
SEMIORDERS AND A THEORY OF UTILITY 
DISCRIMINATION 

In  the theory of preferences underlying utility theory i t  is generally assumed 
that  the indifference relation is transitive, and this leads t o  equivalence classes 
of indifferent elements or, equally, t o  indifference curves. It has been pointed 
out that  this assumption is contrary to  experience and that  utility is not per- 
fectly discriminable, as such a theory necessitates. In  this paper intransitive 
indifference relations are admitted and a class of them are axiomatized. This class 
is shown t o  be substantially equivalent t o  a utility theory in which there are just 
noticeable difference functions which state for any value of utility the change in 
utility so that  the change is just noticeable. In  the case of risk represented by a 
linear utility function over a mixture space, the precise form of the function is 
examined in detail. 

1. INTRODUCTION 

IT IS A commonplace that the modern theories of utility [7, 121, and therefore 
disciplines such as game theory [5, 121, statistical decision theory [5], and subjec- 
tive probability theory [11] which employ utility theory, assume the existence of 
binary preference relations which are weak orderings of sets of alternative out- 
comes. There are various possible axiom systems to characterize a weak order; 
the one we shall present is not the most elegant, but it  is well suited to our pur- 
pose. Let > and - be two binary relations on a set S, then we say (>, -) is a 
weak ordering of S if 

W1. for every a, b r S, exactly one of a > b, b > a, or a - b obtains, 
W2. - is an equivalence relation, 
W3. > is transitive. 

From these it follows directly that > is irreflexive and anti-symmetric. In  
utility theory, a > b is interpreted to mean "a is preferred to b," whereas a - b 
is interpreted as "indifference between a and b." 

There has been some concern over the adequacy of these axioms to represent a 
person's preference pattern; see, for example, [lo]. Possibly the knottiest problem 
is the question of the invariance of a person's preferences over time, and in par- 
ticular whether they remain invariant during any experiment which purports to 
discover the preference pattern. A second problem, sometimes considered to be 
simply an observable correlate of the first one, exists in the assumption that > 
is transitive. Experiments have been performed, and personal experience is 
easily adduced, in which > is not transitive. The axiom is not, however, easily 
sacrificed. I t  is necessary if one is to have numerical order preserving utility 
function, and such functions seem indispensable for theories-such as game 
theory-which rest on preference orderings. Furthermore, there is the important 

1 This work was undertaken and completed when the author was a 1954-55 Fellow a t  the 
Center for Advanced Study in the Behavioral Sciences, Stanford, California. 
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subjective contention that a "rational" preference ordering should satisfy the 
transitivity condition. For example, Savage [ll, p. 211 writes ". . . when i t  is 
explicitly brought to my attention that I have shown a preference for f as com- 
pared with g, for g as compared with h, and for h as compared with f, I feel un- 
comfortable in much the same way that I do when i t  is brought to my attention 
that some of my beliefs are logically contradictory." Our quarrel with the axioms 
of utility theory does not lie here, and we too shall take the attitude that, a t  
least for a normative theory, the preference relation should be transitive. 

What appears to have received less attention in these debates is the adequacy 
of the other major axiom, namely, the condition (W2) that - should be an 
equivalence relation. Specifically, we feel that there is little defense for supposing 
that - is transitive. The author who has most repeatedly questioned this as- 
sumption is Armstrong [I, 2, 3, 41. For example, on page 122 of [3] he writes: 
"The nontransitiveness of indifference must be recognized and explained on 
[sic] any theory of choice, and the only explanation that seems to work is based 
on the imperfect powers of discrimination of the human mind whereby inequali- 
ties become recognizable only when of sufficient magnitude." 

First, let us consider empirical evidence. It is certainly well known from 
psychophysics that if "preference" is taken to mean which of two weights a 
person believes to be heavier after hefting them, and if "adjacent" weights are 
properly chosen, say a gram difference in a total weight of many grams, then a 
subject will be indifferent between any two "adjacent" weights. If indifference 
were transitive, then he would be unable to detect any weight differences, how- 
ever great, which is patently false. If this example is too far afield from ordinary 
preferences, consider the following experiment. Find a subject who prefers a cup 
of coffee with one cube of sugar to one with five cubes (this should not be difficult). 

Now prepare 401 cups of coffee with 1 f -- x grams of sugar, i = 0, 1, . . , ( 100) 
400, where x is the weight of one cube of sugar. It is evident that he will be in- 
different between cup i and cup i f 1, for any i, but by choice he is not indifferent 
between i = 0 and i = 400. 

These two examples suggest an important point about the intransitivity of 
some indifference relations, namely, that i t  reflects the inability of an instrument 
to discriminate relatively to an imposed discrimination task. We tacitly, but cor- 
rectly, assumed that non-human instruments exist which can discriminate be- 
tween certain weights and certain concentrations when a human being cannot. 
It might, therefore, be thought that we can always eliminate intransitivities in the 
indifference relation by providing the subject with more refined measuring tools; 
however, with respect to certain measurements there are inherent difficulties if 
present day physics is correct. For example, the Heisenberg uncertainty princi- 
ple states that there exists an inherent uncertainty in the simultaneous measure- 
ment of the position and velocity of a particle, but clearly these uncertainties are 
not transitive. Thus there seems to be a basic philosophic objection to the as- 
sumption that - is transitive. Furthermore, in many preference situations i t  
does not seem justified to assume the existence of a more basic underlying scale 
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which can be detected by inore refined instrumentation, and a t  the same time 
it  is difficult to argue that a person should feel uncomfortable and dissatisfied 
with his preferences simply because he has reported indifferences which are not 
transitive. We propose, therefore, to drop this assumption and to replace i t  by 
what we feel are intuitively more reasonable conditions. 

Before turning to this, let us mention one more controversial point in utility 
theory which has caused some unrest. In  applications where a real-valued order- 
preserving utility function is postulated, a maximization principle is almost al- 
ways employed which states in effect that a rational being will respond to any 
finite difference in utility, however small. It is, of course, false that people behave 
in this manner, but it  is argued that this is one of the prices of a simple idealized 
theory. Nevertheless, some workers have continued to be uncomfortable, for it  is 
clear that the idealized theory cannot exhibit certain possibly important phe- 
nomena. Possibly this is not a concern if all the applications are actually treated 
as normative, though even that is doubtful. 

I t  is not implausible that the phenomenon of imperfect response sensitivity to 
small changes in utility is closely related to intransitivities of the indifference 
relation. We propose to examine the interrelation in detail and to show that a 
comparatively simple theory of utility can be constructed in which a person is 
not sensitive to all changes in utility. The theory we shall obtain yields a non- 
statistical analogue of the "just noticeable difference" concept of psychophysics. 
It is in a sense a much more general notion for it  applies to cases where no under- 
lying continuum is assumed to be known, as is always the case in psychophysics, 
but i t  is less general in that no statistical assumptions are made concerning the 
variability of the subject. 

In  the next section we shall introduce a new set of preference axioms which 
allow for intransitive indifference relatiom2 We shall use the term semiorder 
(under the belief that this word has not been used for another concept) for rela- 
tions satisfying these axioms. The central result of Section 3 will show that in 
terms of any semiorder i t  is possible to define a natural weak ordering of the 
same set. In  case the semiordkr is a weak order then the induced weak order is 
identical to the given one. In  the following section we assume that the induced 
weak ordering defines a real-valued order-preserving function. It is shown that 

Some months after this paper was submitted for publication, an article by Halphen 
[4] appeared, and i t  was brought t o  my attention by Professor I,. J. Savage. In  discussing 
the foundations of probability, Halphen raises much the same arguments as we have against 
the assumption of transitivity of indifference, or as he calls it  "equivalence." He arrives a t  
an axiom system generalizing a partial order which, if the comparability of all pairs of 
elements were imposed, is extremely similar to  but somewhat stronger than ours. In  place 
of our Axiom 3 he has a relatively minor variant, and in place of Axiom 4 he assumes that  
either part (ii) or part (iii) of Definition 1 (Section 3) holds. We would argue that  our Axiom 
4 is to  be preferred since i t  does not postulate the existence of an element having such and 
such properties. He observes that  a partial order can be defined in terms of the given order 
in  much the same way as we do in Section 3. Since his interest is in probability theory, he 
does not pursue our direction of the representation of such orders by numerical functions; 
rather, he concerns himself with a notion of measure. 
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i t  is possible to define two real-valued nonnegative functions on the same set, 
which we have called upper and lower j.n.d. (just noticeable difference) func- 
tions, which characterize the change in utility necessary for indifference to be- 
come preference. I n  Theorem 2 we establish necessary conditions interrelating 
these three numerical functions. The third theorem shows these conditions are 
also sufficient in the following sense: If one is given three functions, defined over 
the same set and which satisfy the conditions of Theorem 2, then (i) the three 
functions define a natural semiordering of the set, (ii) the weak order induced by 
the semiorder is identical to the weak order induced by the utility function, and 
(iii) the two j.n.d. functions of the induced semiorder are two of the given func- 
tions (and the other is, by choice, the utility function of the weak order). In the 
last section we show that if a semiordered mixture space possesses a linear utility 
function u satisfying certain weak conditions, then u is a linear transformation of 
a function p which is defined in terms of experimentally realizable operations. 
The evaluation of p a t  any n points requires only n observations. The function p 

is generally defined for semiordered mixture spaces, but it  is not necessarily 
linear or order preserving, so these conditions must be verified to know whether 
a semiordered mixture space has a linear utility function or not. A complete 
verification, as for the von Neumann and Morgenstern axioms for weakly or- 
dered mixture spaces, requires an infinity of observations. 

2. SEMIORDERS 

Let S be a set and P and I be two binary relations defined over S. (P, I) is a 
semiordering of S if for every a, b, c, and d in S the following axioms hold: 

S1. exactly one of aPb, bPa, or aIb obtains, 
S2. ala.  
S3. aPb, bIc, cPd imply aPd, 
S4. aPb, bPc, bId imply not both aId and cld. 

The intuitive grounds for the first two axioms are clear. The last two axioms arise 
from intuitive considerations such as these: we should like to be able to string 
out all the elements of S on a line in such a fashion that an indifference interval 
never spans a preference interval. It is easy to see that we shall need S3 and 54 
if we represent them graphically, where an arrow from a to b denotes aPb and a 
line between them denotes alb. Axiom 53 is equivalent to: 

and 

implies ./->. 
a c F  d 
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Axiom 54 is equivalent to asserting that neither of the following configurations 
can ever arise: 

It is easily seen that if either of these axioms is violated there will be situations 
in which an indifference interval includes a preference interval, i.e., a drawing of 
the form /-----. .->.-. 

a b c 

Thus, S3 and S4 are argued to be necessary axioms; part of our results will show 
that they, along with S1 and 52, are sufficient to prevent the last diagram from 
arising. 

It follows directly from these axioms that I is symmetric, that P is transitive, 
and that aIb and bPc imply not cPa. It is also trivial to show that a weak order 
is a semiorder, but not conversely. I t  is not difficult to establish that the axioms 
are independent; the only two mildly interesting cases are 53 and 54, and Exam- 
ple 1 below presents a pair of relations in which all save S3 are met, and in Exam- 
ple 2 all save S4. 

a I P P I  
b I T P  
e I P  
d I  

I I P P P I  
I I P P I  

I I P I  
I I I  

I I  
I 

If P is an arbitrary relation defined over S, an indifference relation I can al- 
ways be defined as follows: for a, b e S, aIb if and only if neither aPb nor bPa. 
Clearly I is symmetric. In what follows we shall always suppose I is defined by 
exclusion. 

DEFINITION 1: The relation (>, -) induced on S by a given relation (P, I )  
on S is defined as follows: a > b if either 

(i) aPb, 
(ii) aIb and there exists c e S such that aIc and cPb, or 
(iii) aIb and there exists d e S such that aPd and dIb. 

If neither a > b nor b > a, then a - b. 

Observe that if (P, I )  is a weak ordering of S, then neither condition (ii) nor 
(iii) can arise because of the transitivity of the indifference relation, so the in- 
duced relation is the same as the given one, and in particular i t  is a weak order. 
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Our first theorem shows, in part, that this is always the case if (P, I )  is a semi- 
order. 

THEOREM 1 : (P, I )  is a semiorder if and only z';f P is transitive and (>, .-) is 
a weak order. 

PROOF: First, let us suppose that P is transitive and (>, -) is a weak order; 
then we show (P, I )  meets the four axioms of a semiorder. 

S1. Since I is defined by exclusion, this axiom can be violated only if there 
exist a, b r S such that aPb and bPa. In this case D l  implies a > b and b > a, 
which contradicts Wl.' 

52. aIa, for if aPa, then (Dl)  a > a, which contradicts W2. 
53. Suppose aPb, bIc, and cPd. If dPa, then by the transitivity of P, dPa and 

aPb imply dPb. But cPd and dPb imply cPb, which is impossible since cIb. Next, 
suppose aId. If arc, then cPd, dIa, and cIa imply (Dl) c > a. But aPb, bIc, and 
aIc imply (Dl) a > c, which is impossible. If cPa, then by the transitivity of 
P, cPa and aPb imply cPb, which by S1 contradicts cIb. If aPc, then by the 
transitivity of P, aPc and cPd imply aPd, which contradicts the assumption j 

aId. Thus, we must conclude aPd. 
54. Suppose aPb, bPc, bId, aId, and dIc. By D l ,  bPc, cId, and bId imply b > d, 

but dIb, dIa, and aPb imply d > b, which is a contradiction by W1. 
(In the above portion of the proof the assumption that P is transitive is 

necessary as can be seen by the following example: 

The relation P is not transitive since bPc, cPd, and bId, and so it  is not a semi- 
order, but the relation (>, -) induced by D l  is easily seen to be a weak order- 
ing of (a, b, c, dl.) 

Conversely, if (P, I )  is a semiorder then we know that P is transitive and we 
proceed to check that (>, -) is a weak ordering of S. 

W1. I t  is sufficient to show that a > b implies not b > a. Suppose, on the 
contrary, a > b and b > a;  then, by D l  and S1, aIb. We may distinguish four 
cases: There exist elements c and d such that 

(i) aIc, cPb, bId, dPa. dPa, aIc, cPb imply (53) dPb, which by S1 contra- 
dicts dIb. 

(ii) arc, cPb, bPd, dIa. cPb, bPd, aIb imply (54) not both cIa and aId, which is 
contrary (Sl) to assumption. 

(iii) aPc, cIb, bId, dPa. dPa, aPc, aIb imply (S4) not both dIb and bIc, which 
is contrary (Sl) to assumption. 

(iv) aPc, cIb, bPd, dIa. aPc, clb, bPd imply (83) aPd, which by S1 contra- 
dicts aId. 

l a  c d 

a D l  refers to  Definition 1,  W1 to  Axiom MTl of Section 1, etc. 

a 
b 
C 

d 

I P P  
I P I  

I P  
I 
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W2.  By D l ,  - is symmetric. It is reflexive for if a > a, then by Dl either 
aPa, which is impossible (S2), or there exists c e S such that aIa, aIc, cPa, which 
is impossible (81). I t  is therefore sufficient to show - is transitive. Suppose, 
with no loss of generality, a - b, b - c, a > c. By Dl ,  a - b and b - c imply 
aIb and bIc, whereas a > c implies either aPc or aIc. If aPc, then aPc, bIc, aIb 
imply ( D l )  a > b, which contradicts ( W l )  a - b. Thus, aIc and, by D l ,  either 
there exists d e S such that aId and dPc or there exists e e X such that ape and 
eIc. Suppose the former. If dIb, then dIb, dPc, bIc imply ( D l )  b > c, which 
contradicts ( W l )  b - c. If dPb, then dPb, dIa, aIb imply ( D l )  a > b, which 
contradicts ( W l )  a - b. If bPd, then bPd, dId, dPc imply (S3) bPc, which 
contradicts (81) bIc. A similar argument applies if e exists, so - is transitive. 

W 3 .  > is transitive: Suppose a > b and b > c. By D l ,  four cases can arise. 
If aPb and bPc, then (S3) aPc and so (Dl), a > c. If aPb and bIc, then either 
aPc or aIc. If aPc, then ( D l )  a > c, so we suppose aIc. By D l ,  aIc, bIc, aPb 
imply a > c. If aIb and bPc, a similar argument holds. If aIb and bIc, then by 
Dl we need only consider the cases cPa and cIa. By D l  we know that there 
exist two elements d and e in one of four possible arrangements: 

(i) aId, dPb, bIe, ePc. If cPa, then cPa, aId, dPb imply (83) cPb, which con- 
tradicts ( S l )  bIc. So arc. Suppose ePa, then dPb, bIe, ePa imply (S3) dPa, which 
contradicts ( S l )  aId. Suppose ape, then ape, ePc, bIe imply (84) not both aIb 
and bIc, which is contrary ( S l )  to hypothesis. Thus (S l ) ,  aIe, but arc, ale, ePc 
imply ( D l )  a > c. 

(ii) aId, dPb, bPe, eIc. If cPa, then cPa, aId, dPb imply (83) cPb, which con- 
tradicts ( S l )  bIc. So aIc. Suppose ePa, then ePa, aIb, bPe imply (53) ePe, which 
is impossible (52). Suppose eIa, then eIa, bPe, aIb imply ( D l )  b > a, which 
contradicts ( W l )  a > b. Thus ( S l ) ,  ape, and ape, eIc, aIc imply ( D l )  a > c. 

(iii) aPd, dIb, bIe, ePc. If cPa, then ePc, cIc, cPa imply (S3) ePa, but ePa, aPd, 
aIb imply (S4) not both eIb and bId, which is contrary ( S l )  to  assumption. So 
alc. Suppose cPd, then cPd, bIc, bId imply ( D l )  c > b, which contradicts 
( W l )  b > c. Suppose dPc, then aPd, dPc, dIb imply (54) not both aIb and bIc, 
which is contrary ( S l )  to assumption. Thus ( S l ) ,  cId, and cId, aPd, aIc imply 
( D l )  a > c. 

(iv) aPd, dIb, bPe, eIc. If cPa, then cPa, aIa, aPd imply (53) cPd, but cPd, 
dIb, cIb imply ( D l )  c > b, which contradicts ( W l )  b > c. So aIc. aPd, dIb, 
bPe imply (S3) ape, and ape, elc, aIc imply ( D l )  a > c. 

4. UTILITY DISCRIMINATION 

Let (>, -) be a weak ordering of a set S ;  then any real-valued function u 
defined over S will be called an order preserving function of (8, >, *) provided 
that u(a) > u(b) if and only if a > b. Examples can be given to show that such 
a function does not always exist [7]; however, certain sufficient conditions for 
their existence are known [6, 7, 121. 

DEFINITION 2: Let (P,  I) be a semiordering of S and suppose u is an  order 
preserving function of ( S ,  >, -), where (>, m) is the weak ordering induced 
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by (P, I) according to Dl .  We define the upper j.n.d. function as 

8(a) = sup [u(b) - u(a)l 
a l b  

and the lower j.n.d. function as 

d(a> = sup [u(a) - u(b)l. 
b 

aIb 

Since aIa, it is obvious that these functions are nonnegative. 

DEFINITION 3: Let (P, I )  be a semiordering of S and u a real-valued function 
defined over S; then we say u is a utility function of (S, P, I )  if 

U1. u is an order preserving function of (S, > , -), where ( > , -) is the weak 
ordering of S induced by (P, I),  and 

U2. for any a e S there exist b, c 6 S such that u(b) = u(a) + 8(a) and 
aIb, u(c) = u(a) - 4(a) and aIc, where 8 and 4 are defined in D2. 

THEOREM 2: Let (P, I )  be a semiordering of S such that there is a utility function 
u of (S, P ,  I )  ; then 

(i) aIb if and only if u(b) - 6(b) < u(a) < u(b) + 8(b) and aPb if and only 
if u(a) > u(b) + 8(b); 

(ii) u(a) < u(b) + 8(b) if and only if u(a) < u(b) + 8(a); 
(iii) if u(a) < u(b) then either u(a) + 8(a) < u(b) + 8(b) or ~ ( a )  + b(b) < 

u(b) + 6(a). 
PROOF: (i) If aIb then the conclusion is obvious from D2. Conversely, we con- 

sider three cases: 
1. u(a) = u(b). By U1, a - b and so (Dl) aIb. 
2. u(a) > u(b). By U2 there exists c E S such that u(c) = u(b) + 8(b) and 

cIb, so (using the hypothesis), u(c) >, u(a). Since u(a) > u(b), a > b by U1, 
and so from D l  we know the only interesting case is aPb. Now, suppose cPa, 
then cPa, aIa, aPb imply (53) cPb, which contradicts (Sl) cIb. So cIa. But 
aIc, cIb, aPb imply (Dl) a > c, and by U1 this implies u(a) > u(c), contrary 
to what we have shown. 

3. u(a) < u(b). The proof closely parallels case 2. 
The second part of (i) follows immediately. 

(ii) Suppose u(a) < u(b) + 8(b). If u(a) < u(b) then since 4(a) is nonnegative 
the conclusion follows. If u(a) > u(b), then by part (i), aIb. But 4(a) = sup 

C 
c l a  

[u(a) - u(c)] > u(a) - u(b), and the conclusion follows. The converse is 
similar. 

(iii) Suppose u(a) < u(b); then by U1, b > a. If bPa, then by part (i), u(a) + 
B(a) < u(b) < u(b) + B(b) and u(b) - 8(b) > u(a) >, u(a) - 8(a). If bla, then 
by D l  either there exists c e S such that aIc and bPc or there exists d e S such 
that bId and dPa. Suppose the former obtains. Using part (i) twice, u(c) < 
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u (b)  - 8(b) < u(a) .  Bu t  alc,  so b y  part ( i ) ,  u ( a )  - 4(a) f ~ ( c )  < u(b)  - d(b), 
or, rewriting, u ( a )  + 4(b) < u(b)  + d(a). I f  d exists, then the  first statement of 
(iii) follows b y  a parallel argument. 

COROLLARY: I f  u i s  a utility function of (8, P, I ) ,  if 8(a) = 4(a) = 6(a) for 
every a E S ,  and i f  6 i s  a monotonic function of u, then 6 i s  a constant which i s  
nonzero only i f  sup u ( a )  = ca and inf  u ( a )  = - oo . 

PROOF: Assume 6(a) # 0, and choose any a t S such that  &(a)  > 0. Let u s  
suppose 6 is monotone nondecreasing. Define b b y  u ( a )  = u(b)  + 6(a). Since 
u ( a )  > u(b) ,  6(a) >, 6(b) b y  the  monotonicity assumption. Bu t  b y  case (ii) of  
the  theorem, u ( a )  < u(b)  + 6(b), so &(a) < 6(b), hence 6(a) = 6(b). Because 6 
is monotonic, i t  is constant i n  the  interval f rom u(b)  t o  u (a) .  Beginning at b we 
m a y  show in the  same manner that 6 is constant and equal t o  6(a) from u(b)  - 
&(a) t o  u(b).  T h e  proof proceeds inductively in steps of  6(a) for decreasing u. 
Clearly inf  u ( a )  = - oo. For increasing u, choose b, c E S such that  u ( a )  + 
6(a) = u(b)  and u(c)  = u(b)  - 6(b). Since 6 is monotonic nondecreasing, 
6(c) < 6(b) and u(c)  < u(a) .  B y  part ( i i)  o f  the  theorem, u(c)  + 6(b) = u(b)  
implies u(b)  < ZL(C) + 8(c), SO 8(b) < d(c), i.e., 6(b) = 6(c). Bu t  since u (c )  f 
u(a) ,  the  first part o f  the  proof implies 6(b) = 6(a). W e  m a y  proceed inductively 
i n  steps of  &(a)  t o  show 6 is a constant for all values of  u. Clearly, sup u (a)  = a. 

T h e  next theorem, a partial converse t o  Theorem 2, shows that  under quite 
broad conditions no  relations among u, 8,  and 4 other than conditions (ii) and 
(iii) o f  Theorem 2 can be found. 

THEOREM 3 :  Let u be a real-valued function and let 8 and 6 be nonnegative real- 
valued functions dejined over a set S .  If these functions satisfy condition (ii), Theorem 
2, fhen part ( i ) ,  Theorem 2, dejines a semiordering ( P ,  I )  of S. I f ,  in addition, con- 
dition (iii) i s  met and i f  for every a E S ,  ~ ( a )  + 8(a),  ~ ( a )  - 4 ( a )  E u ( S ) ,  then 

(i) the weak order induced by ( P ,  I )  according to Dl i s  identical to the weak order 
induced by u according to U 1 ,  

(ii) the upper and lower j.n.d. functions induced by ( P ,  I )  and u according to 
D2 are 8 and 4 respectively, and 

(iii) u i s  a utility function of (8, P ,  I ) .  

PROOF: From part ( i ) ,  Theorem 2, we define ( P ,  I )  as follows: for any a, b E S 
with, say, u (a )  >, u(b) ,  aPb i f  u (b )  + 8(b) < u ( a ) ,  and aIb if u(b)  + 8(b) 2 
u(a>. 

First, we show ( P ,  I )  is a semiordering of  S .  
S1. This  axiom follows immediately from the  definition. 
52. For any  a, u ( a )  + 8(a) >, u ( a )  since 6 is nonnegative, so ala.  
83. Suppose aPb, blc, and cPd. From aPb and cPd we know u(b)  + 8(b) < 

u ( a )  and u ( d )  + 8(d) < ~ ( c ) .  I f  u (c )  < u(b) ,  then u ( d )  + 8(d) < u(c )  f 
u(b)  < u ( a )  - S(b) < u(a) ,  so aPd b y  definition. I f  u(c)  >, u(b) ,  then blc im- 
plies u(b)  + 8(b) >, u(c),  and so u ( d )  + d(d) < u(c)  < u(b)  + 8(b) < u(a) ,  
hence aPd. 
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S4. Suppose aPb, bPc, bId, aId, and cId. Let us suppose u(d) > u(b). If 
u(c) < u(d), then since cld, u(c) + S(c) > u(d) > u(b), but bPc implies 
u(b) > u(c) + S(c). This contradiction implies u(c) > u(d), which in turn 
implies u(c) > u(d) > u(b). However, bPc implies u(b) > u(c), which contra- 
diction forces us to assume u(d) < u(b). Since aPb, u(b) + 8(b) < u(a), which 
by condition (ii), Theorem 2, implies u(b) + J(a) < u(a). Rewriting, zc(a) - 
8(a) > u(b) > u(d). If we suppose u(d) > u(a), then we have u(a) - J(a) > 
u(a), which is impossible since J is nonnegative, so u(d) < u(a). This with aId 
implies u(d) + S(d) > u(a), so by condition (ii), Theorem 2, u(d) > u(a) - 
J(a), which is in contradiction with what we have shown above. So Axiom 54 
is met. 

(i) Next, let (>, -) be the weak ordering of S induced by (P, I )  and let 
(. >, .*) be that induced by u. We show that these are the same. Suppose 
a > b, then by D l  there are three cases to consider: 

1. aPb, whence by definition u(a) > u(b) + S(b) > u(b), since 8 is nonnega- 
tive; so by Ul  a . > b. 

2. aIb and there exists an element c such that aIc and cPb. We need only con- 
sider the case u(a) < u(b). If u(a) > u(c), then u(b) > u(a) > u(c), which is 
impossible by definition since cPb; so u(a) ,< u(c). Since aIc, u(a) + S(a) > 
u(c), by definition; so by condition (ii), Theorem 2, u(a) + J(c) > u(c). But 
cPb implies, by definition, u(b) + 6(b) < u(c); so, using Condition (ii), Theorem 
2, u(c) - J(c) > u(b) > u(a), which is in contradiction to our above conclu- 
sion. Thus a . > b. 

3. alb and there exists an element d such that aPd and dIb. Again we need 
only consider the case u(a) ,< u(b). If u(d) > u(b), then u(d) > u(b) > u(a) 
which is impossible since aPd; so u(d) < u(b). But since dlb, u(d) + 8(d) > 
u(b) and since aPd, u(d) + S(d) < u(a) < u(b), a contradiction. Thus, a . > b. 

Conversely, suppose a . > b, i.e., u(a) > u(b). We may suppose aIb, for if 
aPb then a > b. Since u(a) > u(b), condition (iii), Theorem 2, implies two cases, 
namely: 

1. u(b) + S(b) < u(a) + &a). By assumption there exists c e S such that 
u(c) = u(a) + $(a) and so by definition cIa. By hypothesis, u(c) = u(a) + 
$(a) > u(b) + 8(b); so cPb. By Dl ,  arb, cIa, cPb imply a > b. 

2. u(b) + J(a) < u(a) + J(b). Choose d such that u(d) = u(b) - J(b) < 
u(a) - J(a) and it follows that dIb. Applying Condition (ii), Theorem 2, u(d) + 
S(d) < u(a); so aPd. By Dl ,  aIb, dlb, aPd imply a > b. 

Thus a > b if and only if a . > b, and since * and .- are defined by exclu- 
sion, the two weak orderings are identical. 

(ii) Let 8 be the upper j.n.d. of (P, I) .  If u(b) > u(a), aIb implies u(b) - 
u(a) g S(a), and 

8(a) = sup [u(b) - u(a)] = 
syp [u(b) - u(a)] g d(a). 

b 
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However, by assumption there exists c e S such that u(c) = u(a) + S(a). Since, 
by definition, aIc, 

I(a) = sup [u(b) - u(a)] >, u(c) - u(a) = i (a) ,  
b 

aIb 

and so 8 = 8. A similar argument shows that 4 = 4. 
(iii) Obvious. 

5 .  LINEAR UTILITY FUNCTIONS ON SEMIORDERED MIXTURE SPACES 

Since much of utility theory is applied to situations involving decision making 
under risk, it is of some interest to examine the linear utility functions of semi- 
ordered mixture spaces. Our result, as expressed in Theorem 4, does not take the 
usual form of a set of axioms which insure the existence of a linear utility func- 
tion, but rather it presents a function which is definable in terms of experi- 
mentally meaningful operations for almost all semiordered mixture spaces and 
which is a linear utility function if one exists. 

A mixture space [9] is a set M satisfying the following axioms: 

M1. if a, b e M and if a is a real number, 0 ,< a < 1, then aab e M, 
M.2. aab = b(l - a)a, 

a 
b)  (a  + p - aB)c, if a + B - a~ # 0 ,  

M4. aaa = a, 
M5. If aac = bac for some a, 0 < a < 1, then a = b. 

A real valued function u defined over a semiordered mixture space ( M ,  P, I )  
is called a linear utility function if it satisfies axioms U1 and U2 of Section 4 and 

U3. for any a, b r M and a, 0 < a ,< 1, u(aab) = au(a) $ (1 - a)u(b). 
For brevity we introduce the following notation: If (M,  P, I )  is a semiordered 

mixture space and a, b e M and aPb, then 

C(a, b) = sup { a  1 (aab)Ib) 

g(a, b) = sup { a  1 (baa)Ia). 

THEOREM 4: Let ( M ,  P ,  I )  be a semiordered mixture space having elements 
a*, b*, c E: M such that a*Pc and cPb*. There exists a linear utility function u of 
( M ,  P,  I )  such that 8(b*) > 0 and 6(a*) > 0 if a d  only if 

(i) for any a E M such that aPb*, &(a, b*) > 0, 
(ii) for any a r M such that a*Pa, g(a*, a )  > 0 ,  and 

(iii) the function 

is single valued, lineal., and order preserving. 
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The junction u is a linear transformation of p. 

PROOF: Necessity. Consider any a e M, then either aPb* or a*Pa. For suppose 
aIc, then a*Pc, cPb*, and aIc imply (S4) either aPb* or a*Pa. If aPc, then (53) 
aPb*, and if cPa, then (83) a*Pa. So we need only consider these two cases. 

By applying the appropriate linear transformation to u, there is no loss of 
generality in assuming u(a*) = 1 and u(b*) = 0. 

(i) Suppose aPb*. Let A = {a 10 < a < 1, b*I(aab*)). By Theorem 2, 
a e A if and only if 0 ,< a < 1 and ~(aab*) ,< u(b*) + 8(b*). Using the linearity 
of u and the fact u(b*) = 0, we obtain aru(a) < 8(b*). Thus, &(a, b*) = min 
(1, 8(b*)/u(a)]. Suppose 8(b*)/u(a) > 1, then u(a) < 8(b*) = u(b*) + 8(b*), 
and so by Theorem 2, aIb*, which is contrary to assumption. Thus, &(a, b*) = 
8(b*)/u(a). Since aPb*, U1 and D l  imply u(a) > u(b*) = 0, and by hypothesis 
8(b*) > 0; so &(a, b*) > 0. 

(ii) Suppose a*Pa. In  a similar fashion we can show 

using the hypothesis 8(a*) > 0. 

(iii) If aPb*, then 

&(a*, b*) - J(b*)u(a) = u(a). - 
p(a) = ~ ( a ,  b*) u(a*)6(b*) 

If a*Pa, then 

a(a*, b*) 
p(a) = 1 - - = I -  d(a*)(l - d a ) )  

(1 - u(b*))8(a*) 
= u(a). 

d a * ,  a) 

Thus, p is single valued, linear, and order preserving since u is. Inverting our orig- 
inal linear transformation, it follows that any linear utility function meeting the 
hypotheses is a linear transformation of p. 

Sufiiency . Obvious. 

I t  may be worth noting that by arguments similar to those used in the proof 
of the theorem one can show: 

If aPb*, 

a(a, b*)&(a*, b*) 
d(a) = a(a, b*)p(a) = - b3 , 

and if a*Pa, 

&a) = &(a*, a)(l  - p(a)) = 
&(a*, a)rr(a*, b*) 

d a * ,  a) 

In  conclusion, a few remarks concerning the possible applications of the above 
theorem may not be amiss. I t  should be obvious that the theorem does not fol- 
low the now classic pattern set by von Neumann and Morgenstern [12] of a set 
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of axioms which, if they are met by the preference relation on a mixture space, 
insure the existence of a linear utility function. That type of theorem has the 
virtue of justifying the use of linear utility functions in theories of rational deci- 
sion making, provided the axioms are intuitively acceptable as a definition of 
rationality. There is no question that it would be desirable to have an analogous 
set of axioms and the corresponding theorem for semiorders, but a t  present this 
remains an open problem. 

The complete verification that a linear utility function exists, i.e., that the p 

so constructed is linear and order preserving, is just as impossible here as in the 
classical case-an infinity of observations and calculations being required in 
both cases. Partial verification is practical, however, and in practice one would 
probably determine p for a fairly large number of interrelated points, e.g., if a 
and b are examined, then a(4)b, a(+)b, and a($)b might also be examined. All of 
these points can then be checked both for linearity and the preservation of order. 
If these data check, then there is some hope that a linear utility function actually 
exists. It is, of course, clear that for sophisticated experimental applications two 
major extensions of the theory are needed. First, there should be developed a 
statistical theory of preference orderings so that neither linearity nor preservation 
of order need hold exactly, and second, a finitistic theory of semiordered risk 
situations should be created for which it is possible to verify all requirements of 
the model. An example of the latter for weakly ordered preferences has been 
given by Davidson and Suppes [6]. 

A final point on experimentation should be made. I t  seems extremely doubtful 
that laboratory experiments of the type so far reported in the literature, which 
for the most part have involved simple gambling situations, can utilize our model. 
These designs have been carefully cultivated and abstracted from actual social 
situations in such a manner that the preference relation is almost certainly a weak 
order because it reflects the natural ordering of money by amounts. It is hard to 
imagine anyone in such a laboratory experiment who will be indifferent between 
$1 and $0 cu $1 for any cu > 0. One senses, however, that in society there are 
many decision situations with which we wish to deal in which the indifference 
relation is more complex than an equivalence relation. If this intuition is correct, 
it should be a challenge to the experimenter to try to reproduce these situations 
as simple laboratory experiments where the nature and origin of the intransitivi- 
ties can be carefully examined. 

Columbia University 
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