


Linguistic Evolution, In Brief

o
) WA Linguistic knowledge is transmitted in a
N population via interaction with other

speakers in the population.
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) W o The information speakers transmit
N (observable data) is based on their own

linguistic knowledge.




Linguistic Evolution, In Brief

A Speakers adjust their linguistic knowledge
\ based on the observable (and encountered)
data from other population members.




Linguistic Evolution, In Brief

ﬁ

time passes... % X\

Population-level changes over time depend on what
information speakers pass to subsequent generations and
how that information is integrated into an individual’'s
linguistic knowledge.



Integrating Linguistic Information

Not all linguistic knowledge is created equal

Some knowledge can be
altered throughout an
individual’s life

(example: vocabulary)




Integrating Linguistic Information

Not all linguistic knowledge is created equal

Some knowledge can be altered
only during the early stages of an
individual’s life

(example: word order rules)




Change to knowledge that is alterable early

Implication: The way in which young learners integrate linguistic information
(along with the data available) determines the linguistic composition of the
population and the speed at which the linguistic knowledge evolves within the

population.
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The Nature of Linguistic Knowledge

Different aspects: more and less transparent from data

Categorization/Clustering
Ex: What are the contrastive sounds
of a language”?
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Categorization/Clustering
Ex: What are the contrastive sounds
of a language”?

Extraction hawz ofréjd ov 8o big be‘d wa'lf
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What are the word affixes
that signal meaning (e.g. past

tense in English)? drink~drank




The Nature of Linguistic Knowledge

Different aspects: more and less transparent from data

Categorization/Clustering
Ex: What are the contrastive sounds
of a language”?

Extraction hawz ofréjd ov 8o big be‘d wa'lf

Ex: Where are words influent  \yno's afraid of the big bad wolf
speech?

blink~blinked confide~confided

Mappin
bpINg blipk blipgkt  kenfajd kenfajdod

What are the word affixes
that signal meaning (e.g. past

tense in English)? drink~drank

drink drejnk
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Different aspects: more and less transparent from data

Complex systems: What is the generative system that creates the observed
(structured) data of language (ex: syntax)?

syntax = word order rules
Learning problem: many ways to generate observable data




The Nature of Linguistic Knowledge

Different aspects: more and less transparent from data

Complex systems: What is the generative system that creates the observed
(structured) data of language (ex: syntax)?

syntax = word order rules
Learning problem: many ways to generate observable data

Observable data: word order Subject Verb Object
Generative system: syntax

English

e Subject Verb Object

Subject  to,e Verb Object Verb Object underlying

Kannada

Object Verb underlying

German

R

Subject Verb fg, ¢ Object ty.,

Object Verb underlying




The individual learning framework: 3 components

(1) Hypothesis space o.5‘ 0.5

(2) Data -
(3) Update procedure .

/7 0.53‘ 0.47







Old English

Changing Basic Word Order Rule in Old English:
Object-Verb (OV) vs. Verb-Object (VO) order

Individual Knowledge (underlying
probability in speaker’s mind):
probability distribution between OV and
VO orders
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Changing Basic Word Order Rule in Old English:
Object-Verb (OV) vs. Verb-Object (VO) order

Individual Knowledge (underlying
probability in speaker’s mind):
probability distribution between OV and
VO orders

Individual Usage (observable data for
learner): probability distribution
between OV and VO orders (not

necessarily same one as individual
knowledge distribution, from learner’s

perspective)
Why not?



Underlying Distribution vs.
Observable Distribution

/ySubject Verb Object

German/Old English Surface order: Verb Object

e~

Subject Verb fg, ¢ Object .,

Object Verb underlying

Speaker generates utterance



Underlying Distribution vs.
Observable Distribution

( Subject Verb Object
? Surface order: Verb Oh

i W
Subject Verb gy e Object tyyy, Subject Verb Object

Verb Object underlying
Object Verb underlying S

o

Subject Verb g et fyen Object

Verb Object underlying

Learner interprets utterance




Underlying Distribution vs.
Observable Distribution

S LR

Subject Verb fg, ¢ Object ., Subject Verb fgyect fyen, Object

Every utterance generated by
speaker is either OV or VO order
in the underlying distribution




Underlying Distribution vs.
Observable Distribution

/Mjeot Verb Object
N

Subject Verb fg, ¢ Object ., Subject Verb fgyect fyen, Object

The learner encounters data that is
ambiguous between the two options.
Distribution depends on learner’s
interpretation of ambiguous data
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Old English

Changing Basic Word Order Rule in Old English:
Object-Verb (OV) vs. Verb-Object (VO) order

Individual Knowledge (underlying
probability in speaker’s mind):
probability distribution between OV and
VO orders

Individual Usage (observable data for
learner): probability distribution
between OV and VO orders (not

necessarily same one as individual
knowledge distribution, from learner’s

perspective)
Due to learner interpretation bias




Old English

Estimates of average individual usage from historical corpora:
YCOE Corpus 2003; PPCMEZ2 Corpus 2000

~1000 A.D.-1150 A.D.: OV-biased ~1200 A.D.: VO-biased

o —0®

To get this rate of
change, young individual
learners at each time step
must change their
probability distribution the
exact right amount from
the previous population
members’ distribution




Modeling Individuals: Learning Biases

d
intake

Interpretation Bias: Use only data
perceived as most informative (Fodor 1998,
Lightfoot 1999, Dresher 1999).

Interpretation Bias: Use only data that is
more accessible (perhaps for language
processing reasons) (Lightfoot 1991).




Modeling Individuals: Learning Biases

d Learner has heuristics for identifying
unambiguous OV/VO data, based on
IELE partial knowledge of possible adult
system rules (Fodor 1998, Lightfoot 1999,

Dresher 1999)
Knowledge of tensed verb movement

Interpretation Bias : Use only data to 2nd phrasal position of sentence

perceived as most informative: OV unambiguous data:

unambiguous data (Fodor 1998, Lightfoot [-T--]xp -a-voiiect gsnSf:g’Veng-- k
1999, Dresher 1999). ... lensedVerb ... Object Verb-Marker ...

VO unambiguous data:

: L : [...]xp [---Ixp --- TensedVerb Object ...
Interpretation Bias: Use only data that is ...TensedVerb ... Verb-Marker Object ...

more accessible (perhaps for language
processing reasons) (Lightfoot 1991).

e~ R

Subject Verb tsuper Object tyey Subject Verb fsupjest tven, ObjeCt




Modeling Individuals: Learning Biases

OV unambiguous data:

d
dd "4
intake
[...]Ixp --- Object TensedVerb ...

Interpretation Bias: Use only data ...TensedVerb ... Object Verb-Marker ...
perceived as most informative:

unambiguous data (Fodor 1998, Lightfoot VO unambiguous data: |
1999, Dresher 1999). [...Ixp [---Ixp --- TensedVerb Object ...

...TensedVerb ... Verb-Marker Object ...

Interpretation Bias: Use only data that is
more accessible (perhaps for language
processing reasons) (Lightfoot 1991).




Modeling Individuals: Learning Biases

OV unambiguous data:

d
dd " d
intake
[...]xp --- Object TensedVerb ...

Interpretation Bias: Use only data ...TensedVerb ... Object Verb-Marker ...

perceived as most informative:

unambiguous data (Fodor 1998, Lightfoot VO unambiguous data:

1999, Dresher 1999). [...]xp [.--]Ixp --- TensedVerb Object ...
...TensedVerb ... Verb-Marker Object ...

Interpretation Bias: Use only structurally
simple (degree-0) data (Lightfoot 1991).

Jack told his mother that the giant was easy to fool.

[----Degree-0------- 1
Degree-1---------- ]




Modeling Individuals: Learning Biases

The point of interpretation biases: Unambiguous degree-0 data distribution may
differ the right amount from population’s underlying distribution to change at the
right rate.

~1000 A.D.-1150 A.D.: OV-biased ~1200 A.D.: VO-biased

d
dd ~ 4
intake




Modeling Individuals: Knowledge & Learning

Individual learner tracks p,,, = probability of using VO
probability of using OV =1 - p, o

Old English: 0.0 <=p,,5 <= 1.0
Ex: 0.3 =30% VO, 70% OV during generation

Initial p,, = 0.5 (unbiased)
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Data from old members of population, filtered
through selective learning biases.
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Modeling Individuals: Knowledge & Learning

Individual learner tracks p,,, = probability of using VO
probability of using OV =1 - p, o

Old English: 0.0 <=p,,5 <= 1.0
Ex: 0.3 =30% VO, 70% OV during generation

Initial p,, = 0.5 (unbiased)

Data from old members of population, filtered
through selective learning biases.

Individual update: Bayesian updating for g d
binomial distribution (Chew 1971), adapted ¢ intake




Zoom-In on Updating Procedure

Prob(u |pvo) * Prob(pvo)

Max(Prob(pvo lu)) = Max( Prob(u)
roo(u

)

pvo * (f) *pvo  *(1-pvo)"”
Prob(u)
d pvo*())*pvo *(1-pvo)"” 0
dpvo Prob(u)
d pvo*())*pvo *(1-pvo)"”
dpvo Prob()

Prob(pvo lu) =

(for each point r, 0

)=0  (P(u) is constant with respect to pvo)

r+1 "
pvo = , ¥ = PVOprev " N
n

+1
Replace 1 in numerator and denominator with ¢ = pvoprev * m if VO, ¢ = (1 — pvoprev) * m if OV

30=m=<50




Zoom-In on Updating Procedure

Important: Online update procedure

If OV data point (psychological plausibility, given human memory)

Pvo = (Pvoprev 1) / (N+C)
Involves previous
probability & expected
If VO data point amount of data in
Pvo = (Pvoprev N*C) / (N*C) learning period

Model parameters:

c represents learner’'s
confidence in data point
(calibrated from data)

n represents quantity of

intake (2000) intake




Individual-Level Learning Algorithm

(1) Initial p,o=0.5.

(2) Encounter data point from an
average member of the population.

(3) If the data point is degree-0 and
unambiguous, use update functions
to shift hypothesis probabilities.

(4) Repeat (2-3) until the learning period
Is over, as determined by n.

gd ¢
intake




Biased Data Intake Distributions in Old English

pyo Shifts away from 0.5 when there is more of one
data type in the intake than the other (advantage gd 9y
(Yang 2000) of one data type). intake

So the bias in the degree-0 unambiguous data
distribution controls an individual’s final p,,q in this
model.

OV Advantage in

Unamb DO

1000 A.D. 19.5%
1000-1150 A.D. 2.8%
1200 A.D. 2.7% VO-biased

VO-biased
% VO
-biased

time

OV-biased




Population-Level Model

Set the age range of the population from 0 Population size estimated from

to 60 years old and create 18,000 population statistics of the time period
population members. (Koenigsberger & Briggs 1987)

Average pyq
Initialize the members of the population to estimated from

the average p,,at 1000 A.D. Set the time YCOE 2003 &
to 1000 A.D. PPCME2 2000

Time: 1000 A.D.




Population-Level Model

Set the age range of the population from 0O
to 60 years old and create 18,000
population members.

Initialize the members of the population to
the average p,,at 1000 A.D. Set the time
to 1000 A.D.

Move forward 2 years.

Members age 59-60 die off.

Time: 1002 A.D.




Population-Level Model

Set the age range of the population from 0O
to 60 years old and create 18,000
population members.

Initialize the members of the population to
the average p,,at 1000 A.D. Set the time
to 1000 A.D.

Move forward 2 years.

Members age 59-60 die off. The rest of the
population ages 2 years.

Time: 1002 A.D.




Population-Level Model

Set the age range of the population from 0O
to 60 years old and create 18,000
population members.

Initialize the members of the population to

the average p,at 1000 A.D. Set the time

to 1000 A.D.

Move forward 2 years.

population ages 2 years.

New members are born. These new
members use the individual acquisition
algorithm to set their p, ;.

Population growth rate
estimated from population
statistics of the time period
(Koenigsberger & Briggs 1987)

Time: 1002 A.D.




Population-Level Model

Set the age range of the population from 0O
to 60 years old and create 18,000
population members.

Initialize the members of the population to
the average p,,at 1000 A.D. Set the time
to 1000 A.D.

Move forward 2 years.

Members age 59-60 die off. The rest of the n n
population ages 2 years.

New members are born. These new
members use the individual acquisition
algorithm to set their p, ..

Time: 1002 A.D.




Population-Level Model

Set the age range of the population from 0O
to 60 years old and create 18,000
population members.

Initialize the members of the population to
the average p,,at 1000 A.D. Set the time
to 1000 A.D.

Move forward 2 years.

Members age 59-60 die off. The rest of the n n
population ages 2 years.

New members are born. These new
members use the individual acquisition
algorithm to set their p, ..

Repeat steps (3-5) until the year 1200 A.D. Time: 1200 A.D.




Empirical Grounding Issues:
What exactly is the underlying distribution?

Historical data used to initialize population’s p,,5 at 1000 A.D., calibrate
population’s p,,, between 1000 and 1150 A.D., and check target p,, at
1200 A.D.

Historical data distributions: some data
are ambiguous
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Empirical Grounding Issues:
What exactly is the underlying distribution?

Historical data used to initialize population’s p,,5 at 1000 A.D., calibrate
population’s p,,, between 1000 and 1150 A.D., and check target p,, at
1200 A.D.

Historical data distributions: some data
are ambiguous

How do we figure out
what the ambiguous data _

are?

Pyo: underlying distribution is
not ambiguous




Empirical Grounding Issues:

What exactly is the underlying distribution?

(YCOE and PPCME2 Corpora)
% Ambiguous Utterances

Degree-0
% Ambiguous

Degree-1

% Ambiguous

1000 A.D.

76%

28%

1000 - 1150 A.D.

80%

25%

1200 A.D.

1%

10%

Observations:

(1) Degree-1 data less ambiguous than degree-0 data.




Empirical Grounding Issues:

What exactly is the underlying distribution?

(YCOE and PPCME2 Corpora)
% Advantage

OV Advantage in
Unamb DO

OV Advantage in
Unamb D1

1000 A.D.

19.5%

41.7%

1000-1150 A.D.

2.8%

28.7%

1200 A.D.

-2.7%

-45.2%

Observations:

(1) Degree-1 data less ambiguous than degree-0 data.
(2) Advantage is magnified in degree-1.
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What exactly is the underlying distribution?

Observations:
(1) Degree-1 data less ambiguous than degree-0 data.
(2) Advantage is magnified in degree-1.

Assumption: Ambiguous data distorts underlying distribution.
Assumption: degree-1 distribution less distorted from underlying distribution.




Empirical Grounding Issues:
What exactly is the underlying distribution?

Observations:
(1) Degree-1 data less ambiguous than degree-0 data.

(2) Advantage is magnified in degree-1.

Assumption: Ambiguous data distorts underlying distribution.
Assumption: degree-1 distribution less distorted from underlying distribution.

Plan of Action: Use the difference in distortion between the degree-0 and

degree-1 unambiguous data distributions to estimate the difference in
distortion between the degree-1 distribution and the underlying
unambiguous data distribution in a speaker’s mind.




Empirical Grounding Issues:
What exactly is the underlying distribution?

Observations:
(1) Degree-1 data less ambiguous than degree-0 data.

(2) Advantage is magnified in degree-1.

Assumption: Ambiguous data distorts underlying distribution
Assumption: degree-1 distribution less distorted from underlying distribution.

y = underlying pvo known quantities

dO = total degree - 0 data, dl = total degree - 1 data]
y*d0 - uldl' — Ldltod0 * adl' - (y*do0 - uldl') uldl'=normalized unambiguous OV degree -1 data
y*d0 u2dl' + adl' - (y*d0 - uldl' )| u2dl' = normalized unambiguous VO degree - 1 data
Ld1tod0 = loss ratio (OV/VO) from degree-1 to degree - O distribution

adl' = normalized ambiguous degree -1 data

_ -(d0)(d0 + uldl' - Ldltod0* (adl' + uldl'))
4 2(Ld1tod0 +1)(d0?)

e \((d0)(d0 + uldl' - Ldltod0* (adl' + uldl')))’ — 4(Ldltod0 +1)(d0?)((-1)(d0* uldl"))
2(Ld1tod0 +1)(d0%)




Empirical Grounding Issues:
What exactly is the underlying distribution?

Observations:
(1) Degree-1 data less ambiguous than degree-0 data.
(2) Advantage is magnified in degree-1.

Assumption: Ambiguous data distorts underlying distribution
Assumption: degree-1 distribution less distorted from underlying distribution.

VO-biased
% VO
-biased

time

(Initialization) | (Calibration) (Termination)
1000 A.D. 1000-1150 A.D. 1200 A.D.

Average pyq 0.234 0.310 0.747

OV-biased VO-biased




Empirical Grounding Issues:
What exactly is the underlying distribution?

Observations:
(1) Degree-1 data less ambiguous than degree-0 data.
(2) Advantage is magnified in degree-1.

Assumption: Ambiguous data distorts underlying distribution
Assumption: degree-1 distribution less distorted from underlying distribution.

VO-biased
% VO
-biased
\ time

/(Initialization)\ (Calibration) (Termination)
1000 A.D. 1000-1150 A.D. 1200 A.D.

Average 0.234 0.310 0.747
g€ Pvo \ y

OV-biased VO-biased




Empirical Grounding Issues:
What exactly is the underlying distribution?

Observations:
(1) Degree-1 data less ambiguous than degree-0 data.
(2) Advantage is magnified in degree-1.

Assumption: Ambiguous data distorts underlying distribution
Assumption: degree-1 distribution less distorted from underlying distribution.

VO-biased

% VO F ]
Pvo = (pVOprev*n) / (I’H‘ h’e\ Pvo = (pVOprev*n / (I’H‘

(Initialization) 4 (Calibration) A (Termination)
1000 A.D. 1000-1150 A.D. 1200 A.D.

Average pyq 0.234 N 0.310 y 0.747

OV-biased VO-biased




Empirical Grounding Issues:
What exactly is the underlying distribution?

Observations:
(1) Degree-1 data less ambiguous than degree-0 data.
(2) Advantage is magnified in degree-1.

Assumption: Ambiguous data distorts underlying distribution
Assumption: degree-1 distribution less distorted from underlying distribution.

(Initialization) | (Calibration) 4 (Termination)

1000 A.D. 1000-1150 A.D. 1200 A.D.

Average pyq 0.234 0.310 N 0.747

OV-biased VO-biased




Linguistic Evolution:
Change at the Historically-Attested Rate

| me= \odel pyg
| wmmm Fstimated pyg

vo in Population

Year A.D.




Linguistic Evolution:
Different Individual-Level Learning

Learner uses ambiguous data. Strategy for learning:
assume surface order is actual order. (Fodor 1998)

Subject Verb Obiject
?

Surface order: Verb Object "

o~
Subject Verb tge Object gy, Subject Verb Object
Verb Object underlying
Object Verb underlying

%
¥ vy N N

Subject Verb fgyect fyeny Object

Verb Object underlying




Linguistic Evolution:
Different Individual-Level Learning

Learner uses ambiguous data. Strategy for learning:
assume surface order is actual order. (Fodor 1998)

Advantage in intake determines learner’s ending
distribution between OV and VO order.

Need this trajectory

VO-biased
% VO
-biased

time




Linguistic Evolution:
Different Individual-Level Learning

Learner uses ambiguous data. Strategy for learning:
assume surface order is actual order. (Fodor 1998)

Advantage in intake determines learner’s ending
distribution between OV and VO order.

Need this trajectory

VO-biased
% VO
Degree-0 -biased

OV Advantage time

1000 A.D. AN
1000 - 1150 A.D. -26.9%
1200 A.D. -21.8%




Linguistic Evolution:
Different Individual-Level Learning

Learner uses ambiguous data. Strategy for learning:
assume surface order is actual order. (Fodor 1998)

Advantage in intake determines learner’s ending
distribution between OV and VO order.

Need this trajectory

VO-biased
% VO
Degree-0 -biased

OV Advantage time

1000 A.D. -21.0% Problem: VO-biased
1000 - 1150 A.D 26.9% all the way through, even at 1000 A.D.
= . . - ° 0

1200 A.D. AR VO-biased
V-biased

Change is too fast!

time




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1

unambiguous data.

(YCOE and PPCME2 Corpora)

% Advantage

OV Advantage in
Unamb DO

OV Advantage in
Unamb D1

1000 A.D.

19.5%

41.7%

1000-1150 A.D.

2.8%

28.7%

1200 A.D.

-2.7%

-45.2%

Very strongly OV-
biased before
1150 A.D.




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1

unambiguous data.

(YCOE and PPCME2 Corpora)

% Advantage

OV Advantage in
Unamb DO

OV Advantage in
Unamb D1

1000 A.D.

19.5%

41.7%

1000-1150 A.D.

2.8%

28.7%

1200 A.D.

-2.7%

-45.2%

But population must
become VO-biased.

Need this trajectory

VO-biased
% VO
-biased

time

Very strongly OV-
biased before
1150 A.D.




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1

unambiguous data.

(YCOE and PPCME2 Corpora)

% Advantage

OV Advantage in
Unamb DO

OV Advantage in
Unamb D1

1000 A.D.

19.5%

41.7%

1000-1150 A.D.

2.8%

28.7%

1200 A.D.

-2.7%

-45.2%

Can a population

learning from degree-1
data make the change

to VO-biased?

Need this trajectory

VO-biased
% VO
-biased

time

Very strongly OV-
biased before
1150 A.D.




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1
unambiguous data.

Avg pVO at 1200 A.D.

Modeled population
can change at the
right rate only if
input contains less
than 4% degree-1
mmm Model p,, at 1200 A.D. data - otherwise,

NSl  change is too slow
' for learners not
using a degree-0
bias.

Avg pvo at 1200 A.D.

% Duoa-1 Data i’, Input




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1
unambiguous data.

Avg pVO at 1200 A.D.

Estimates from
modern English
N child-directed
- R E T speech: Input
consists of ~16%
Tl Cegree-1 data.

—

Estimated p,,q

Avg pvo at 1200 A.D.

Prognosis: Change
would be too slow
without a degree-0
bias for individual
CEIRERS

% Deg-1 Data in Input




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1 data, and
learns from ambiguous data.

(YCOE and PPCME2 Corpora)
% Advantage

OV Advantage in | OV Advantage in
DO D1

1000 A.D. -21.0% 28.1%

Need this trajectory

M VO-biased
% VO .
-biased

time




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1 data, and
learns from ambiguous data.

(YCOE and PPCME2 Corpora)
% Advantage

OV Advantage in | OV Advantage in
DO D1

1000 A.D. VAR

Need this trajectory

Population must VO-biased
remain OV-biased
at 1000 A.D.




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1 data, and
learns from ambiguous data.

(YCOE and PPCME2 Corpora)
% Advantage

OV Advantage in | OV Advantage in
DO D1

1000 A.D. VAR

Need this trajectory

Population must VO-biased
remain OV-biased

at 1000 A.D.

To do this, advantage in intake must be for OV order at 1000 A.D.
Otherwise, population changes too quickly to VO-biased distribution.




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1 data, and
learns from ambiguous data.

(YCOE and PPCME2 Corpora)
% Advantage

OV Advantage in | OV Advantage in
DO D1

1000 A.D. -21.0% 28.1%

Need this trajectory

Population must VO-biased
remain OV-biased

at 1000 A.D.

Requirement for OV advantage at 1000 A.D.: 43% of input is degree-1 data




Linguistic Evolution:
Different Individual-Level Learning

Learner uses degree-0 and degree-1 data, and
learns from ambiguous data.

(YCOE and PPCME2 Corpora)
% Advantage

OV Advantage in | OV Advantage in
DO D1

1000 A.D. VAR

Need this trajectory

Population must VO-biased
remain OV-biased o yo

at 1000 A.D.

Requirement for OV advantage at 1000 A.D.: 43% of input is degree-1 data
...but estimates show only ~16% of it is. Change will be too fast.




Linguistic Evolution: Summary

Some cases where linguistic evolution is driven by individual-level
learning. Suggested example: Old English word order.

VO-biased
-biased

Individual-level learning: can involve selective learning biases, with strong
effects on rate of linguistic change within a population.

Individual-Level Selective Learning:
(1) unambiguous data
(2) degree-0 data

Additional point: linguistic evolution can inform us about the nature of individual learning.




Linguistic Evolution: Open Questions

(1) If we add complexity to the population model, do we still need these individual-
level selective learning biases?

Weight data points in individual intake using various factors:
(a) spatial location of speaker with respect to learner

(b) social status of speaker

(c) speaker’s relation to learner (family, friend, stranger)

(

d) context of data point (social context, linguistic context)

(2) Are these learning biases necessary if we look at other language changes
where individual-level learning is thought to be the main factor driving change
at the population-level?




Learning-Driven Linguistic Evolution:
Take-Home Messages

(1)  Correct population-level behavior can result from correct individual-level
learning behavior in some cases (small discrepancies compounded over
time).
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Correct population-level behavior can result from correct individual-level
learning behavior in some cases (small discrepancies compounded over
time).

In the case study examined here, linguistic evolution occurs at the correct rate
only when learners employ selective learning biases that cause them to use
only a subset of the available data.




Learning-Driven Linguistic Evolution:
Take-Home Messages

Correct population-level behavior can result from correct individual-level
learning behavior in some cases (small discrepancies compounded over
time).

In the case study examined here, linguistic evolution occurs at the correct rate
only when learners employ selective learning biases that cause them to use
only a subset of the available data.

Models of linguistic evolution can be empirically grounded and then more
easily manipulated to fit the available data (less parameters of variation).
Individual-level: learning period, data distribution, linguistic representation,
probabilistic learning
Population-level: population size, population growth rate, time period of
change, rate of change










Individual Framework Applicability

Benefit: Can combine discrete representations, selective learning biases,
and probabilistic learning for many types of linguistic knowledge.

Discrete Representation: How much structure is posited for language?

A = linear structure B = hierarchical structure

P
/N

P
\
7\ Subject YR

Subject Verb Object /N
Verb Object

Discrete Representation : Is the basic word order Object Verb or Verb
Object?

A = Object Verb B = Verb Object




Framework Applicability

Benefit: Can combine discrete representations, selective learning biases,
and probabilistic learning for many different problems.

Learning Bias: Use all available Selective Learning Bias: Use only data

data. (Good for probabilistic learner perceived as most informative (Fodor 1998,
- no data sparseness problem.) ,
Lightfoot 1999, Dresher 1999).

Selective Learning Bias: Use only data
that is more accessible (perhaps for
language processing reasons) (Lightfoot
1991).

Selective Learning Bias: Use only data
that is perceived as more systematic
(Yang 2005).




Framework Applicability

Benefit: Can combine discrete representations, selective learning biases,
and probabilistic learning for many different problems.

d_d d » /7 0.53‘ 0.47
intake —)‘

This can be instantiated as Bayesian updating, a Linear reward-penalty

scheme, or any other probabilistic learning procedure.

Prob(u |pvo) * Prob(pvo)

Max(Prob lu)) = Max
( (pvo lu)) ( Prob()

)

pov = pov + y(1-pvo)
pvo = 1- pov







Estimating Historical p,,q

Known quantities:
Unambiguous and
ambiguous data in

dO and d1




Estimating Historical p,,q

Y

OV Unamb VO Unamb

A

Y

OV Unamb Amb VO Unamb




Estimating Historical p,,q

Known quantities: Normalize d1 to dO
Unambiguous and distribution: estimate
ambiguous data in ‘ how much d1
d0 and d1 unambiguous data was
“lost” in dO
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Estimating Historical p,,q

Known quantities: Normalize d1 to dO
Unambiguous and distribution: estimate

ambiguous data in how much d1
d0 and d1 unambiguous data was

“lost” in dO

Calculate OV to VO
“loss ratio”




Estimating Historical p,,q




Estimating Historical p,,q

Known quantities: Normalize d1 to dO
Unambiguous and distribution: estimate
ambiguous data in how much d1
d0 and d1 unambiguous data was
“lost” in dO

Calculate OV to VO
“loss ratio”

Assume d1-to-d0 “loss
ratio” is same as
underlying-to-d1 “loss”
ratio”
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Estimating Historical p,,q

Known quantities: Normalize d1 to dO
Unambiguous and distribution: estimate
ambiguous data in how much d1
d0 and d1 unambiguous data was
“lost” in dO

Calculate OV to VO
“loss ratio”

Assume d1-to-d0 “loss
ratio” is same as

Use “loss ratio” to underlying-to-d1 “loss”
estimate how much ratio”

underlying unambiguous
data was “lost” in d1




AssumptiOWD/ D = -/ .

Y

OV Unamb VO Unamb

OV Unamb
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AssumptiOWD/ D = -/ .

Y

OV Unamb VO Unamb

OV Unamb

D1 OV Unamb D1 VO Unamb
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Estimating Historical p,,q

Under-to-D1
OV loss #

Underlying
Unamb OV #

Under-to-D1
VO loss #

D1-to-DO0
“loss” ratio

Underlying
Unamb VO #




Estimating Historical p,,q

y = underlying pvo
dO = total degree - 0 data, dl = total degree -1 data
y*d0 - uldl' —Ldltod0 * adl' - (y*d0 - uldl') uldl'=normalized unambiguous OV degree - 1 data
y*d0 u2dl' + adl' - (y*dO0 - uldl' )| u2dl' = normalized unambiguous VO degree - 1 data
Ld1tod0 = loss ratio (OV/VO) from degree-1 to degree - O distribution

adl' = normalized ambiguous degree -1 data

_ (d0)(d0 + uldl' - Ldltod0* (ad1' + uldl'))
Y 2(Ldltod0 +1)(d0%)

e \((d0)(d0 + uldl' - Ldltod0* (adl' + uldl')))’ — 4(Ld1tod0 +1)(d0?)((-1)(d0* uldl"))
2(Ld1tod0 +1)(d0%)




Estimating Historical p,,q

Known quantities: Normalize d1 to dO
Unambiguous and distribution: estimate
ambiguous data in how much d1
d0 and d1 unambiguous data was
“lost” in dO

Calculate OV to VO
“loss ratio”

Calculate p,, from estimated
underlying unambiguous

data distribution
Assume d1-to-d0 “loss

ratio” is same as

Use “loss ratio” to underlying-to-d1 “loss”
estimate how much ratio”

underlying unambiguous
data was “lost” in d1




Estimating Historical p,,q

U OV Unamb

-

U OV Unamb

U VO Unamb







Potential Causes of Language Change

Old Norse influence before 1000 A.D.: VO-biased

If sole cause of change, requires exponential influx of Old Norse
speakers.

Old French at 1066 A.D.: embedded clauses predominantly OV-biased
(Kibler, 1984)

Matrix clauses often SVO (ambiguous)
OV-bias would have hindered Old English change to VO-biased system.

Evidence of individual probabilistic usage in Old English

Historical records likely not the result of subpopulations of
speakers who use only one order







Deriving the Bayesian Update Equations for
a Hypothesis Space with 2 Hypotheses

Prob(u |pvo) * Prob(pvo)
Prob(u)

Max(Prob(pvo l 1)) = Max( )

Bayes’ Rule, find maximum of a posteriori (MAP) probability
Manning & Schutze (1999)




Deriving the Bayesian Update Equations for
a Hypothesis Space with 2 Hypotheses

Prob(u |pvo) * Prob(pvo)
Prob(u)

Max(Prob(pvo l 1)) = Max( )

Prob(u | pyp) = probability of seeing unambiguous data point
u, given pygo
= Pvo
Prob(p,,) = probability of seeing r out of n data points that
are unambiguous for VO, for 0 <=r<=n

= (':) *pvo' *(1- pvo)"”’




Deriving the Bayesian Update Equations for
a Hypothesis Space with 2 Hypotheses

pvo * (f) *pvo *(1-pvo)"”
Prob(u)

Max(Prob(pvo | 1)) =Max( ) (foreach pointr,0 < r =< n)

d_ o’ (7)*pvo’ *(1-pvo)"”
dpvo Prob(u)

d (pvo * (f) *pvo” *(1-pvo)"”
dpvo Prob(w)

r+1
pvo =
n+l1

)=0

)=0  (P(u) 1s constant with respect to pvo)




Deriving the Bayesian Update Equations for
a Hypothesis Space with 2 Hypotheses

r+1 y
pvo = » ' = PVOprev ™ N
n+1

Replace 1 in numerator and denominator with
C = PVOprev *mif VO, C = (1 — pVOpreV) *m it OV
30=m=<50

PVOprev *n+c

pvo =
n+c







Other Ways to
Interpret Ambiguous Data

Strategies for assessing ambiguous data
(1) assume base-generation
- attempted and failed
- system-dependent (syntax)

(2) weight based on level of ambiguity (Pearl & Lidz, in submission)
- unambiguous = highest weight
- moderately ambiguous = lower weight
- fully ambiguous = lowest weight (ignore)

(3) randomly assign to one hypothesis (Yang 2002)




