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Summary. A 1987 article studied the fact that some attributes can be measured in two ways:
via concatenations and via decomposition in a conjoint fashion. The measures were shown to be
the same provided a distribution law is satisfied. The proof was algebraic and indirect. A direct
proof is provided using functional equation arguments.
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1. Classical foundations of dimensional representations

1.1. A typical qualitative description

A situation often encountered in classical physical measurement and sometimes in
the behavioral sciences is typified by the case of

mass = volume × substance, (1)

with domains M,V , and S. The substances are assumed to be homogeneous. In
this case, mass has two decompositions. The first is the conjoint one 〈V × S, %M 〉
underlying the usual multiplicative relation, where %M is a qualitative weak or-
dering determined by placing masses on the two scales of an equal-arm balance. A
standard monotonicity assumption induces orderings %V on volumes and %S on
homogenous substances. The second is a concatenation structure for the masses,
〈M, %M , ◦M 〉, which formalizes the idea of placing two masses on the same pan
of the balance. And there is a volume concatenation structure 〈V , %V , ◦V 〉.

When certain axioms are satisfied, each structure gives rise to a measure of
mass: From ◦M , as m1 a homomorphic mapping onto the nonnegative real numbers

This work was supported in part by National Science Foundation grant SES-0452756 to the
University of California, Irvine. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the
National Science Foundation.



322 R. D. Luce AEM

〈R+,≥, +〉 for the mass concatenation, and from the conjoint structure, m2. Of
course, we hardly expect two different measures of mass, one from concatenation
and the other from the conjoint one. The question is what insures that they are
the same.

1.2. Distributive triples: linking the two structures

The answer has been shown to be the following linking distributive law: For a, b ∈
M, u, v ∈ V , and s ∈ S

a ∼ (u, s) and b ∼ (v, s)

⇒ a ◦M b ∼ (u, s) ◦M (v, s) ∼ (u ◦V v, s). (2)

Summaries of these issues were stated in Section 10.7 of Krantz, Luce, Suppes, and
Tversky (1971) for less general linking laws, and more generally and insightfully 19
years later in Section 20.2.7 of Luce, Krantz, Suppes, and Tversky (1990) based on
work of Luce (1978, 1987), Narens and Luce (1983), and Narens (1985). However,
the mathematics there is fairly complex, abstract algebra, whereas what I propose
here is a good deal simpler and, perhaps, more accessible mathematically.

The resulting classical representation is, indeed, the existence of a single mea-
sure of mass, ΓM , on M that is additive over ◦M , a measure ΓV on V that is
additive over ◦V , and a measure ΓS on S such that

ΓM (u, s) = ΓV (u)ΓS(s). (3)

is a conjoint representation. The usual physical notation is, of course, m(u, s) =
V (u)ρ(s). We choose a less specific notation because the modeling is not restricted
to the mass, volume, and density case.

It is easy to show that (2) is a necessary condition for (3).

1.3. Goals of this note

We continue to assume that the conjoint structure has a multiplicative conjoint
representation

ΨM (a) = ΨV (u)ΨS(s). (4)

And we assume that the mass and volume concatenation structures both satisfy
Hölder’s axioms that are sufficient for an additive representation over the positive
quadrant of objects ordered higher than the identity e. A representation ΦM is
said to be additive (over the concatenation ◦M) iff for all a, b ∈ M,

ΦM (a ◦M b) = ΦM (a) + ΦM (b). (5)

Similarly, ΦV is additive over ◦V iff for all u, v ∈ V

ΦV (u ◦V v) = ΦV (u) + ΦB(v). (6)
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Basically the issue is whether we can find common functions ΓM , ΓV , and ΓS

that satisfy (3).
This note establishes two new things:

1. By invoking the well-known solutions to the Pexider equation, we obtain the
classic result of a single measure ΓM that satisfies both additivity of con-
catenation, (5), and multiplicative conjointness, (3), using a fairly straight-
forward functional equation argument.

2. Attempting to look at more general concatenation, such as the p-additive
form, does not really lead to anything new. This finding is very different from
some studies of the representation of structures of uncertain alternatives
where the results have differed in significant ways from the additive case
(see the several cited collaborative papers with Ng and others).

2. The distributive-triples theorem

Theorem 1. Assume that 〈M, %M , ◦M 〉 and 〈V , %V , ◦V 〉 each have an additive,

order preserving representation, ΦM and ΦV , respectively, onto 〈R+,≥, +〉 and

that 〈V × S, %V , ◦V 〉 has a multiplicative, order preserving representation ΨM =
ΨV ΨS with ΨM and ΨV both onto 〈R+,≥, +〉 and ΨS onto 〈R+,≥〉 such that

for all v ∈ V and s ∈ S, ΨM (v, s) = ΨV (v)ΨS(s). Then there exist additive

representations ΓM and ΓV and a conjoint one ΓM = ΓV ΓS such that (3) is

satisfied.

A new, somewhat simpler and transparent, proof is provided in Appendix A.

3. Generalized additive representations of concatenation

3.1. Definition of generalized additivity

Suppose that for some measure ΘM over M we have

ΘM (a ◦M b) = HM [ΘM (a), ΘM (b)], (7)

where
HM : R+ × R+

onto
−→ R+

is strictly increasing in each variable. The function HM is said to satisfy gener-
alized additivity iff for some ϕM

ϕM [ΘM (a ◦M b)] = ϕM [ΘM (a)] + ϕ [ΘM (b)] . (8)

However, we then simply work with ΦM := ϕMΘM which is additive in the usual
sense.

A parallel structure holds over volume concatenations.
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Such a generalization may seem of no importance, so I give an example of (7)
that has played a useful role in utility theory.

3.2. The definition of p-additive

Starting with Luce’s (2000) summary of earlier results and in a series of articles
about decision making under uncertainty (Luce, 2009; Luce, Ng, Marley, & Aczél,
2008a,b; Ng, Luce, & Marley, 2008, 2009), we have focused on the fact that if
one permits a concatenation structure to be mapped into the full real structure
〈R+,≥, +, ·〉, not just into the substructure 〈R+,≥, +〉, other possible representa-
tions exist than just additive ones. In particular:

A representation Ψ is p-additive (over the concatenation ◦ with domain
X ) if there exists constant δ such that for a, b ∈ X

Ψ(a ◦ b) = Ψ(a) + Ψ(b) + δΨ(a)Ψ(b). (9)

By working with δΨ, we see that there is no loss of generality in assuming
δ = −1, 0, 1. Clearly, δ = 0 is the additive case just explored. Ng, Luce, and
Marley (2009) show the range of Ψ for δ = −1 is ] −∞, 1[ , whereas for δ = 0 the
range is ] −∞,∞[ , and for δ = 1 it is ] − 1,∞[ .

For δ 6= 0, the transformation

Φ(a) := ln [1 + δΨ(a)] (10)

is easily seen to be additive.
Thus, for δ 6= 0, in the kinds of cases we have in mind of the positive quadrant,

we see that 1 + δΨ(a) > 1, which is not possible for δ = −1. Appendix B explores
the more general p-additive cases, but nothing new arises.

4. Conclusions

The standard result of a single “mass” representation for concatenation and con-
joint views of mass is again proved, but with a simpler proof using functional
equations and the known solution to the Pexider equation. Second, unlike the
utility of uncertain alternatives, a generalized additive form such as p-additivity
gives nothing really new. Given the interesting new results in the utility case, this
negative finding was disappointing.

Acknowledgment. I thank Professor János Aczél for some advice on how to ob-
tain general solutions to the key functional equation (18), Professor A. A. J. Marley,
consultant to the NSF grant, for his very careful critical reading of multiple ver-
sions and key corrections, and to a referee for a prompt, very favorable response
and pointing out four typos.
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5. Appendices

5.1. Appendix A: New proof of Theorem 1

Because ΨM and ΦM are each order preserving of mass ordering for there must
exist a strictly increasing function f

ΨM (a) = f(ΦM (a)). (11)

Similarly there exists an increasing function g :

ΨV (u) = g(ΦV (u)). (12)

Because f and g are strictly monotonic on intervals to intervals, they are contin-
uous. Moreover,

ΨM (a ◦M b) = f(ΦM (a ◦M b)) (11)

= f(ΦM (a) + ΦM (b)) (5),

and

ΨV (u ◦V v)ΨS(s) = g(ΦV (u ◦V v)ΨS(s) (12)

= g(ΦV (u) + ΦV (v))ΨS(s). (6)

Therefore, by (2) and (4),

f(ΦM (a) + ΦM (b)) = g(ΦV (u) + ΦV (v))ΨS(s), (13)

where a ∼ (u, s) and b ∼ (v, s). By (4), (11), and (12)

g(ΦV (u)) = ΨV (u)

=
ΨM (a)

ΨS(s)

=
f(ΦM (a))

ΨS(s)
. (14)

Let

x := ΦM (a), x′ := ΦM (b), y = ΨS(s), (15)

So, by (14)

ΨV (u) =
f(x)

y
, (16)

and a parallel argument gives

ΨV (v) =
f(x′)

y
. (17)
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Using (11) and (12) and that a ∼ (u, s) and b ∼ (v, s), any x, x′ pair can be
achieved because

f(x) = ΨV (u)ΨS(s), f(x′) = ΨV (v)ΨS(s)

⇒
f(x′)

f(x)
=

ΨV (v)

ΨV (u)
,

which can take on any positive value because ΨV is onto R+. By (13), (16), and
(17),

f(x + x′) = g
(

g−1ΨV (u) + g−1ΨV (v)
)

y

= g

(

g−1

(

f(x)

y

)

+ g−1

(

f(x′)

y

))

y.

Defining gy(x) := g−1
(

f(x)
y

)

, we have the familiar Cauchy equation

gy(x + x′) = gy(x) + gy(x′),

which is well known to have the continuous solution

gy(x) = c(y)x ⇐⇒ g(c(y)x) =
f(x)

y
. (18)

It is easily verified that for any γ > 0, the functions

f(x) = β1β2x
γ , c(y) =

(

β1

y

)1/γ

, g(z) = β2z
γ (19)

form a family of solutions to (18).
Moreover, as we now show, this is the unique continuous family. Taking the

logarithm of (18) we have

ln f(x) − ln y = ln g(c(y)x)

= ln g ((exp) (ln c(y) + lnx)) . (20)

Denote

F := ln g exp, z := ln c(y), w := lnx,

G(z) := − ln c−1 (ez) = − ln y, H(w) := ln f (ew) ,

then (20) becomes
F (z + w) = G(z) + H(w), (21)

which is the additive version of Pexider’s equation (Aczél, 1966, p. 141–142). By
Theorem 3.1 of Aczél, the general solution is

F (t) = θ(t) + a + b, G(t) = θ(t) + a, H(t) = θ(t) + b,

where a, b are constants and θ is some solution to the Cauchy equation. In our
case, the continuous, increasing one, this is of the form

θ(t) = γt,
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where the constant γ > 0. Retracing our several steps shows that this solution to
(18) is the power family (19).

Thus f and g must both be power functions with the same exponent, call it
1/γ0. And so

ΨM (a) = β1β2 (ΦM (a))
1/γ0

ΨV (u) = β2 (ΦV (u))
1/γ0 .

So by (4)

ΨM (a)γ0 = ΨV (u)γ0ΨS(s)γ0

⇐⇒ (β1β2)
γ0 ΦM (a) = βγ0

2 ΦV (u)ΨS(s)γ0 .

Defining

ΓM (a) := (β1β2)
γ0 ΦM (a), ΓV (u) := βγ0

2 ΦV (u), ΓS(s) := ΨS(s)γ0 ,

we have that

ΓM (a) = ΓV (u)ΓS(s)

where ΓM and ΓV are both additive, thus proving the Theorem.

5.2. Appendix B: The most general p-additive case

In the text, the ranges of 1 + δΨ were restricted to be > 1. However, the full
domains and ranges of (9) are shown in Table 1.

Table 1

δM f : ΦM → ΨM δV g : ΦV → ΨV δM , δV ΨS

1 ]1,∞[ր ]0,∞[ 1 ]1,∞[ր ]0,∞[ A: 1, 1 ]0,∞[
1 ]1,∞[ր ]0,∞[ −1 ]0, 1[ց ]0, 1[ B: 1,−1 ]0,∞[
−1 ]0, 1[ց ]0, 1[ 1 ]1,∞[ր ]0,∞[ C: −1, 1 ]0,∞[
−1 ]0, 1[ց ]0, 1[ −1 ]0, 1[ց ]0, 1[ D: −1,−1 ]0,∞[

1. Cases C and D of Table 1 are ruled out because according to the unbound-
edness of ΨS and the fact that g > 0 means gΨS ranges over ]0,∞[ whereas
according to Table 1, f ranges only over ]0, 1[ .

2. Case B of Table 1 is ruled out because in (14) the ratio f/ΨS spans ]0,∞[
whereas g(ΘV (u)) ranges over only ]0, 1[ .

3. Case A differs from the proof in Appendix A only in letting the Θ’s be
]0,∞[ rather than ]1,∞[ . Otherwise the argument is unchanged and the
measures 1 + δMΨM and 1 + δV ΨV have the range ] −∞,∞[ .
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