
and [P, Q] as the class of shifts {(A, P) to (A, Q) j some A}, we are led to a similarly 
limited concatenation of such classes. If  one now attemps to define equivalences and 
extend the definition of concatenation, one is eventually led to the general approach 

of the present paper. 
Krantz (1964) has succeeded in defining operations on the equivalence classes of 

&’ x 9, one for each choice of an A,, in ~2 and P,, in B, which can play the role of 

concatenation operations. He defines (A, P) o (A’, P’) to be (B, Q) where B is a 
solution to (A, P) = (B, PO) and Q is a solution to (A’, P’) = (A, , Q). This leads to 
an alternative proof of our result. 

VIII. RELATIONS WITH 
BEHAVIORAL SCIENCE AXIOM SYSTEMS 

Four groups of studies, largely motivated by measurement problems in economics 
and the behavioral sciences, are related to our formulation of conjoint measurement. 

The most closely related from the point of view of generality is the study by Adams 
and Fagot (1959) in which they derived some necessary conditions from the assump- 
tion of a representation of the type given in our existence theorem (VID) including, 
among other things, the ordering and cancellation axioms (1 and 3). In contrast to 
our work, and to the other studies we shall mention, they did little toward finding a 

sufficient set of axioms for (VID) to hold. 
Debreu (1960) established a result that is closely related to ours in that it leads to an 

additive, order-preserving, real-valued representation; however, it differs in that it 
depends upon topological assumptions which, as this present paper demonstrates, 
can be replaced by simple algebraic assumptions. His assumptions, when specialized 
to two components, are: 

(a) there is a weak ordering >, on si/ x 9, 

(b) & and d are both connected and separable topological spaces, 

(c) the sets 

((A, X) in & x d 1 (A, X) > (B, Y)} 
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and 

{(A, X) in d X d ~ (A, X) < (B, Y)} 

are closed for every (B, Y) in d x 9, 

(d) the independence property asserted in Theorem VH holds, and 

(e) the relations induced on $1 and on d by Definition VJ each have at least two 
equivalence classes. 

From these assumptions Debreu showed that there exist continuous real-valued 
functions $ and # defined on s3 and 9, respectively, such that for (A, P) and (B, Q) 

in&x9 L 

i4 + w> 3 VW + 4(Q) if and only if (4 P) 2 P, Q), 

and 4 + 4 is unique up to positive linear transformations. 

Earlier, Suppes and Winet (1955) ( see also Suppes and Zinnes, 1963) stated an 

axiom system for what they called infinite difference systems. The axioms were 
formulated in terms of a binary relation Q on d and a quaternary relation R on 
.d x LP’, where (A, X) R(B, Y) is interpreted intuitively as meaning that the differ- 
ence from A to X is not less than the difference from B to Y. Thus, in terms of our 

notation, 

(A, X> R(B, Y) if and only if (24, Y) 3 (B, -y). 
It is not difficult to see that > is transitive (or satisfies the cancellation axiom) if and 

only if R satisfies the cancellation axiom (or is transitive). When these translations are 
made, the Suppes and Winet axiom system is seen to include explicitly the ordering 
and cancellation axioms (their axioms A3, A4, and A9). In addition, it includes a 

version of the solution axioms (A6 and AlO) and a version of the Archimedean axiom 
(Al 1). Their axioms Al, A2, A7, and A8 establish connections between the binary 
relation Q and the quaternary relation R; these are much the same connections as we 

used to justify definition VJ. Their axiom A5 postulates that R is commutative in the 
sense that (A, X) R(X, A). From these axioms they show that there exists a real- 
valued function x on & such that 

and 

AQ'B if and only if X(J) 3 X(B), 

(A,X)R(B, I') if and only if lX(A)--(~~)/31X(B)--X(Y)/; 

this function is unique up to positive linear transformations. Note the introduction 
of absolute values in the representation of the quaternary relation. 

Davidson and Suppes (1956) (see also Davidson, Suppes, and Siegel, 1957) modified 
this system to apply to a finite & in which the elements are “equally spaced in utility”; 
such finite difference systems are closely related to our notion of a dss. 
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Pfanzagl (1959a, b) h as recently presented an axiomatization of concatenation that 
differs somewhat from usual theories of extensive measurement. It involves the usual 
weak ordering axiom; a strong form of monotonicity (or cancellation), namely, that 
if A 2 B, then for all C in SS!, A o C 2 B o C; continuity of the concatenation opera- 
tion; and the following bisymmetry condition: for all A, B, C, and D in s?, 

(A o B) o (C o D) = (A o C) o (B o D). 

Making the identification (A, B) = A o B, our ordering axiom (VA) follows from 
his and our solution axiom (VF) follows from his continuity axiom. To show our 
cancellation axiom (VG), suppose that (A, X) > (F, Q) and (F, P) > (B, X). Applying 
bisymmetry three times and monotonicity twice, we see that 

(AoP)o(XoF)=(AoX)o(PoF) 

>(FoQ)o(PoF) 
=(FoP)o(QoF) 

>(BoX)o(QoF) 

=(BoQ)o(XoF). 

Thus, by monotonicity, (A, P) = A o P > B o Q = (B, Q). 

Pfanzagl’s system does not explicitly include an Archimedean axiom. Presumably 
the role it fills in our scheme is filled by his bisymmetry requirement for the concatena- 
tion of more than two elements. 

The representation that he establishes is that there exists an order preserving 
function X on Jai and numbers p, q, and r, with p, q > 0, such that 

X(A o B) =pX(A) + qX(B) + r. 

The function X is invariant up to positive linear transformations, i.e., measurement 
is on an interval scale. This representation is the special case of XIIC for which ZZJ’ = B 
and ‘p = #. 

IX. DUAL STANDARD SEQUENCES 

We now define dual standard sequences and show that the definition implies both 
the characterization VIA and that dss exist under weak assumptions. 

(IXA) DEFINITION. A doubly infinite sequence of pairs {Ai, Pi}, i = 0, & 1, 

i 2, **a where, for each i, Ai is in LZ! and Pi is in B, is a dual standard sequence if, for 
each i, 

(I=) 6% > Pi+4 = (Ai+l , Pi), 

(IXC) (Ai+, 9 pi-l) = (Ai , Pi)* 
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The dss {Ai , Pi> is said to be on (A,, , PO) through A,, or through PI, or through 
(A, , PI) as may be appropriate. 

NOTE. In IXJ it is shown that either A,, PO , A, or A, , P,, , PI are sufficient to 
determine a dss up to =. 

(IXD) THEOREM. If axioms I to 3 hold, if {Ai , Pi} is a dss, and if m, n, p, q are 
integers, then 

(IXE) (A, , P,) = (A, , P,) whenever m + n = p + q. 

NOTE. IXE is equivalent to VIB; its use will be indicated “by dss.” 

PROOF. First, we establish that (A, , P,) = (A, , Pm). With no loss of generality, 
we may assume m ,< n and so we can write n = m + k, k > 0. For k = 0, the result 
clearly holds. For k = 1, it is IXB. For k > 1, we proceed inductively. 

tAn+k-I 9 Pm+A = tAm+k 3 Pm+d (by IX’3 
(Am > Pm+& = (Am+,-, 3 Pm) (induction hypothesis) 

:. (Am 9 Pm+d = (Am,, 9 Pm) (by cancellation, VG) 

Next, letting k = 1 m - n 1 > 0, we show that (A, , P,) = (A,,, , P,J. For 
K = 0, this is IXC. We proceed inductively. By the first part of the proof, there is no 
loss of generality in assuming m < n so n = m + k, and 

(&+H 9 Pm) = (A,,, , Pm-J (because 1 m + k - 1 - m 1 = k - 1 and 
the induction hypothesis) 

(Am+,-, 3 Pm> = (Am 9 Pm+/c-d (first part of proof) 

:. (Am,, 5 Pm-J = (A, 3 Pm+lc--l) (by transitivity) 

(Am 9 Pm) = (A,+1 , Pm-J (by IXC) 
:. (Am+1 9 Pm+k--l) = (Am,, > Pm) (by cancellation, VG) 

. . (A,, Pnl+A = (&+1 , Pmfk-d (first part of proof). 

A simple induction upon this result completes the proof, 

(IXF) THEOREM. If{&, Pi) and {Bj ,Qi> are dss's, and if (4 ,Qv> 3 (Bo, PA, 
then 

(IXG) tAr+w 3 Qu+n) 2 tB,+t, , P,,,,,) for all integers m and n. 

PROOF. 

(4 , Q,) 2 (4 1 f'z) (by hypothesis) 

(4 7 Qar+n) = @,+a 9 QJ (by dss, IXE) 

:. (4 9 Qu+n) 3 tB,+n 7 Pz) (by cancellation, VG) 

tA,+m 9 P,) = (A, 3 P,+m> t’v W 

:. W+m 9 Qv+n) 3 Ln 9 Pz+wJ (by cancellation). 
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(IXH) COROLLARY. If {Ai, Pi} and {Bi , Qi} are dss’s for which (A,, 9,) = 

(B, , P,), then (AI+, , Q,+J = (B,,, , P,,,,,) for all i%ws m and 11. 
PROOF. IXH follows from two applications of IXF: to (A,, $3,) 3 (B, , P,) and 

to ml T Pz) 3 (A, 9 QbJ- 

(IX J) EXISTENCE THEOREM. If axioms 1 to 3 hold, there is a dss on (A,, , PO) 

through A, , or through P, , or through (A, , P,) provided that (A,, , PJ = (A, , P,,). 

This dss is unique up to =. 

PROOF. I f  either A, or PI is given, but not both, take the missing element to be 
the solution of (A,, , PI) = (A,, P,,). Th e d ss is now constructed inductively. For i = 0 
and 1 the elements are given. For i > 1, if Ai , A,+1 , and Pi have been constructed, 
Pi+I is the solution to IXB whose existence is guaranteed by axiom 2. If  A, , Pie1 , 

and Pi have been constructed, Ai+l is the solution to IXC. For i < 0, if Ai , Ai,I , 
and Pi have been constructed, PipI is the solution to IXC. If  izi , Pi , and PipI have 
been constructed, A,-1 is the solution to IXB. If  {Ai , Pi} and {AI , Pi} are two dss’s 

so constructed, then Ai = A; and Pi = PI follow inductively using the second 
remark following VL. 

(IXK) DEFINITION. A dss is increasing ;f Ai < Ai+1 and Pi < Pi,l for all integers i, 

positive or negative. 

(IXL) LEMMA. A dss with A, > A, or with P, > P,, is increasing. 

PROOF. First, if A, > A,, , then (4, Pl) = (Al, PO) > (4, PO), and so, by 
transitivity and transfer, P, > P, . Similarly, if P, > PO, then A, > A,. Using 
this, we now show the dss is increasing. 

(A 2+1 9 PII > (-%+I 7 PO) (by transfer) 

(4,-l , Po) = (A, , P,) @Y w 

:. (Ai+1 3 P,) > (Ai, P,) (by transitivity) 

. . Ai+1 > Ai (by transfer). 

The proof that Pi+l > Pi is similar. 

(IXM) COROLLARY. Either a dss {Ai , Pi} is increasing, or it is trivial (i.e., A, = Ai 
and Pi = Pj for all i, j), or the reverse dss {A-, , P-J is increasing. 

X. LEMMAS ABOUT DSS’S 

In the next five lemmas we shall be concerned with dss’s on (A, P) for some fixed 
(A, P). We shall use * to indicate related elements of the opposite kind. Thus we may 
write either {Fi , FF} or {Xi* , Xi} for a dss {Fi , Xi}. 
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(XA) MULTIPLICATION LEMMA. Suppose axioms 1 to 3 hold. Let {Fi , Ff} be a 
dss on (A, P) andf or each integer n f 0 let {(F& , (F%)T} be a dss on (A, P) through F, . 
Then 

(XB) (F,& = Fni and (FJT = F,*i . 

PROOF. For any n, (F,& = F, . Hence 

(4 Fit) = (Fn , P) (by dss for F) 

(Fnl , P) = (V-3~ , P) (by transfer) 

((FA , P) = (A, (FAT) (by dss forF,J 

(AX) = (4 (Fd:) (by transitivity) 

F,* = (Fm)T (by transfer), 

and XB is established for i = 1. Proceeding by induction from i to i +;I 

((Fn)i+~ 9 P) = Wn)i 1 (Fn>T) (by dss) 

= (Fe ,F,*) (by induction) 

= Pci+m s 4 (by dss), 

whence (Fn)i+l = Fc~+~)~ Y b transfer. The inductive step for (FJT can be taken simi- 
larly, and XB is established for i > 0. 

If i < 0, then 

(Fni , F-*ni) = (A, P) (by dss for F) 

(A, P) = ((F& , (F,)?,) (by dss forF*) 

= ((Qi t Ff!ii) (by result for - i > 0) 

:. (Fni , F:ni) = ((F,)i , Pni) (by transitivity) 

:. Fni = (Fn)i (by transfer). 

The extension to (F,JT is immediate, and XB is completely established. 

(XC) Two-dss LEMMA. If axioms I to 3 hold, zf {Fi , Ff} and {Gi , GF} aye dss’s 
on (A, P) through F and G, respectively, and if F < G, then Fi < Gi for all i > 0. 

PROOF. For i= 1, F1 = F < G = G,. Since by dss, (F1,FT1) = (A,P)= 
(G, , G?,) and Fl < G, , we must have F?, > Gz, . Proceeding by induction, 

(Fi , P) = pi,, , PI) (by dss) 

(G > J’> = ((&+I, G”,) (by dss) 

V’, , 4 -=c (G , P> (by induction) 

:. (E’i, 1 , FT,) < (Gi,, , GI,) (by transitivity). 
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If Fi+* 3 Gi+1 I then since F?, > G?, , we would have (F*,, ,Fzi) > (Gi+, , Gzl), 
which is a contradiction; hence, F,,, < G,+i , and the induction is complete. 

(XD) FOUR-& LEMMA. Suppose axioms 1 to 3 hold and that {Fi , FT}, {X,?‘, X,}, 
(G, , GF), and (YF, YJ are dss’s on (A, P) through F, X, G, and Y, respectiveZy. If 
(F, X) 2 (G, Y), then for k > 0, (F, , Xk) >, (Gk , Yk). 

PROOF. Let H satisfy (H, X) = (G, Y) and let {Hi, HF} be the dss on (A, P) 
through H, which exists by IXJ. Thus, by the choice of H, (HI , XI) = (GI , YJ 
and so, by IXH with m = n = k - 1, (Hk , X,) = (G, , Y,) for all k. Since HI < F,, 
it follows from XC that H, < Fk for k > 0, and so (F, , X,) 3 (G, , Y,) by transfer. 

(XE) COMPARABILITY LEMMA. S pp u ose axioms 1 to 3 hold and that (Fi , FF> is 
a dss and {Bi , B:} an increasing dss on (A, P). If m, n > 0, j, and k are integers such 
that Bj >, F, and B, <F, , then j/m > k/n. 

PROOF. BY m, P%, , %,I and Pmwj F&J are dss’s on (A, P) through Bj and 
F, , respectively. If Bi 3 F, and n > 0, then by XC, Bj, 3 F,, . Similarly, if B, < F, 
and m > 0, then B,, <F,,, . By transitivity, Bjn > B,, , so jn > km, which was 
to be proved. 

(XF) LEMMA. Suppose that axioms 2 to 3 hold. If (F, X) > (G, Y) and {Bi , B:} 
is any dss for which there are integers f, g, x, and y such that 

B,,, >F3 B, B, > G 3 B,-1 

B,* > X 3 B:-1 B:+,, 

thenf+x+l>y+g-1. 
Note that {B, , BT} must be increasing. 

PROOF. Observe that 

(4, %,,.+I) = (%+I 7 B:) 

> (E’, 4 

> (G, Y) 

3 (B,-1, B:) 

= (B, , B,*_,) 

> .Y>B;, 

(by dss) 

(by transfer) 

(by hypothesis) 

(by transfer) 

(by dss). 

Therefore, by transfer, y-l <f-g-l-xi-l, and ~f+x-i-l>Y+g-l- 
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XI. THE EXISTENCE OF REAL-VALUED FUNCTIONS 

(XIA) DEFINITION. If{&} is a set of elements of d, its convex cover %‘{Bi} con- 
s&s of all A in & such that B, < A < B, for some j and k. If {BF} is a set of elements of 
9, its convex cover V{B:} consists of all P in B such that B,* < P < Bi for some g 
and h. 

(XIB) LEMMA. If axioms 1 to 3 hold and {Bi , BT} is an increasing dss, then for 
any A in W{Bi}, there exists an integer v such that B, > A 3 B,-, , and for any P in 
V{BT), there exists an integer TV such that B$ > P >, B,-, . 

PROOF. By the definitions of V(B,) and %‘{Br), there exist integers j, k, g, and h 
such that B, 3 A > Bi and Bz > P 3 B,*. The result follows by a simple finite 
induction. 

(XIC) LEMMA. If axioms 1 to 3 hold fov > over & x 8, and if {B, , BT} is a dss, 
then axioms 1 to 3 hold for >, over %{Bi} x %{BT}. 

PROOF. That axioms 1 (= VA) and 3 (= VG) hold for the Cartesian product of 
any pair of subsets of ~2 and 9’ is trivial. To prove axiom 2 (= VF), suppose that A 
is in %{Bi} and that P, Q are in V{BT}. Then there are integers j, k, g, h, e, and f such 
that Bj<A<B,, B,*<P<Bi, B,*<Q<BB,*. Let F be the solution of 
(F, P) = (A, Q). Then, by transfer and dss, (F, B,*) < (F, P) = (A, Q) < (B, , B,*) = 
(B,+f-, , Bz) so that F < Brc+r-g . A similar argument shows that Bj+e-h <F, so 
that F is in V{B,}. The remainder of axiom 2 follows similarly. 

(XID) COROLLARY (TO XIC AND IXJ). If axioms 2 to 3 hold, ;f {B, , BT) is a dss, 
and if F1 is in %{Bi) OT F: is in %?{B:}, then there is a dss {Fi , FF} on (B, , B,*) through 
F1 or FT with Fj in %‘{Bi} and Fj* in V(BF) for all j. 

REMARK. The proof of XIC shows that the conclusion holds for any {Fi , Ff} on 
(B, , B,*) through F, or FT. 

If {Bi , BT) is a given increasing dss, F1 is in W{Bi} or, as is equivalent, Fr is in 
%{Bt}, and if n > 0, XID shows that F, is in %T{Bi}, and XIB shows that there exist j 
and k so that both Bj >, Fn and B, <F,, . But XE shows that these inequalities divide 
the rational numbers into two sets, all those in the one being less than or equal to 
all those in the other, thus defining a Dedekind cut. So there is a single real number 
which simultaneously is the sup (least upper bound) of the lower set and the inf 
(greatest lower bound) of the upper set. Consequently, the following definition is 
meaningful. 

(XIE) DEFINITION OFFHAND $B. Suppose axioms 1 to 3 hold. Let an increasing dss 
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{Bj , Bf) be fixed, let F be in V{Bi}, let X be in ‘+C{Bf}, and let (Fi , FF} and {Xi , X:> 
be dss’s on (B, , B,*) through F = F, and through X = XI , respectively. Define 

pB(F) = inf I$- Bj>F,n,m>O( =+ B,<F,, n>O 

z,+hB(X) = inf 1; 1 B, > X,, , m > 01 = sup In B: < X, , n > 01. * ik 

We now have: 

(XIF) EXISTENCE THEOREM. Suppose that axioms 1 to 3 hold, that p > 0, q > 0, 
and Y are given veal numbers, and that {B, , Bf} is an increasing dss. There exist real- 
valuedfunctions IJJ, $, and 9, defined on S’{Bi}, V{B,*}, and g{B,} x V{B:}, respectively, 
such that 

(XIG) %(F> X> = ~~44 + MX) + y, 
(XIH) (F, X) > (G, Y) implies %(F, X) > %(G, Y), 

(XI J) F > G implies v(F) >, p(G), 

(XIK) X > Y implies 4(X) 3 4(Y), 

(XIL) #4) > dBJ and W?) > W8 

PROOF. With no loss of generality we may suppose that p = q = 1 and Y = 0, 

for if we have %‘(F, X) = q’(F) + $‘(X) satisfying XIH through XIK, then it is 
clear that 9 = 9’ - r, q = (p)’ ~ r)/p, and $I = (#’ - r)/q satisfy XIG through 
XIK. 

If  F > B, , define y(F) = v,(F) where v8 is as in XIE. If  F < B, , then define 
P-, as the solution in V{B:}, by XIC, of (F, B,*) = (B, , PpI) and define F-, as the 

solution in q{Bi} of (F-, , Pel) = (B, , B,*). Since F-, > B, , we may let T(F) = 
- cp&,). Proceed in a similar manner for 4, and set %(F, X) = v(F) + $(X). In 
what follows we work through the details only for positive v  and #, i.e., only for 
F, G > B, and X, Y > B,*. 

Suppose that (F, X) >, (G, Y). By IXJ and IXL, since F, G > B, and X, Y > B,*, 
there exist increasing dss’s {Fi , F,*}, {X,*, X,}, {G, , G,*}, and {Yz , Y,} on (B,, B,*) 
through F, X, G, and Y, respectively. By XD, (F,, , X,) > (G, , Y,) for n > 0. 
By XIB and XIC, for any n > 0, there exist integersf, x, g, and y  such that 

Bf+l >Fn 3 B,, B, > G, > BeI 

B,* >X,>&, B;+J,,>Y,>B:. 
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Thus, by XF, f + x + 1 > g + y - 1. But from the definitions of vB and #B 

%dF) + h@) af + ; - ’ 

=f+“+l 2 -- 
n n 

,g+y-1 2 
n n 

=g+y+l 4 -- 
n n 

> vB(G) + #B(Y) - t * 

Since n is arbitrary, we have, since F, G > B, , X, Y > B,*, 

WC X) = v,,(F) + A#‘) >, FAG) + h(Y) = e(G, Y), 

which proves XIH. 
Suppose F > G, then by transfer (F, B,*) 3 (G, B,*), and by the choice of 0 and by 

what we have just seen, 

Thus v(F) = vB(F) > v~(G) = v(G), which p roves XI J. The proof of XIK is similar. 
Finally, XIL follows from definition XIE since 

cp(Bi) = n@i) = i and I&B,) = I/~(BT) = i for i 3 0. 

(XIM) COROLLARY. If axioms I to 3 hold, if (Bi , Bz> ic an increasing dss, and if 
{Gj , GF} is any dss with Gi in %T{B,} and GF in %T{BT} for all j, then for any functions p 
and # satisfying XI J and XIK ovw %T{Bi} and V{BT}, respectively 

dGJ - dGo) = 4dGd - dG)l 

$(G:) - ICI(G) = +,46+?- 1cr(G,X 

PROOF. For n = 0 and n = 1, XIM clearly holds. For n > 1 we proceed by 
induction. By dss, (G,+i , G,*) = (G, , G;“) and (G, , G:) = (Gr , G,*), so by XIG, 
XIJ, and XIK 

dG+d + ICr(G:) = dGJ + ICr(GT) 

dG,! + NG:) = cp(G) + IL(G). 
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Adding and cancelling, 

dGn+d + dG) = dG) + 4(G). 

Using this and the induction hypothesis, 

dGn+d - dG,J = d’%) - dGJ + ~(‘3 - dGo) 

= 4dG) - dG)l + v(G) - T(G) 
= (n + 1) b(Gd - dG)l- 

If n < 0, then by dss (G-, , G,*) = (G, , Gz,) and (G, , Gz,) = (G, , G,*). Using 
XI J and XIK, adding the resulting equations, and using the result for positive integers 
yields 

dGn) - v(G) = - b(G-J - dGd1 
= - (- 4 MG,) - dGJ1 
= 4P(G) - dGll)l* 

A parallel proof holds for I+. 

(XIN) UNIQUENESS THEOREM. Suppose that axioms I to 3 hold, real numbers 
p > 0, q > 0, and r are given, and an increasing dss {Bi , B:} is fixed. [f 8, v, # and 
0’, ‘p’, #’ are two sets offunctions satisfying XIF with the same p, q, r, and {Bi , B:}, then 
there are real constants a > 0, b, and c such that 

0’ = a0 + 6 + c, 

y’ = ap, + b, 

#’ = 4 + c, 

i.e., the three scales are interval scales with consistent units. 

PROOF. With no loss of generality we may assume that p = q = 1 and Y = 0, 
that v’ = qB and #’ = I/* are the functions defined in XIE, and so 0, = qB + #s 
and T~(B,,) = 1,5s(B,*) = 0. We show that [q(F) T v(B,)]/cp,(F) is a constant for 

F#B,> where F is in V(B,}. Suppose then, with no loss of generality, there 
exists a G # B, such that 

v(F) - dBo) > v(G) - dBo) 
vAF) P)BW ’ 

Furthermore, we can assume F, G > A, for suppose F < A, then define Q and 
H>Aby 

(F, Bit) = (Bo, Q> 

U-4 , B,*) = (H, 8) - 
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By the properties of p, $, yB, and +B, 

Thus, 

and so 

A similar argument shows that we may assume G > B, . Since all of the terms of the 
inequality are positive, it can be rewritten as 

et(G) ~(‘7 - VP,) > L 
v’B(F) v,(F) - dW 71 

for some integer 71 > 0. Let {Fi , F,“} and {G, , G:} be dss’s on (B,, , Bc) through F 
and G, respectively. By IXL they are both increasing, by XID they can be taken in 
V{B,} and %Y{BT}, and so by XIB there exists an integer m such that F, > G, 3 F,-,; 
hence by XIM 

and so 

Similarly, 

WG) - cpW1 = dG) - d%) 
3 PPm-I) - ?m 
= (m - 1) bm - d4J19 
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and so, 

v(G) - dGJ > m - 1 
v(F) - d&l) ’ --i-- * 

Thus, 

which is impossible. So v and ‘ps are linearly related. 
Similar proofs show that I/ and #B are linearly related and that f3 and 8, are linearly 

related. Suppose that the equations are: 

91B = up, + b, & = a’* + c, I3, = a”6 + d. 

We show that a = a’ = u” and d = b + c. Keeping in mind that 

TJBml) = ICIBPO*) = u4l , m = 0, 
ED + b = yB(F) = e,(F, IS,*) = a’V(F, II,*) + d = CT(F) + a”$(B$) + d. 

Since this must hold for all F, a = a”. A similar argument with II, shows that a’ = a”. 
Finally, 

40,, B,*) = 0 

The proof is concluded. 

XII. THE ARCHIMEDEAN AXIOM AND ITS CONSEQUENCES 

We now add the Archimedean axiom (VIC = axiom 4). 

(XIIA) LEMMA. If axioms 1 to 3 hold, axiom 4 is equivalent to: 

if (Bi , Br} is an increasing dss, then %T{B,) is .JZ? and %T{B,*} is .Y. 
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PROOF. Suppose axiom 4 holds and that {Bi , Bt} is an increasing dss, then for 
any A in &, there are integers m and n such that 

whence, by dss, 

(J-L 1 B,) 2 (4 4,) 3 (Ban , 4,). 

So, by transfer, B,, >, A >, B,, ; hence A is in %?{Bi). The proof for the other com- 
ponent is similar. 

The converse is obvious. 
We can now strengthen the existence theorem XIF by simplifying the hypotheses 

and replacing implication in XIF to XIK by equivalence. 

(XIIB) ARCHIMEDEAN EXISTENCE THEOREM. Suppose that axioms 1 to 4 hold and 
that p > 0, q > 0, and r are given real numbers. There exist real-valued functions v, 4, 
and 6 dejined on &, 9, and & x 9, respectively, such that 

WW VT 4 = W(F) + q+(X) + r, 

(XIID) (F, X) 3 (G, Y) is equivalent to 0(F, X) > B(G, Y), 

(XIIE) F 3 G is equivalent to v(F) 3 v(G), and 

(XIIF) X > Y is equivalent to $(X) 3 #(Y). 

PROOF. If all A in ~2 are equal or, equivalently, if all P in 23’ are equal, then any 
constant functions satisfy XIIC through XIIF. Otherwise, there is an increasing dss 
in &’ x 9 to which XIF applies. By XIIA, this establishes XIIC and the implications 
from left to right of XIID to XIIF. We thus need only consider the opposite implica- 
tions. 

Let some increasing {Bi , Bf) be given, let F~(F), +B(X) be defined as in XIE, and 
let v(F) and 9(X) be defined as in the proof of XIF. We continue to restrict ourselves 
to F, G > B, . Consider first T(F) > v(G). If y(F) > v(G), then F > G; for if F < G, 
then by XI J v(F) < v(G), contrary to assumption. It suffices, therefore, to show that 
y(F) = v,(F) = y,(G) = v(G) implies F = G. Suppose not, then with no loss of 
generality we may assume F > G. By IXJ and IXL there exists an increasing dss 
CC,, C:> on (G, B,*) through F, and since F = C, and G = C, , y(C,) = pl(C,,). By 
definition of a dss, (C, , C,*) = (C,, , Cc), so by what has just been shown 

da + w,*) = f4clT cl) = w, , CT) = dco) + w3 
hence #(C,*) = #(C,*). Also, by definition of a dss, (C, , C,*) = (C, , C,*), and so 
cp(C,) + #(C,*) = v(Ci) + #(Cc), and so p)(Ca) = v(Ci) = p(CO). Proceeding in- 
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ductively, p(CJ = q(Cs) and #(C,*) = #(C,*) for all i. For any B, , XIB and XIIA 
imply there exists some i such that Ci > B, > CfF1 , whence 

dc,,) = v(G) 2 d4J B dci-I) = dcoh 

hence v(B,) = q(C,,). H owever, by XIE, v(B,) = v,(B,) = v. Since Y is an arbitrary 
integer, we have a contradiction. Thus, F = G which completes the proof of XIIE. 

A parallel proof shows that $(X) 3 4(Y) ’ pl im ies X > Y, which completes the 
proof of XIIF. 

Finally, suppose B(F, X) > 8(G, Y). If B(F, X) > B(G, Y), then as above 
(F, X) > (G, Y). If 8(F, X) = 0(G, Y), then let Z be the solution of (F, X) = (G, Z). 
Now, 0(F, X) = B(G, Y) implies 

v(F) + 4(X> = F(G) + W>, 

and (8, X) = (G, Z) implies 

q(F) + t4X) = v,(G) + ?‘V? 

Thus, W7 = W?, w h ence by XIK, Y > Z and Z 3 Y so that (G, Y) = (G, Z), 
and by transitivity (F, X) = (G, Y), which completes the proof of XIID. 

(XIIG) ARCHIMEDEAN UNIQUENESS THEOREM. Suppose that axioms 1 to 4 hold 
and real numbers p > 0, q > 0, and r are given. If  9, v’, I) and 8’, y’, (CI’ are two sets of 

functions satisfying XIIB, there are real constants a > 0, b, and c such that 

0’ = a0 + b + c, 

4 = ag, + b, 

#’ = 4 + c, 

i.e., the three scales (defined on ~4 x 8, &, and 9, respectively) are interval scales with 
consistent units. 

PROOF. If all A are equal, or if all P are equal, only constant functions can satisfy 
XIIB. Otherwise there will be an increasing dss {B, , Br} and XIN and XIIA imply 

XIIG. 
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