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Abstract

Typically, the mathematical expression of a scientific law does not depend of the
units of the variables. We formalize this type of invariance by a general property
called meaningfulness. In this context, abstract constraints formalizing thought
experiments may be sufficient for the derivation of & law. We give an illustration
in geometry by deriving the Pythagorean Theorem (up to the exponent).

The standard mathematical expressions of scientific laws typically do not depend
upon the units of measurement. The most important rationale for this convention is
that measurement units do not appear in nature!. Thus, any mathematical model
or law whose form would be fundamentally altered by a change of units would be a
poor representation of the empirical world. As far as I know, however, there is no
agreed upon formalization of this type of invariance of the form scientific laws, even
though there has been some proposals (see Falmagne and Narens, 1983: Narens, 2002;
Falmagne, 2004).

Expanding on the just cited papers, I propose here a general condition of ‘meaning-
fulness’ constraining a priori the form of any function describing a scientific or geometric
law expressed in terms of ratio scales variables such as mass, length, or time?.

The interest of such a meaningfulness condition from a philosophy of science view-
point is that, in its context, abstract constraints on the function, formalizing ‘thought
experiments’, may yield the exact form of a law, possibly up to some real valued pa-
rameters. We will iflustrate this point here with an example in geometry.

A case of abstract constraint on a real, positive valued function G of two real
positive variables, is the condition formalized by the equation

G(Gly,r), 1) = GGy, 1), 7). )
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where (& is strictly monotonic and continuous in both real variables. An interpretation
of G(y,r) in Equation (1) is that the second variable r in modifies the state of the first
variable y, creating an effect evaluated by G(y,7) in the same measurement variable
as y. The left hand side of (1) represents a one-step iteration of this phenomenon, in
that G(y,r) is then modified by ¢, resulting in the effect G(G(y,7),t). Equation (1),
which is referred to as the ‘permutability’ condition (in Aczél, 1966), formalizes the
concept that the order of these two modifiers v and £ is irrelevant.

Under fairly general conditions making empirical sense, the permutability condition
(1) implies the existence of a representation

Gly,r) = J (I {y) + g(r)), (2)

where f and g are real valued, strictly monotonic continuous functions. We prove this
fact here, slightly generalizing results of Hosszu (1962¢,b,a)} {cf. also Aczél, 1966). It is
clear that the representation (2) implies (1): we have

GGy, 7) Gy )+ g)) (by (2))
f NPT ) +g(e)) +9(8)) (by (2) again)
= /7 1(1 () + glr) +g(t}) (simplifying)
= [T/ (y) + g(t) + g(r)) (by commutativity)
= GGy, t),7) {by symmetry}.

We will also use a more general condition, called ‘quasi permutability’, which is defined
by the equation

MGy, r),t)y = M{G(y.¢t),7) (3}
and lead to the representation '

My, ) = m((F (5} + o(r)) (4)

The combined consequences of permutability or quasi permutability and meaning-
fulness are powerful ones. For instance, if we suppose that the function ¢ is symmetric,
that is,

Gly.7) = Giry), (5)
a fact that can typically also be deduced from a priori considerations, then, under
sensible continuity and solvability conditions, (¢ has necessarily the form

Gly,z) = (f +2°)7 (6)

Note that this form generalizes that of the Pythagorean Theorem {which obtains when
¢ = 2.) This result is established by Theorem 15. Many of the mathematical tools used
in our arguments are borrowed from functional equations {as in Aczél, 1966, 1987).

We begin by stating some fundamental definitions. We then described a few exam-
ples of laws, taken from physics and geometry, in which the permutability condition
naturally applies. The following section is devoted to some preparatory lemmas or
instrumental results. We recall there some basic functional equation facts. The last
three section contain the main results of the paper.



‘Basic Concepts and Examples

1 Definition. We write R, and R, for the nonnegative and the positive reals. Let
J, J', and H be real nonnegative intervals of positive length. A (numerical) code is a

onta

function M : J x J' — H which is strictly increasing in the first variable, strictly
monotonic in the second one, and continuous in both. A code M is solvable if it satisfies
the following two conditions.

IS1] If M{(z,t) < p &€ H, there exists w € J such that M(w,t} = p.

[S2] The function M is I-point right solvable, that is, there exists a point zg € J such
that for every p & I, there is v € J’ satisfying M (29, v) = p. In such a case, we
may say that M is xg-solvable.

By the strict monotonicity of M, the points w and v of [S1] and [S2] are unique.
Twoe functions M : J x.JJ' - H and G : J x J — H' are comonotonic if
Mz, s) < M(y,t) < Gl(z,s) <Gy, t), (z,ye J;is,te ). (7)
In such a case, the equation
F{M(z,s)) = G(z,s) (x e J;se ) (8)

defines a strictly increasing continuous function F o [ 23 I’ We may say then
that 7 is F-comonatonic with M.

We turn to the key condition of this paper.

2 Definition. A function M : J x J' — H is quasi permutable if there exists a
function & : J x J' — J co-monotonic with M such that

M(G(x,8),t) = M(G(z,1), s} (m,y € Jys, 6 € J). (9)

We say in such a case that M is permutable with respect to (4, or (G-permutable
for short. When M is permutable with respect to itself, we simply say that M is
permutable, a terminology consistent with Aczél (1966, Chapter 6, p. 270).

We mention the straightforward consequence:
3 Lemma. A function M : J x J' — H is G-permutable only if (7 is permutable.
ProoOF. Indeed, suppose that ¢ is F-comonotonic with M. For any « € J and

s,t € J', we get G(G(x,5),t) = F(M(G(z,s),t)) = F(M{G(z,1),5)) = G{G(z,t),s).
O

Many scientific laws embody pefmuta,ble or quasi permutable numerical codes. We
give five quite different examples below.



4 Examples. (a) THE LORENTZ-FITZGERALD CONTRACTION. This term denotes
a phenomenon in special relativity, according to which the apparent length of a rod
measured by an observer moving at the speed v with respect to that rod is a decreasing
function of », vanishing as v approaches the speed of light. This function is specified
by the formula

L{t,w) = 84]1 - (g)z (10)

in which ¢ > 0 denotes the speed of light, £ is the actual length of the rod (for an
observer at rest with respect to the rod), and L : Ry x [0,¢[ =5 R, is the length of
the rod measured by the moving observer.

The function L is a permutable code. Indeed, L satisfies the strict monotonicity

and continuity requirements, and we have

L{L{p,v),w) =p (1 - (%)2)_

It is also clear that L satisfies the solvability Condition [S1]; but, as Condition [S2]
does not hold, this code is not solvable. However, for any £; > 0, the restriction L% of
L to [0, £g] x [0, ¢ is an #p-solvable permutable code satisfying [S1], as is easily checked.
Ultimately, whatever result is obtained for any L% can be extended to L = limg, 0, L.
A similar observation holds for the next example and for Example {d).

L=
Wl

w2

(1- (%)) " -eewm

C

{b) BEER’s Law. This law applies in a class of empirical situations where an
incident radiation traverses some absorbing medium, so that only a fraction of the
radiation goes through. In our notation, the expression of the law is

I(z,y) = ze ¢, (xr,y € Ry, c € Ry, constant} (12)

in which z denotes the intensity of the incident light, ¥ is the concentration of the
absorbing medium, ¢ is a reference level, and I'(xz, y) is the intensity of the transmitted
radiation. The form of this law is similar to that of the Lorentz-FitzGerald Contraction
and the same arguments apply. Thus, the function 7 : B, x R, 23 R, is alsc
a penmutable code satisfying [S1], and for any zy > 0, its restriction to [0, z¢] is a

solvable permutable code.

onko

{¢) THE MONOMIAL LAWS. Consider the code M : R x R, ™% R, with exponent
parameters & > 0, # > 0 and v > 0 defined by the equation

Mz, s) = £x"s". (13)

The code M is permutable with respect to the code

z8"/8
G:R_E.XR_}.HR.*_:(SC,S}'—) 5
Indeed, M is co-monotonic with &G and
zs¥/b ¢

M{G{z,8),t) = £G(x, 5)'t" = ¢ ( ) =0 sh 1 = M(G(x,t), 5).

3



It is clear that both M and G are solvable.

(d) Equation (13) describes not only many physical laws, but also some fundamental
formulas of geometry, such as the volume C'(#4,r) of a cylinder of radius » and height
¢, for example. In this case, we have

C(b,1) = £xr?, (14}
which is permutable. We have
C(C, ), v) = Clbmr®, v) = brrPm® = C(C{8 ), 7).

Thus, the constant & of (13) is equal to 7. We give another geometric example below.

() THE PYTHAGOREAN THEOREM. The function

Plz,y) = 22 +y? (z,y € Ryy), (15)

representing the length of the hypothenuse of a right triangle in terms of the lengths
of its sides, is a permutable code. We have indeed

P(P{z,y),2) = VP(x,y)? + 22 = /22 + > + 22 = P(P(z,2),y).

The other conditions are clearly satisfied, and so is Condition [S1]. Condition [S2]
would be achieved bv taking an appropriate restriction of the function P asg in the
case of Examples 4(a) and (b). Notice that the code P is a symmetric function: we
have P(x,y) = P(y,x) for all x,y € Ry.. Equation (15) specializes the result of
Thecrem 15.

We go back to the Pythagorean Theorem later on in this paper (see Subsection 17),
and show directly, by an elementary geometrical argument, that the length P{x,y) of
the hypothenuse of a right triangle® with leg lengths z and y, is permutable and also
satisfies a special kind of quast permutability. Using our Theorem 15, this implies that
the equation

1
P(z,y) = (=" +4°)° (z,y e Ryy)
must hold for some # € R, . We prove thus there a generalization of the Pythagorean
Theorem.

Preparatory Results

We mentioned that several of our results were obtained by functional equation argu-
ments. I'or completeness, we recall in this section, without proofs, a few elementary
results instrumental to our purpose. The classic treatise on the subject is Aczél (1966,
see p. 141). For a short, more recent account, sce Aczél (1987).

3Thus, this P is not defined by (15).



5 Theorem. Suppose that h, k and m are three real valued continuous functions on
R satisfying the equation

Rz +y) = k(z) + m(y) (z,y € R). , (16)
Then there exists three constant £, 6, and 0, such that, for all x € R,
h{z) =Ex+ 0,4 0y (17}
kElr)=¢x+ 8, {18)
m{z) =£x+ b5. (19)

The same result holds, with £ > 0, if “continuous” is replaced by “increasing” in
the statement of the theorem. We refer to the triple of equations {17)}-(18)-(19} as the
solution of the Pexider Equation (16). There are three other, similar Pexider equations.

With h > 0, these aret:

Fquation Domain Solution
h(iE) - 91928&2
hiz +y) = k(z)m(y) z,y €R k(z) = 665 (20)

miz) = 8yet®,
[h(:r:) =flnzr+6,+6;
hizy) = k{z) + m(y) z,y € Ruq k(z) =&lnz+6; (21)
L m{z) = &Inz + s,
h(z) = &62°
h(zy) = k(z)m{y) .y € Raoy k(z) = &a® (22)
m(:r) = €2$9 .

When k& =m = h in (16) (the three functions are identical), one obtains the Cauchy
equation, with solution A{z) = £x. The three other Pexider equations generate three
corresponding variants of the Cauchy equation, with straightforward solutions.

6 Remark. The solutions given for the Pexider equations (16), (20), (21} and {22)
are also valid when the domain of the equation is an open connected subset of R?
rather than R? itself. Indeed, Aczél (1987, see also Aczél, 2005, Chudziak and Tabor,
2008, and Radé and Baker, 1987) has shown that, in such cases, this equation can be
extended to the real plane. A similar (but not identical) remark applies to the Cauchy
equation and its variants. In this case, however, some technical issues have to be taken
care of: the domain should not be “too small”’®. In all the cases considered in this
paper, the domain of the functional equation under consideration satisfies the required
constraints. In our proofs, we omit the detailed verification. When using such results
in the sequel, we simply refer to the Pexider equation or to the Cauchy equation. The
particular variant under consideration will be clear from the context.

4The assumption that A > 0 is not necessary but simplifies the exposition.
>Condition {iii} in Lemnma 8 suggests the relevant constraint for this case. This condition ensures
that the domain of the cperation e is not “too small”



The main step in our developments is based con the following construction.

7 Definition. Suppose that G : J x J' — J is a code that is zg-solvable in the sense
of Condition [S2]. Define the operation e on J by the equivalence

zey=Clov) = Glav)=y  (nyelvel) (23)

We show in this section that a solvable code & is permutable if and only if it has
an additive representation

Gly,v) = F7'(f(y) + g(v) (z,yc JveJ) (24)

where f:J — Ry and g J' — Ry are continuous functions with f strictly increasing
and g strictly monotonic.

The basic tool lies in the following lemma (for a proof, see Falmagne, 1975).

8 Lemma. Let J be a real non degenerate interval. With RC Jx J, let o : B — J be
a non necessarily closed operation on J. We write xRy to mean that x e y is defined.
Suppose that the triple (/, e, <), where < is the incquality of the reals, satisfies the
following five independent conditions:

(1) yRx if xRy, and when yRx, thenyexz=xey;
(i) whenever yRz, whiz, wRy', 2’ Rx, yRy' and 'Rz, then

{yer=wez)and (wey' =:ezx) imply yey =:ez;

(iil} there exists x € J such that tRz and x e xRz ;
{iv) ifyex < z, then y® w = z for some w in J;

(v) for every z, y and z in J, with z <y, the set N{z,z;y) = {n € N* |z} < z} is
finite, where the sequence (zy} is defined recursively as follows:
(a) z, = x;
/

b) if 271 is defined and 2" exists such that ye z* ! = r e &' then 27 = z'.
y yez, y

Then, there exists a strictly increasing function f : J — J such that

flzeoy)= fly)+ flu).

{For a proof, see Falmagne, 1975).

9 Lemma. Let G : J x J' = J be a solvable, permutable code. Then, the triple
(J,e, <), with the operation e defined by (23), satisfies Conditions (i)-(v) of Lemma 8.
Moreover, the operation e is associative, strictly increasing and continuous in both
variables.



Proor. Take any z,y € J with

Glxg,r) = 2 (25)
and
Glzo,v) = . (26}

(i) By (23), (25), (26} and the permutability of G, we get successively,
yen=Gyr) = G(Clxo,v),7) = G(Glzp,7),v) = Glz,v) =z 0y,

(i1} Suppose that

(yex=wez)and (wey =2 ez). (27)
With (25), (26) and
Clia, s) = 2, Glag, ) = w, Ulzg, ') =4, Clwg,s') = 2, (28)
we get from (27)
Gy, r) = Glw, s) (29)
Glw,v) = G 7). (30)

Equation (29) gives
G(G(y,r),v") = G(Glw, s),v"),

which yields successively

GGy "), r) = CG(Glw,v'), 5) {by permutability)
= G(G(Z. 1), ) (by (30))
= G(G(¥, s).7) (by permutability),

S0
GGy, v"),r) = G(G{Z,s),7).

By the strict monotonicity of G in the first variable, we obtain Gy, v") = G(7, s) and
thus y ey’ = 2" ® z.
(iii) By the solvability condition [S2], there exists z € J such that, with G{zq,7) = =z,

we have both
zex=G(z,r)€J and (rex)ez=CG(Gz,r),r) el

(iv) If z @y < 2z, then yex = G(y,r}) < z € J by commutativity, (25}, and the
definition of . Applying [S1], we get G(w,r) = z for some w € J. Using again {25),
we obtain z e w = z.

(v} We first show that the sequence {zy) defined by (&} and (b) is strictly increasing.
We proceed by induction. Since r < y by definition, we get from (25) and (26)

T = Gz, 7} < Glx0,v) = ¥,

8



with the function (7 strictly monotonic in its second variable. In the sequel, we suppose
that (7 is strictly decreasing in its second variable; so,

v T, (31)

The proof is similar in the other case. The following equalities hold by the definitions
of :15;,, :Li and commutativity:

et — e — o = r e — T erE — 2 g — 2
yor,=yer=GCGyr)j=cey=ue; =u ex=CGz,r)

From G{y,r) = G(z},7), we get « = y and z, < 7. Assuming that 277! < xy, we
get ye = rexy " by the definition of the term ™" in Condition (v) (h) of Lemma

8, and by commutativity

ap ey = Glay,v) =2y ez =Gz} r),

yielding G(z,v) = Gz, 7). Since v < r and (7 is decreasing in its second variable

Y
Glaptv) > Glay™ r) = Gz, v),
and so
+1
Ty < T,

because (4 is strictly increasing in its first variable. By induction, the sequence () is
strictly increasing.

Suppose that the set N(z, z; ) of Condition (v) is not finite. Thus, the point z is
an upper bound of the sequence (z7). Because this sequence is increasing and bounded
above, it necessarily converges. Without loss of generality, we can assume that we have
in fact lim,, e Ty = Z. Since

n—1

y e, :xo;;:;<$oz

for all n € N, the sclvability Condition (iv) implies that there is some 2z’ € J such
that y @ 2/ = = e z, with necessarily z’ < z. There must be some m € N such that
2 < ay < z. We obtain thus

m+1

r.z:y.21<yll“;1:.’£.fﬁy

and so 2z < :r:"y”“, in contradiction with lim, . 7y = 2, with (:r;‘) an increasing se-
quence. We conclude that the set N(z, z; ) must be finite for all =,y and =z in J, with

T < y. We conclude that the Conditions (i}-{v) of Lemma 8 are satisfied.

To prove that e is associative, we take any z, y and z in J. Using again G(zg.7) = =,
G(zo, v} =y and G(xg, s) = z, we have

re{yez)=(G(yezr) (since G{zg, 1) = )
= G(Gly,s),7) (since G(zg, s) = 2)
= G(Gly,r), s) (by permutability)
=Gz ey, s) (since G{zg, 7} = z) -
=ze(zey) (since Gz, 5) = 2)
=(xey)ez {by commutativity).



Finally, since for ali =,y € J, we have
rey =Gy, r)=yex=G{z,v)

it is clear that the operation e is continuous and strictly increasing in both variables.
0

We come to the key result of this section, which generalizes those of Hossz (1962¢,b,a)
{cf. also Aczél, 1966). :

10 Theorem. (i) A solvable code M : J x J' — H is quasi permutable if and only
if there exists three continuous functions m : {f(y) + g{r)jz € J,r € J} — H,
fid =R, and g:J — R, with m and [ strictly increasing and g strictly monotonic,
such that
My, r) =m(f(y) + g{r)). (32)
(ii) A solvable code G : J x .J' — J is a permutable code if and only if, with f and
g as above, we have

Gly,r) = [ (fly) + g(r}). (33)

(it1) If a solvable code G : J x J — J is a symmetric function—that is, G(z,y) =
Gy, x) for all z,y € J— then G is permutable if and only if there exists a strictly
increasing and continuous function f . .J — J satisfying

Glz,y) = [ H{fz) + F ). (34)

{iv) If the code G in (33) is differentiable in both variables, with non vanishing
derivatives, then the functions f and g are differentiable. This differentiability result
also applies to the code G and the function [ in (34).

Our argument for establishing (i} and (ii) is essentially the same as that in Aczél
(1966, p. 271-273) but, because our solvability conditions [S1]-[S2] are weaker, relies
on Lemma 8 rather than on the representation in the reals of an ordered Archimedean

6
group®.

ProoF. (i)-(ii) Suppose that the code M of the theorem is permutable with respect
to a F-comonotonic code G. By Lemma 3, the code (7 is permutable. Defining the
operation » : J x J' = J by

yeoxr =Gy, r) <« Gzg7r)=uz, (35)

it follows from Lemma 9 that the triple (J, o, <) satisfies Conditions (i)-(v) of Lemma 8,
with the operation e asscciative and continuously increasing in both variable. Accord-
ingly, there exists a continuous, strictly increasing function f: J — J such that

flyox) = fy) + flx). (36)

6CF, Halder (1901).

10



Defining the strictly monotonic function 1 : J' — J by
b(s) = Glao, ),
we get from (35) and {36),
flyez)=f(Gly.r)) = flye Glzo,r)) = fly) + F(¥(r),

and thus :
Gly,r) =1 (fly) + F(r)),
or with with ¢ = f o %,
Gly,m) = f7H () +g(r)). (37)
(Notice that f(y} + g(r) € J.) Because & is F'-comonotonic with A4, and F maps H
onto J, we obtain

M{y,r) = F7HGly, ) = (F o [/ () + g(r),
or, withm = =10 f71,
My.r) =m(f{y) + g(r)) ye Jire 15 f(y) +glr) € J) (38)
It is clear that the functions f and g in (37) and the functions m, f and g in (38) are

continuous, with the required monotonicity properties. This proves the necessity part
of (i). The sufficiency is straightiorward.

(ii) This was established in passing: cf. Eq. (37).
(iii) From {ii), we get by the symmetry of &
Glay) = 7 (Fz) +9(u) = Gly, ) = S~/ (y) + 9(x)
yielding
f(@)—glz) = fly) —gly) = K

for some constant K and all z,y € J. We have thus g{z) = f(z) — K for all z ¢ J.
Since g (¢} = f1(t + K), we obtain

9 M (glz) +9()) = /7 (g(z) +9(y) + K) = FH )+ 9(y) = Gz, y).

Defining i = g, we obtain (34).

(iv) If the code 7 in (33} is differentiable with non vanishing derivatives, then, for
every r € J, the inverse G! of G in the first variable is differentiable. From (33), we
get f(z) = Gy (z) + g(r) with G- (z) = y. So, f is differentiable, and since, from (33)
again, . :
g{r) = F(Gly. 7)) — fy)
with f differentiable and G differentiable in the second variable, g is also differentiable.
The differentiability of f in (34) is immediate. ;

We mention in passing a simple uniqueness result concerning our basic representa-
tion equation (33).

11



11 Lemma. Suppose that the representation G(y,r) = [~ f(y) + g(r)) of Theo-
rem 10(ii) holds for some code G, with [ and g satisfying the stated continuity and
monotonicity conditions. Then we also have G(y,r) = (f*}1(f*(y) + g°(r)) for some
continuous functions * and g*, respectively co-monotonic with f and g, if and only if
f*=&f +8 and g* = &g, for some constants £ > 0 and 9.

PrOOF. (Necessity.) Suppose that
YW + gm0 = FH S ) + glr).
Then, with z = f(y) and s = g(r) and applying /* on both sides, we get
(o /@) + g eg™)(s) = (o )z +s), (39)

a Pexider equation. It is clear that {f*o f~!) and (g* o g1} are strictly increasing and
continuous and that (39} is defined on an open connected suhset of R2. By Theorem 5
with A = (f*o f7') and k = m = (g" 0 g7}), we get (f* o f™1)(2) = £z + 4 and
{g70g7")(s) =€, £ >0, and so [*(y) = £f(y) +6 and ¢*(r) = £g(r).
(Sufficiency.) If /* = &f + 0 and ¢* = £g, with € > 0, then
Y+ gy = 5 (P20

o (S =)

£
=1 y) + 9(n).

Meaningful Collection of Codes

Our main goal in this paper is to axiomatize a particular type of invariance for scientific
or geometric laws. The consequence of this axiomatization should be that the form of
an expresslon representing a scientific law should not be altered by changing the units
of the variables. The next definition, which was already used by Falmagne (2004) (see
also Falmagne and Narens, 1983} applies to codes regarded as functions of two variables.
The extension to the general case of n ratio scales variables is straightforward.

We illustrate the definition by our Example 4(a) involving the Lorentz-FitzGerald
Contraction, which we expressed by the equation

L(gv) = 04]1 - (%)2 (40)

The trouble with this notation is its ambiguity: the units of £, which denotes the length
of the rod, and of v, for the speed of the observer, are not specified. Writing L(70, 3)
has no empirical meaning if one does not specify, for example, that the pair (70, 3)
refers to to 70 meters and 3 kilometers per second, respectively. Such a parenthetical

12



reference is standard in a scientific context, but is not instrumental for our purpose,
which is to express, formally, an invariance with respect to any change in the units’.
To rectify the ambiguity, we propose to interpret L(£,v) as a shorthand notation for
L11{£,v), in which ¢ and L on the one hand, and v on the other hand, are measured in
terms of two particular initial or ‘anchor’ units fixed arbitrarily. Such units could be m
(meter) and km/sec, if one wishes. Describing the phenomenon in terms of other units
amounts to multiply £ and v in any pair (£,v) by some positive constants o and 3,
respectively. At the same time, I also gets to be multiplied by «, and the speed of
figh ¢ by 3. Doing so defines a new function L, g, which is different from L = L;, if
either « # 1 or 3 # 1 (or both), but carries the same information from an empirical
standpoint. For example, il our new units are km and m/see, then the two expressions

Lip-5160{.007,3000) and L{70,3) = Ly:(70,3),

while numericaily not equal, should describe the same empirical situation. The appro-
priate definition of L, 5 is clear: we should write

Lap(t,0) = 241 - (%)2 (41)

The connection between L and L, g is thus

1 1 2
LLaslaton) = (2 anyfi- (22)

— - (;)2

= L(4,v}.
This immediate'ly implies, for any o, 3, v and ¢ in R, .,
i 1
— Lo pleef, Bu) = ;L,,_#(uﬁ_./,w), (42)
(83

which is the invariance equation we were looking for, in this case, and which is gener-
alized as Equation (45) in the next defiition.

12 Definition. Let [a, [, [b, ¥'[ and |d, d'[ be three real non negative intervals and let
M= {J_Wa,ﬁ:f |, 8,7 € Ryt } (43)
be a 3-parameter collection of functions

My gy Joa, cd'[ % [Bb, 86 25 [vd, ~d'[, (44)

TA relevant point is made by Suppes (2002, see “Why the Fundamental Equations of Physical
Theories Are not Invariant”, p. 129).



strictly monotonic and continuous in both variables. We say that the collection M is
meaningful if for all choices of parameters o, 8, v, 4, v and n in Ry, we have

1 1
_jwaﬁﬁ(ax: /67") - EJ‘VIM,VW(#I7 VT)? (T € [a? a‘,[; re [bv bl” (45)
o]

The parameters «, § and v in a function M, g, in M stand for the units of the three
ratio scales used for the two input variables and the output variable. Thus, (45) links
two functions in M computed with possibly different units. The family M is called a
self-transforming collection or ST-collection if [a, a'| = |d, d'| and @ = 7 for any function
Mg in M. (Thus, the first input variable and the output variable of a function in M
are measured in the same measurement scale and with the same unit.) We use then the
abbreviation M, s = My g It is clear that the meaningfulness condition formalized
by (45) also applies to self-transforming collections. Note that the intervals [a, a'[, [b, ']
and |d, d'[ may be unbounded above: we may have, for example, a’ = oo, in which case -
aa’ in (44) must be taken to mean oc. The invariance property formalized by {45) is
called the meaningfulness of M. By convention, we write M = M1, {or M = M,
in the case of self-transforming collection). When the functions in M are codes in the
sense of Definition 1, then M may be referred to as the initial code.
Note that (45) implies

%Mmﬁﬁ(a:}:,ﬁr) = M(z,r), {z cla,a[;rcbb]). {46)

13 Remark. The collection of Example 4(d) containing all the codes

Canes : (of, 0r) m+ alr(ar)?

compuiing the volume of a cylinder is not a self-transforming collection: the unit of the
output variable differs from that of the frst variable. The meaningtulness condition
{45) applies in this case. We have, for any a and 3 in Ry,

1 1 1 1

agC’a:mas(af, ar) = (-CE) (af)m(ar)? = (ﬁ) (BOT(pr)? = ECE:H:M(;’%, Br).
The argument used in our discussion of Example 4(d) shows that all such codes are
permutable. Thus all the codes in a collection M may be permutable without M being

a ST-collection.

The meaningfulness condition just introduced is a powerful one. In particular, it
enables some properties of one of the functions in M to extend to all the others in that
collection. The next lemma illustrates this point.

14 Lemma. If one of the functions in a meaningful collection M is a code i the
sense of Definition 1, then all the functions in M are codes. If some code M, 5., in a
meaningful collection of codes M satisfies any of the following five properties:

(1) My~ Is solvable;

14



(ii) Map~ is differentiable in both variables;

(iil} M. s is quasi permutable;

(iv) M, s~ I8 a symmetric function, with o = j;

(v) M is a self-transforming collection and M, g = M, g s is permutable;

then all the codes in M satisty the same property. Moreover, if M,z = D, so that
Mz, r) = f7Yf(z) + g(r}) by Theorem 10(ii), then for any u,n we have

Lum(z,7) = 0f 7 (f (i—) +y (%)) . (47)

M

Proor. Without loss of generality, we suppose that &« = 3 =~ = 1, and we write
M = M 1,. Because the family M is meaningful, we have, for all positive real numbers

i, v and 1,

Myugin(,7) = M (— g) (¢ [aa,aa[;r € 96, 8V). (48)
7
Suppose that A is a code. By definition, M strictly increasing and continuous in both
variables and so is M, , by (48); thus, M, ., is a code.
(i) Suppose that the code M is solvable. If M,,,,(z,7) < p, for some code M,, .
in M. then M{£, %} < & follows from {48). As the code M satisfies [S1], there must be
some w € [b, b such that M{%,w) = E. Defining ¢ = vw, we get

Thus, the code M, ,, also satisfies [S1]. Since M satisfies [S2], there exists some
zy € [a, o[ such that M is zg-solvable. Define yo = pxo € [ua, pa’| and take any g in
the range of the function M, .. This implies that I is in the range of M, and by [S2]
applied to M, there is some w such that M(zy, w) = % or, equivalently with v = Sw,

v

q= nﬂ/f (UU, ) = J’Virp,y,r)(y[): 'U):

Hov

by the meaningfulness of the family M. Thus, M, ,, is yy-solvable.
(ii) The differentiability of M, , results from that of M via (48).

(iii) Suppose now that M is quasi permutable. {We do not assume here that M
is a transformation family.) Thus, there exists a code G : [a.a'[ x[b,{'[— [a, '] co-
monotonic with M such that

M(G(z,3),8) = M(G(z,t), s) (z,y €la,a'l;s,t e [bV]) (49)

15



For any pair of parameters (yi, v}, define the function G, : {a, @[ x [b, [ =+ {a, o[ by
the equation

Gz, m) = pG ( ) . (50)

g

Thus, G, is comonotonic with M, ., and we have successively

1
My (Guolz,r),v) =nM (!—;G%y(l‘, T} S) (by C-meaningfulness)

=nM (G (E, E) , E) (by the definition of GG, )
hov)o v

=qnqM (G (E, 3) , E) (by the permutability of ()
wv)le

= M, (Guu(z,v),7) (by symmetry).

Consequently, any code M, ., is G, ,~permutable.

{iv} This results immediately from the definition of the meaningfulness of a collec-
tion.

{v) Suppose that M is a transformation family and that M is permutable. We have
thus, for any A, ., = M, ..,

1
EMM’U (My(z,7),v)=M (M#,y(:c, T}, E) (by the meaningfulness of M)
it J7 v

=1 (M (5,
7

=M (Mf (E, E) : t) (by the permutability of A)
wv) v

) , ;) {by the meaningfulness of M)

L

1
= ;M v (M (2, v),u)  (by symmetry).

We have thus A, , (M, ,(z,7),v) = M, , (AL, (z,v),r) acd so Af,, is permutable.
Equation (47) results from Equation {33) of Theorem 10(ii} and Equation (48).

This completes the proof of the theorem. 0

Main Result

This result concern meaningful self-transforming collections of sclvable, quasi per-
mutable and symmetric codes. We recall that a code M is G-permutable only if G
is permutable {Lemma 3). Also, by Theorem 10{iii), a solvable, permutable and sym-
metric code G : J x J — J has a representation

Gly,r) = h7(h(y) + h{r)), (51)

with f strictly increasing and continuous.

16



15 Theorem. Suppose that § = {G.} is a meaningful self-transforming collection of
codes, with G, 1 Ry, x Ry, % R, . Moreover, suppose that one of these codes is
solvable, permutable with respect to the initial code G, symmetric, strictly increasing
in both variables, and differentiable with continuous non vanishing derivatives. Then

we necessarily have for some 8 € R, :
1

where (7 is the initial code.

Equation (52) is of course a generalization of the defining equation of the Pythagorean
Theorem, which applies when 8 = 2. The assumption of differentiahility makes for a
short proof. In all likelihood, it can be dispensed with.

Proor. By Lemma 14, all the codes in § are solvable, permutable, and symmetric.
Thus, Statement (iii) of the representation Theorem 10 holds for the code . By
Theorem 10(iii), we have

Gly,z) = [ f{y) + flz). (53)

We get successively '
GGy, va),vz) = G.Uf Hflvy) + Flvz)), vz) (by Theorem 10(iii})
= v ( FYfy) + flea)), z) (by meaningfulness)

1
124
(f( FTHflvy) + f(m"))) +.f(z)) {by Theorem 10(iii))
=vf! ( ( FH(floy)y + flv ))) + f(’r)) (by quasi permutability).
Equating the last two r.h.s’s above and simplifying {(applying %} [ on both sides) gives
1 1
f (yfl (flvy) + f(w:))) +fz) =1 (;f‘l lvy) +f(uz))) @) (54)
Differentiating (54) with respect to z and z gives the two equations:

i (lf L (foy) + f(r/w))) LU (o) + Fwa)) flum = f@) (55)

P =1 (L7 ) + 56 ) S U7 Ul + Sl v (66

Switching the two sides in (56), dividing {55) by (56), and simplifying gives

fva) )
Fvz) Gy

17



that is, with z = 1 and A(v} = ?EIS’

f'lva) = f(z)h(v),

a Pexider equation with solution f'(z) = &z and A(r} = v5. We obtain thus with
f£=%and #=(C—1, f{z) = £2% and thus

7

AN T R
Gly.o) = I () + F(a) = (fiig?—) (et

Application to the Pythagorean Theorem

We use Theorem 15 to obtained a generalized form of the Pythagorean Theorem {we
do not specify the exponent). We suppose that the length P(z, ) of the hypotenuse
of a right triangle with leg lengths = > zp and y > 24 (for some x4 > 0) is a symmetric
solvable code®; thus P : [zg, oo] xRy — [zg,00]. We take the function P to be the
initial code of a family of codes {#,}. We establish the permutability and the quasi
permutability of the code £ with respect to F,, for any « > 0, by an elementary
geometric argument.

16 The Permutability of P. A right triangle AABC with leg lengths = and y and
hypothenuse of length P(z, vy} is represented in Figure 1A. Thus AB =z, BC = y and
Pz, y) = AC. Another right triangle AACD is defined by the segment C'D of length
z, which is perpendicular to the plane of AABC. The length of the hypothenuse AD
of AACD is thus P(P{z,y). z) = AD. Still another right triangle AEAB is defined by
the perpendicular AE to the plane of AABC. We choose F such that AE = 2z = Ch;
we have thus £B = P(z,z). Since AF is perpendicular to the plane of AABC and
ANABC is a right triangle, '3 is perpendicular to BC. The lines BC and BE are
perpendicular. {(Indeed, the perpendicular L at the point B to the plane of triangle
AABC is coplanar with AE. So, as BC is perpendicular to both AE and L, it must
be perpendicular to to the plane of AEAB, and so it must be perpendicular to £B.)
Accordingly, FC = P(P(z, z),y) is the length of the hypothenuse of the right triangle
AFEBC. It is clear that, by construction, the four points 4, ', 17 and E are coplanar.
They define a rectangle whose diagonals AD and FC must be equal. So, we must have
P(Pl(x,y),z} = P(P(x, 2}, y}, establishing the permutability of the code P.

17 The Quasi Permutability of P. For any positive real number «, the triangle
ANA'B'CY pictured in Figure 1B, with €7 = ¢, A collinear with A’C”, B collinear with
B¢ and A'B" = £, B'C" = L and A/ = @, Is similar to the triangle AABC

also represented in Figure 1B. So, we have

P (f 3) _ Plzy) (57)

a’ o o

8Ct. our discussion of Condition [S2] in the context of Example 4(e).
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The function / is the initial code of the meaningful family of codes {P,}. For the code
P, in that family, we get

(by meaningfulness)

P, (P(z,y),z) = aP (M}i)

a
= aP (P (g %) é) (by Equation (57))
=aP (P (g, 2) . i—) (by the permutability of P)
= aP (%Z_) ;%) (by Equation (57))
=P, (P(z,z),y) (by meaningfulness).

We conclude that any code f,a in the family {£,} is quasi permutable with respect to
the Initial code P,

SO
e o
-
o
B’ B Quasi permutability

Figure 1: A. The upper graph illustrates the permutability condition
formalized by the equation P(P{x,y),z) = P(P(z,z),y).

B. The lower graph shows that the quasi permutability condition formalized
by the equation F,(P(z,y},2) = Pa(P(z,z),y) only involves a rescaling of
all the variables pictured in Figure 1A, resulting in a similar figure, with the
rectangle A’B'C" D’ similar to the rectangle ABCD. The measures of the two
diagonals of the rectangle A'B'C'D’ are P,(P(z,y), z) and Pu(P(z, z), ).
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