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Abstract. A geometric approach is introduced to explain phenomena that can arise
with Luce’s choice axiom; e.g., differences occur when determining the likelihood of
a ranking by starting with the “best-first,” or “worst-first” alternative. As shown,
the problem is caused by the way we compute pairwise probabilities: it forces “best-
first” and “worst-first” computations to use different information from a profile. Thus
agreement holds only should the different information agree: this happens only with
complete indifference. An alternative “best-first” and “worst-first” comparison, which
always holds, is developed. Ways to increase the applicability of the choice axiom are
introduced; e.g., profiles admitted by Luce’s formulation for ten alternatives have nine
degrees of freedom; the approach described here allows millions of degrees of freedom.
New ways to compute probabilities, which combine “best-first” and “worst-first” com-
putations, are given: their properties are identified with a profile decomposition. A
new way to compute pairwise probabilities, which eliminates all profile restrictions
and problems associated with the choice axiom, is introduced; e.g., “best-first” and
“worst-first” computations now agree. Three and four alternatives are emphasized for
reasons of exposition, but most results extend to any number of alternatives.

1. Introduction

With the introduction of different axiomatic systems, one by Arrow (1963) for group

processes and another by Luce (1959, 1961, 1962, 1977) for individual decisions, the

1950s proved to be a seminal period for decision and choice theory. These approaches

differ in fundamental ways: Arrow emphasized the properties of decision rules while

Luce imposed a relationship on the outcomes. Luce then concentrated on a particular

decision rule and its associated profiles. I adopt a different perspective: by using Luce’s

relationships to implicitly define all admissible decision rules and all of their associated

profiles, my emphasis is on the structure of the space of profiles. In this manner, a far

richer class of probability measures and profiles emerge that are compatible with Luce’s

choice axiom. Thus, the approach described here significantly increases the potential

applicability of Luce’s conditions.

This research was supported by NSF grant DMI 0233798. My thanks to D. Luce for introducing me
to this topic and for his several useful suggestions and comments about the earlier drafts of this paper.
Also, my thanks L. Narens for conversations and correspondence about this subject.
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To motivate both Arrow’s and Luce’s systems, suppose 78 voters rank the four alter-

natives A, B, C,D as follows where “�” means “is strictly preferred to.”

Number Ranking Number Ranking
5 A � B � C � D 9 B � D � A � C
7 A � C � B � D 8 C � B � A � D
9 A � D � B � C 11 C � D � A � B
4 B � A � C � D 8 D � B � A � C
7 B � C � A � D 10 D � C � A � B

(1.1)

The plurality election outcome (where each voter votes for one alternative) is A � B �
C � D with the 21:20:19:18 tally. Dropping any alternative flips the election outcome

so that it now is compatible with the reversed D � C � B � A. (For instance, by

dropping D, the new C � B � A ranking has a 29:28:21 tally.) But dropping any

two alternatives flips the pairwise majority vote rankings to agree with the original

A � B � C � D outcome.

To convert Eq. 1.1 into a individual decision problem, normalize (that is, divide each

number by 78) to create a table that describes the probability a subject assigns to

each ranking. This simple connection between aspects of voting theory and individual

decisions allows us to use recent results from voting theory (Sect. 2) to uncover new

conclusions about individual decision making. Creating such connections is a theme

of this paper. For the rest of this introductory section, issues are raised, notation is

introduced, and an outline for the paper is given.

1.1. Some issues. Although the Eq. 1.1 example had nothing to do with Arrow’s and

Luce’s initial motivation, it is useful to view their contributions as searching for ways

to ensure consistent outcomes. But to achieve “consistency,” it may be necessary to

restrict preferences: an unfortunate consequence of restrictions is that they limit the

applicability of a theory. A natural goal, then, is to find ways to relax restrictions so

that a theory can admit other interesting settings. I identify alternative approaches that

significantly relax the current restrictions; indeed, one approach imposes no restrictions.

To be more specific about Arrow’s approach, his “binary independence” condition (or

“IIA”) can be thought of as constructing a societal ranking by using only the information

about how each voter ranks each pair of alternatives. As Arrow proved, the only way

to assure transitive societal rankings with his conditions is for the decision rule to be

a dictatorship. The reason, as we now know (Saari 1998, 2001b), is that if a decision

rule satisfies binary independence, then it dismisses the explicitly specified information

that the voters have transitive preferences. As described later, this “loss of transitivity”

phenomenon occurs only with specific configurations of preferences. Interestingly, the

data component that causes Arrow’s problems is crucial for Luce’s results (Sect. 6).
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If binary independence dismisses the crucial assumption of transitive preferences,

then a natural way to sidestep the difficulties Arrow identified is to relax his binary

independence condition so that a decision rule can use the information that voters’

preferences are transitive. By taking this approach (Saari 1998, 2001b), Arrow’s dictator

is replaced with several rules including the Borda Count: a decision rule that plays an

interesting role in voting and in our discussion of Luce’s axiom (Sects. 3-7).

Definition 1. For n-alternatives, the Borda Count tallies each voter’s ballot by assign-

ing (n − j) points to the voter’s jth ranked alternative, j = 1, . . . , n. The alternatives

are ranked according to the sum of received votes.

1.2. Luce’s approach. With his interest in individual decision making, Luce considers

settings that can be captured with probability measures. For notation, letters in the

early part of the alphabet such as A, . . . , D, correspond to alternatives, X, Y, Z are

variables, R,S, T represent sets, and lower case letters represent probabilities; e.g.,

P (A) = a. The probability measure PT satisfies the usual axioms for space T ; i.e.,

(1) For S ⊂ T , 0 ≤ PT (S) ≤ 1.

(2) PT (∅) = 0, PT (T ) = 1.

(3) If R,S ⊂ T and R ∩ S = ∅, then PT (R ∪ S) = PT (R) + PT (S).

For S ⊂ T , PS denotes the conditional probability measure defined over set S and

P (A, B) represents P{A,B}(A): the probability of selecting A in S = {A, B}.
Luce avoids the Table 1.1 type of inconsistencies by requiring consistent outcomes

where the probabilities in any set T determine all consistent subset outcomes. He

accomplishes this feat by imposing the following conditions that are called the “choice

axiom” in what follows.

Axiom 1. Luce’s Choice Axiom (Luce, 1959). For any n ≥ 2, let T = {A1, A2, . . . , An}
be a set of n alternatives. A probability measure PT satisfies the choice axiom if the

following are true.

(1) For every non-empty S ⊂ T , PS is defined.

(2) If P (Ai, Aj) 6= 0, 1 for all Ai, Aj ∈ T, then for R ⊂ S ⊂ T

PT (R) = PS(R)PT (S); (1.2)

(3) If P (Ai, Aj) = 0 for some Ai, Aj ∈ T , then for every S ⊂ T

PT (S) = PT−{Ai}(S − {Ai}). (1.3)

Because P (A, B) = 0 implies that P (B, A) = 1, part 3 describes an individual with

perfect discrimination between alternatives Ai and Aj. Luce (1959, p. 8) imposed this
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condition to avoid questionable behavior that can be associated with perfect discrimi-

nation. While I also emphasize imperfect discrimination (so, for all A, B ∈ T , assume

that P (A, B) 6= 0, 1), I suggest, in Sect. 7, why Condition 3 is necessary.

With imperfect discrimination, conditional probability is defined as

PT (R|S) =
PT (R ∩ S)

PT (S)
. (1.4)

Luce noted for R ⊂ S ⊂ T that PS(R) = PT (R|S) is equivalent to Eq. 1.2, so his

axiom is equivalent to the standard independence relationship. A subtle but important

distinction is that Luce does not require an universal set, so his setting holds for those

realistic situations where the set of alternatives changes. Namely, alternatives can be

added to the system without needing to renormalize to ensure that the sum of the

probabilities equals unity. A central reason why this property holds is that, as described

below, Luce’s axiom has the effect of endowing each alternative with an intrinsic level of

likelihood that is independent of the particular set. Thus, while PT denotes a probability

defined over set T , this notation does not imply that T is the universal set.

1.3. Rankings. I consider only settings where a subject ranks alternatives. Following

Luce (1959, pp. 68-74), for the set of alternatives T , let “PT (A) denote the probability

that A is judged to be the superior element in T according to some specified criterion.”

The reason for the “some specified criterion” phrase is that, as Luce states and as I show

(Sects. 3, 7), selecting a criterion is equivalent to adding conditions to the choice axiom.

But independent of what criterion is selected, the choice axiom and standard probability

conditions force the following structure. (Luce uses a more general representation.)

Proposition 1. (Luce, 1959) Assume the choice axioms hold. For S ⊂ T and Ai ∈ S,

PS(Ai) =
PT (Ai)∑

Aj∈S PT (Aj)
. (1.5)

As Prop. 1 demonstrates, Luce’s conditions impose an orderly structure on the out-

comes where the {PT (Aj)}n
j=1 values determine all remaining PS(Aj) probabilities. No-

tice how Eqs. 1.4, 1.5 provide the intended sense that attached to each alternative Aj is

an intrinsic PT (Aj) level of likelihood. This property, for instance, means that PT can be

constructed from the pairwise probabilities: this is illustrated next for T = {A, B, C}.

Proposition 2. (Luce, 1959, p. 16) If X, Y, Z represent the three alternatives of T =

{A, B, C}, then, under the assumption of imperfect discrimination,

PT (X) =
P (X, Y )P (X, Z)

P (X, Y ) + P (X, Z)− P (X, Y )P (X, Z)
(1.6)
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and

P (B, C) =
P (A, C)P (B, A)

P (A, B)P (C, A) + P (B, A)P (A, C)
. (1.7)

So, the probability of selecting X from T is determined by how X fares in both

pairwise comparisons. A related relationship holds for n ≥ 4.

Proof. Let PT (A) = a, PT (B) = b, PT (C) = c. Substitute the P (X, Y ) = x
x+y

values

into these expressions and collect terms. �

While the choice axiom specifies relationships among outcomes, observe that it does

not even mention the decision rules. This suggests exploring whether the choice axiom

can be treated as implicitly defining a class of admissible decision rules (i.e., probability

computations) and their associated profiles. Carrying out this program is a main theme

of the paper. First a “profile” must be defined.

Definition 2. For n ≥ 3 alternatives, there are n! strict (complete, linear) transitive

rankings. A voting profile lists the number of voters who have each ranking as a personal

preference. A probability profile p lists the probability that a particular ranking occurs.

That is, each component of p is non-negative and the sum of the components is unity.

With a voting profile, ballots are tallied. With a probability profile, the various rank-

ing probabilities are determined by the summation rules of probability. To illustrate,

when Table 1.1 is converted into a probability profile (by dividing each number by the

total number of votes), the inconsistency of the Table 1.1 rankings over different subsets

means that if the probability measure is equivalent to the plurality vote, then profiles of

the Table 1.1 type are not admitted by the choice axiom. (This statement is an imme-

diate consequence of the fact that a profile satisfying Luce’s axiom assigns an “intensity

of likelihood” value to each alternative. This fixed intensity requires the alternatives to

retain the same relative ranking with different subsets; e.g., profiles that satisfy Luce’s

axiom also satisfy Arrow’s binary independence condition.) If this Table 1.1 profile is

not allowed, what is? The admitted profiles are characterized starting in Sect. 3.

The choice axiom introduces intriguing mysteries when constructing T = {A, B, C}
rankings. One of them compares the effects of an individual constructing a ranking with

a “best-first” approach versus a “worst-first” method. For a “best-first” approach, it is

reasonable for the likelihood of A � B � C, denoted by R(A � B � C), to be

R(A � B � C) = PT (A)P (B, C) (1.8)

Namely, the subject first selects the top ranked A with likelihood PT (A), and then

selects B from the remaining two alternatives with probability P (B, C). In contrast, a

worst-first approach starts with likelihood that C is judged to be inferior, P ∗
T (C), and
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then selects B as the inferior choice of the remaining two with likelihood P ∗(B, A) to

obtain

R∗(A �∗ B �∗ C) = P ∗
T (C)P ∗(B, A) (1.9)

where P ∗
T satisfies the choice axiom with P ∗(X, Y ).

Under Luce’s reasonable assumption that pairwise decisions for either approach agree,

that is, P (A, B) = P ∗(B, A), one might expect R(A � B � C) = R∗(A �∗ B �∗ C).

But Luce proves that this relationship requires a peculiar restrictive condition.

Theorem 1. (Luce, 1959 p. 69). Let P and P ∗ be defined as above for T = {A, B, C},
and assume that they both satisfy the choice axiom where all pairwise discriminations

are imperfect and P (X, Y ) = P ∗(Y, X). A necessary and sufficient condition for R(A �
B � C) = R∗(A �∗ B �∗ C) is that P (A, B) = P (B, C).

This unexpected behavior is nicely examined by Yellott (1977, 1997) in terms of

Thurstone’s theory of comparative judgment. Other insightful papers in this direction

include Fishburn (1994), Marley (1982), and papers in the edited book (Marley, 1997).

Estes (1997) describes the flavor of the thinking of the time when Luce’s theorem and

choice axiom were discovered. The discussion of Thm. 1 given here differs and explains

this condition in several ways.

1.4. Debreu, Tversky, and reversal problems. While Thm. 1 is discussed through-

out this paper, it admits a particularly simple “number of equations and number of un-

knowns” explanation. A way to motivate the argument is to recall G. Debreu’s (1960)

criticism of the choice axiom in a review of Luce’s book and to show why Tversky’s

elimination-by-aspect approach is subject to the same difficulty.

To capture the flavor of Debreu’s example with alternatives T = {A, B, C}, let A and

B represent the same CD featuring Sibelius, but from different stores, so I am indifferent

between them. Let alternative C be a CD featuring Mozart: I am indifferent between

purchasing a CD featuring Mozart or Sibelius. Thus, the likelihood of selecting either

alternative from any pair is a half. But according to Eq. 1.6, the choice axiom requires

the unreasonable PT (A) = PT (B) = PT (C) = 1
3
. A more realistic choice has an equal

likelihood for selecting either a Mozart or Sibelius CD where the Sibelius choices split

to define PT (A) = PT (B) = 1
4

while PT (C) = 1
2
. Debreu argues that, “To meet this

difficulty one might say that the alternatives have not been properly defined. But how

far can one go in the direction of redefining the alternatives to suit the axiom without

transforming the latter into a useless tautology?”

Debreu’s comment are recalled only to introduce the “equation counting” argument

used throughout this paper. The main point is that the choice axiom is intended to



THE PROFILE STRUCTURE FOR LUCE’S CHOICE AXIOM 7

model only those settings where a natural intensity is attached to each alternative: in

contrast, Debreu’s example captures a natural multi-dimensional situation where the

intensity changes with the setting. Restated in terms of the number of equations and

number of unknowns, by attaching an intensity to each alternative, Luce’s axiom allows

(n − 1) degrees of freedom for n ≥ 3 alternatives. Consequently the choice axiom can

be used only for settings that can be described with no more than n − 1 independent

expressions (equations). (The n choices of PT (Aj), j = 1, . . . , n, are constrained by∑
j PT (Aj) = 1.) Debreu’s example involves five independent expressions, so, rather

than a criticism of the choice axiom, his example underscores the reality that we cannot

model situations with more independent expressions than allowed degrees of freedom.

It is interesting, and may have been noticed by others, that a similar restriction

applies to Tversky’s elimination-by-aspect method (1972a, b). This is because with n

alternatives the number of aspects defines 2n−2 independent variables coming from the

2n possible subsets minus the empty set and the set where all aspects agree. Each of

the
(

n
j

)
subsets with n− j alternatives define (n− j − 1) different PS(Aj) probabilities.

Thus, over all subsets of alternatives, it is possible to describe up to

τ(n) =
n−2∑
j=0

(
n

j

)
(n− j − 1) (1.10)

different independent expressions. Consequently, once τ(n) > 2n − 2, which occurs

already for n ≥ 4, examples with the Debreu flavor can be constructed where Tversky’s

elimination-by-aspect framework is not applicable. An example requires more than

2n− 2 expressions, and the Eq. 1.1 example indicates how to construct such situations.

A more subtle twist on this “number of equations and number of unkowns” argument

explains Thm. 1. To see this argument for T = {A, B, C}, let x = PT (A), y = PT (B),

and 1− x − y = PT (C). Similarly, let u = P ∗
T (A), v = P ∗

T (B), and 1 − u − v = P ∗
T (C).

With the choice axiom, the three conditions P (A, B) = P ∗(B, A), which is x
x+y

= v
u+v

,

P (A, C) = P ∗(C, A), and P (B, C) = P ∗(C, B) create two constraints for the four

variables. This leaves two degrees of freedom. (There are two independent constraints

because, according to Eq. 1.7, the probabilities for any two pairs uniquely determines

those for the third.) Now consider the central relationship

R(A, B, C)−R∗(A, B, C) = x(
y

y + (1− x− y)
)− (1− u− v)(

v

u + v
)

(1.11)

that we hope equals zero. But Eq. 1.11 is a single equation with two degrees of freedom,

so instead of just the zero value (indicating equality) we must expect a continuum of

of values. In particular, Eq. 1.11 has the desired unique zero value only after imposing

another independent condition (equation) to have the correct number of equations and
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unknowns. The seemingly strange P (A, B) = P (B, C) requirement of Thm. 1 is one

choice for this extra condition; there are others (Sect. 5).

The real objective is to have all R(X, Y, Z) = R∗(X, Y, Z) probabilities agree. By

repeatedly using Thm. 1 with all six rankings, all six R(X, Y, Z) = R∗(X, Y, Z) proba-

bilities agree if and only if

P (A, B) = P (B, C) = P (C, A), P (B, A) = P (A, C) = P (C, B) (1.12)

where the terms for the first string of equalities come from achieving agreement with

the rankings

A � B � C, B � C � A, C � A � B (1.13)

and those for the last string come from B � A � C, A � C � B, C � B � A.

The Eq. 1.13 configurations are called Condorcet triplets, and, as described starting

in Sect. 2, they play a central role in voting theory, probability computations, Arrow’s

theorem, and the choice axiom. According to Eq. 1.12, if R(σ) = R∗(σ) for all rankings

σ, then there is at most one degree of freedom, say the a
a+b

value. An equation counting

argument shows that the actual restriction is more severe; all rankings have probability
1
6
. This is what Luce (1959) (also see Luce, Bush, Galanter, 1965) proved; different

explanations using information about profiles are given in Sects. 5, 6.

1.5. Pairwise Computations. There is no fixed definition for the “likelihood of a

pairwise ranking,” but the intuitive approach defines P (A, B) as the sum of probabilities

over rankings where A � B. This approach is not necessary: probability computations

such as the one given later in Def. 10 could assign more weight to rankings such as

A � C � B, which separate A and B, than to A � B � C where A and B are adjacent.

For notation, if S ⊂ T and σ is a ranking of the alternatives in S, let RS(σ) denote

the probability of σ. It follows from Eq. 1.6 that a probability P ′
T (X) (see Eq. 7.9) can

be constructed that satisfies the choice axiom where

P ′(A, B) =
∑

ρ where A�B

5

6
RT (ρ) +

∑
ρ where B�A

1

6
RT (ρ) =

1

6
+ [

2

3

∑
ρ where A�B

RT (ρ)].
(1.14)

Observe that P ′ and the standard approach always agree in how the alternatives are

ranked according to likelihoods, but the values differ; e.g., P ′ never allows perfect

discrimination. A natural question is to determine when we must use the standard

approach to compute P (A, B).

Theorem 2. Luce (1959). Let RS and PS be defined for all S ⊂ T and suppose that

(1) R{A,B}(A � B) = P (A, B), RT (A � ρ) = PT (A)RT−{A}(ρ).

(2) PS satisfies the choice axiom,
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(3) all pairwise discriminations are imperfect;

then

P (A, B) =
∑

ρ where A�B

RT (ρ). (1.15)

Call Eq. 1.15 the “standard pairwise computation.” The next more general definition

is used in what follows.

Definition 3. Let σ be a ranking of the alternatives in S ⊂ T. The linear computation

of RS(σ) is where RS(σ) is a specified linear combination of RT (ρ) for all rankings ρ.

The standard computation of RS(σ) is the special case where

RS(σ) =
∑

ρ where σ is the relative ranking

RT (ρ). (1.16)

Equation 1.14 illustrates a particular choice for a non-standard linear pairwise compu-

tation: there exist many other reasonable ways, even nonlinear approaches, to compute

these probabilities. While it is interesting to speculate whether individuals use other

computational approaches, the standard pairwise approach is emphasized until Def. 10:

as we will see, this Def. 10 approach to pairwise comparisons eliminates most of the

problems that are associated with the choice axiom.

1.6. The “Ranking Axiom”. Comparing P (A, B) with P ′(A, B) from Eq. 1.14 shows

that there exist rules over different subsets of alternatives where the numerical scores

for alternatives may differ, but they always share the same ordinal ranking (based on

the probabilities). Thus it is possible to relax the precision of the choice axiom while

preserving its spirit: an advantage of doing so is to admit settings where a subject does

not exhibit Luce’s required numerical precision. This alternative axiom, which captures

the spirit of Arrow’s and Luce’s approaches, imposes consistency about how a subject

ranks alternatives without requiring precise probability values.

Axiom 2. [Ranking Axiom]. For the alternatives T = {A1, . . . , An}, let S denote a

subset. Suppose P is a decision rule defined over all subsets of alternatives where PS

represents the rule restricted to subset S. Decision rule P and an associated subset of

profiles PRP satisfies the ranking axiom if the following hold for each S ⊂ T , |S| ≥ 2.

(1) For each S and p ∈ PRP , PS(p) is a complete, binary, transitive ranking of the

alternatives in S.

(2) The ranking of PS(p) is the same as the relative ranking of the alternatives from

S in PT (p).

If a probability measure satisfies the choice axiom for the alternatives in T , it also

satisfies the Ranking Axiom. But as Eq. 1.14 demonstrates, a decision rule can fail
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the choice axiom and still satisfy the Ranking Axiom. (Also see standard results from

random utility models.) Similarly, if a profile restriction admits a method where Arrow’s

Binary Independence holds for the ranking of all sets S, then it satisfies the Ranking

Axiom. The added flexibility offered by this axiom is indicated in Sect. 6 where I

introduce a continuum of settings with decision rules that satisfy this condition but not

the choice axiom.

1.7. Outline. To outline this paper, in Sect. 2, I describe a recently developed approach

to analyze voting rules. A way to think of this approach is that Arrow stresses the

structure of the decision rules, Luce stresses the structure of the outcomes, while I

stress the structure of the domain—the space of profiles. More specifically, this approach

decomposes a voting or probability profile into those components that cause different

outcomes when used by different kinds of rules. This decomposition helps to explain

some of the mysteries that are associated with Luce’s axiom.

In Sects. 3 and 4, results from voting theory are used to create a class of new proba-

bility measures that satisfy the choice axiom and to prove that a surprisingly large set of

probability profiles satisfy the choice axiom. By using these new probability measures,

we find new ways to describe the concerns introduced in Thm. 1. As an illustration,

a measure based on Def. 10 has several remarkable properties; e.g., no restrictions on

profiles are needed to satisfy the choice axiom and many of the choice axiom difficul-

ties disappear. In Sect. 5, different ways to model the Thm. 1 reversal behavior are

investigated: as true with Luce’s approach, in all cases the ranking probabilities agree

only at complete indifference. Section 6 uses the voting material introduced in Sect. 2

to explain the source of several of the choice axiom mysteries. In this section I explain

why the Condorcet triplet (Eq. 1.13) that causes Arrow’s negative conclusions plays a

vital positive role for Luce’s choice axiom. In Sect. 7, I show that there remains an

uncountable number of other probability measures that satisfy the choice axiom, and I

identify other consequences of the choice axiom.

2. A decomposition of profiles

The purpose of this section is to describe recent results from voting theory that can

be used to explain the source of all possible election outcomes that can arise with a large

class of voting rules. When applied to probability measures and probability profiles, this

theory explains a variety of the choice axiom behaviors including the earlier described

reversal results. I start by showing how to list profiles in a geometric manner: the

advantage of doing so is that the geometry sorts the profile entries in a manner to

simplify the computations of election outcomes. To introduce the notions with n = 3

alternatives, label the 3! strict, complete, transitive rankings as specified next.
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Type number Ranking Type number Ranking
1 A � B � C 4 C � B � A
2 A � C � B 5 B � C � A
3 C � A � B 6 B � A � C

(2.1)

The rankings of n ≥ 3 alternatives can be geometrically represented with an equi-

lateral n-gon that resides in a (n − 1)-dimensional space. For n = 3, this figure is an

equilateral triangle; for n = 4 it is an equilateral tetrahedron. Assign each alternative to

an unique vertex, and assign rankings to each point in the equilateral n-gon according

to the point’s distance from each vertex where “closer is better.” In Fig. 1a, for instance,

any point in the small triangle with a “1” is closer to the A vertex than the B vertex,

so it has a A � B binary ranking. Points on the Fig. 1a vertical line (connecting the

midpoint of the A-B edge with the C vertex) are equidistance from A and B, so they

represent where A is tied with (or indifferent to) B denoted by A ∼ B.
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In this manner, the n-gon is divided into ranking regions. The numbers placed in

the small triangles of Fig. 1a identify which ranking region has which Table 2.1 strict

ranking; e.g., for a point in the small triangle with a “2,” the closest vertex is A, the

next closest vertex is C, and the farthest is B, so the assigned ranking is A � C � B.

The remaining rankings include the complete indifference A ∼ B ∼ C outcome (the

triangle’s barycenter) and six rankings with one pairwise indifference. These last six

rankings are represented by the line segments that separate open triangular regions.

(For instance, the line segment representing A � B ∼ C separates regions 1 and 2.)

Indifference rankings are excluded to allow a cleaner exposition.

2.1. Profiles and tallying ballots. With this notation, the “voting profile space” is

VP3 = {n = (n1, . . . , n6) ∈ R6 |nj is a non-negative integer} (2.2)

where nj is the number of voters with the jth preference ranking. It is difficult to

envision this six-dimensional VP3, so I use the Fig. 1 triangle to represent VP3 profiles
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by placing nj in the open region representing the jth ranking, j = 1, . . . , 6. In this way,

Fig. 1b represents the profile (7, 2, 4, 6, 0, 8). Similarly, a “probability profile space” is

P3 = {p = (p1, p2, p3, p4, p5, p6) ∈ R6 |
6∑

j=1

pj = 1, pj ≥ 0 ∀j} (2.3)

where pj is the probability that the jth ranking occurs; j = 1, . . . , 6. Fig. 1c has the

probability profile (1
5
, 0, 3

10
, 0, 1

5
, 3

10
). (For n-alternatives, use the obvious definitions for

VPn and Pn.)

To see how this geometric profile representation facilitates computing election tallies,

notice that all voters preferring A � B are represented by the numbers to the left of the

Fig. 1b vertical line; thus, A’s tally in an {A, B} election is the 4 + 2 + 7 = 13 sum of

numbers on this side. Similarly, B’s tally is the 6+0+8 = 14 sum of numbers that are on

the right side. All pairwise tallies are similarly computed and listed by the appropriate

edge of the triangle. Likewise, using the standard way to compute probabilities, e.g.,

P (B, A) = p4 + p5 + p6, the computations for all pairs of the Fig. 1c probability profile

are posted next to the appropriate edge.

“Positional elections” (or “positional election rules”) is the name attached to election

rules where ballots are tallied by assigning points to candidates according to how they

are positioned (i.e., ranked) on the ballot. The widely used “plurality vote,” where each

voter votes for one candidate and the candidate with the largest number of votes wins,

assigns one point for a top-ranked candidate and zero for all others. The antiplurality

vote is where one point is given to all but the last-ranked candidate who is assigned

zero points.

Definition 4. For any choice of a positive integer n ≥ 2, a n-alternative positional

voting decision rule is defined by voting vector wn = (w1, w2, . . . , wn), w1 = 1, wn =

0, wj ≥ wj+1 for j = 1, . . . , n − 1, where wj points are assigned to a voter’s jth

ranked alternative, j = 1, . . . , n. The alternatives are ranked according to the sum of

assigned points. In “positional probabilistic voting,” the number of points assigned to

each alternative for a specified ranking is multiplied by the probability of the ranking; the

alternatives are ranked according to the sums. (To define “choice probabilities,” further

normalize the weights so that
∑

wj = 1.)

To illustrate with the Borda Count (BC), the normalized form and the form used for

positional probabilistic voting are, respectively,

1

n− 1
(n− 1, n− 2, . . . , 1, 0) and

2

n(n− 1)
(n− 1, n− 2, . . . , 1, 0).

Using different choices of wn to tally the same ballots can result in radically different

election outcomes. With ten candidates, for instance, a profile can be created whereby
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millions of different election rankings result by varying the choice of w10; indeed, it can

be that each alternative wins with some decision rules but is bottom ranked with others

(Saari 1992, 2000b). (The same assertion holds for probability profiles.)

Because different election rules can create different election rankings, a natural goal is

to characterize all possible election outcomes that can result from all wn, to explain why

each occurs, and to describe all supporting profiles: this project has been completed

for any number of alternatives (Saari, 1999, 2000a, b). The n = 3 results needed for

our purposes are described next. (For details, proofs, and references, see Saari (1999,

2001a).)

The normalized three-candidate voting vector can be expressed as ws = (1, s, 0) where

s is a specified value satisfying 0 ≤ s ≤ 1; e.g., for any s, A’s positional ws tally is

[number of voters with A top-ranked]+s[number of voters with A second-

ranked].

Using Fig. 1a to represent a profile, the values for the first and second brackets would

be the sum of numbers, respectively, from the heavily and the lightly shaded regions;

e.g., with the Fig. 1b profile, A’s ws tally is [2 + 7] + s[4 + 8]. All ws tallies are

similarly computed and listed by the relevant vertex. The similar tallies for the Fig. 1c

probabilistic profile are further normalized to become probabilities by dividing by 1+s.

The s-coefficients for the Fig. 1b election outcomes differ among the candidates, so

it is reasonable to wonder whether the election outcomes can change by using different

election rules. Indeed, candidate A is the Borda winner (s = 1
2
) where the Borda election

ranking is A � B � C, B is the Condorcet winner (she beats each of the other two

candidates in pairwise majority vote elections), and C is the plurality winner (s = 0)

with the C � A � B plurality outcome. In other words, each candidate can be the

“winner” by using an appropriate election rule. A long standing question in the area

of social choice has been to understand and explain all conflicts of this sort. The basic

ideas behind the approach answering these questions (see Saari (1999, 2001a) for n = 3

candidate and Saari (2000a, b) for n ≥ 3 candidates) are described next.

2.2. Basic idea. There are certain configurations of voter preferences where it is ar-

guable that the outcome should be a complete tie. Indeed, if a voting rule fails to have

a tie in such settings, it is reasonable to wonder whether the rule’s tallies introduce a

bias that favors certain candidates. This leads to the conjecture, which turned out to

be true, that all possible election differences among standard voting rules are caused by

these kinds of biases.

Surprisingly, for three candidates, only two configurations of preferences are needed to

explain all possible differences in voting rules. The first is a reversal configuration where
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two voters have directly opposite rankings such as A � B � C and C � B � A. Here

it is arguable that the outcome should be a tie: this is what happens with the majority

vote for any pair of alternatives. The reason is that if a pair is ranked one way in the

first ranking, it is ranked in the opposite manner in the second ranking. For positional

methods, however, a tie need not occur. Instead the A : B : C ws-tally is 1 : 2s : 1.

Consequently, the outcome is tied iff s = 1
2
, or iff the Borda rule is used. If s < 1

2
, as true

with the plurality vote, the reversal configurations favor (or introduce a bias in favor

of) A ∼ C over B. Conversely, choices of s > 1
2

(such as the antiplurality rule) favor

B over A ∼ C. Because the reversal configuration affects only positional methods, we

might anticipate, and it is true, that all possible differences among positional methods

are caused by profile configurations of this type. Moreover, because these components

have no effect on pairwise rankings, they can cause conflicting election rankings among

pairs and non-Borda positional rules.

To describe the next configuration, which I call the Condorcet n-tuple, start with

any ranking, say A1 � A2 � · · · � An. To create the next ranking, move the top-

ranked alternative to the bottom, so we have A2 � · · · � An � A1: continue until all

alternatives have been top-ranked once. To illustrate by starting with A � B � C, the

Condorcet triplet, which already has cropped up with the choice axiom in Eq. 1.13, is

A � B � C, B � C � A, C � A � B. (2.4)

Each candidate in the Condorcet triplet (and n-tuple) is ranked in each position pre-

cisely once, so it is arguable that the outcome should be a complete tie. The completely

tied behavior is realized by all positional methods with their A ∼ B ∼ C outcome

where each candidate receives 1 + s points. The pairwise vote, however, generates the

cycle A � B, B � C, C � A where each vote has a 2:1 tally. The reason the pairwise

vote fails to have a tie is that by concentrating on pairs it cannot recognize nor utilize

the broader symmetry that mandates a tied outcome. The cyclic tallies caused by this

configuration bias pairwise election outcomes.

As one must anticipate, Condorcet triplets cause pairwise outcomes and tallies to dif-

fer from positional outcomes. The important fact (Saari 2000a) is that the Condorcet

n-tuples are completely responsible for all difficulties encountered in pairwise compar-

isons. As I have shown elsewhere, for instance, the Condorcet n-tuples are totally re-

sponsible for Arrow’s dictator conclusion; e.g., by restricting attention to profiles with

no Condorcet n-tuple components, Arrow’s dictator is replaced with the Borda Count.

A way to illustrate how these biases change election outcomes is to show how the Fig.

1b profile was constructed. Start with the innocuous Fig. 2a profile where its various

tallies are listed by the edges and vertices: with the exception of the antiplurality vote

(s = 1), all pairwise and positional tallies agree with the A � B � C outcome. To
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change the Condorcet winner from A to B without affecting any ws-ranking, we know

from the above that we must add Condorcet triplets. So, as represented in Fig. 2b,

introduce x units of the Condorcet triple {B � A � C, A � C � B, C � B � A}
that favors B over A. By adding the pairwise tallies of Figs. 2a, b, the combined

profile has the pairwise majority vote rankings B � A and B � C iff the inequalities

2 + 2x > 3 + x, 5 + x > 2x are satisfied; e.g., iff 1 < x < 5. I used x = 2.
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To change the positional outcomes without affecting pairwise and Borda outcomes, we

now know that we must add reversal configurations. Select a ranking for any positional

method: I selected C � A � B for the plurality vote (s = 0). To favor C, use

the two reversal configurations (Fig. 2c) where C is top-ranked. Adding the values

by the vertices of Figs. 2a, c (with s = 0), this plurality election outcome occurs iff

u + v + 0 > 3 + u > 2 + v, or v > 3, u > v − 1. To create the Fig. 1b profile, use

u = v = 4.

In this simple manner, profiles exhibiting any collection of admissible election out-

comes can be created. Moreover, all differences in three-alternativeelection outcomes

can be explained solely in terms of the reversal and Condorcet components. The im-

portant point is that the reversal configurations affect only the positional outcomes,

while the Condorcet configurations affect only the pairwise outcomes. This interaction

between the two types of configurations of preferences will arise in much of what follows,

including the choice axiom.

2.3. Profile decomposition. To convert the above description into an analytical tool,

a coordinate system on the space of profiles is introduced. To keep the description sim-

ple, I consider only three candidates and jump between a profile with integer components

(from VP3) and its probabilistic representation (from P3). The approach just creates

coordinates that reflect the reversal, the Condorcet triplets, and what remains. The ori-

gin of the coordinate system for P3 is at the neutral point denoted by pNeu = (1
6
, . . . , 1

6
).
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If p1,p2 ∈ P3, then the sum of the components of the difference p1 − p2 is zero. So

vector p1−p2 lies in the tangent plane for P3 denoted by T P3. (Treat T P3 as the plane

passing though the origin of R6 that is orthogonal to pNeu.) The following definition

provides a name for the difference between any two probability profiles.

Definition 5. A profile differential is a vector in R6 where the sum of its components

equals zero.

For motivation, notice that the 24-voter profile (3, 2, 7, 1, 5, 6) can be represented as

(3, 2, 7, 1, 5, 6) = (4, 4, 4, 4, 4, 4) + (−1,−2, 3,−3, 1, 2); i.e., think of this sum as starting

with a Neutral profile where the profile differential reassigns voters from some preference

rankings (with negative signs) to others (with positive signs) to create the desired profile.

The coordinate system for profile space is described with profile differentials.

Definition 6. (Saari 1999) An Aj-basic profile differential, BAj
, assigns one point to

each ranking where Aj is top-ranked and −1 points to each ranking where Aj is bottom

ranked. The basic profile space, consisting of all basic profile differentials, is the T P3

subspace spanned by {BAj
}3

j=1.

The Aj-reversal profile differential, RAj
, assigns one point to each ranking where Aj

is top or bottom ranked and −2 points to each ranking where Aj is middle ranked. The

reversal subspace, consisting of all reversal profile differentials, is the T P3 subspace

spanned by {RAj
}3

j=1.

The Condorcet profile differential, C, assigns one point to each of the rankings in the

Condorcet triplet A � B � C, B � C � A, C � A � B, and −1 points to each of the

three remaining rankings that also form a Condorcet triplet.

The profile differentials for alternative A are illustrated in Fig. 3. In Fig. 3, the

pairwise tallies use the standard pairwise computation; the ws-outcomes, if not all zero,

are listed next to the appropriate vertices. As it should be clear, the RX reversal terms

form a basis for all reversal configurations of the A � B � C and C � B � A type

while the Condorcet term C is based on the Condorcet triplet. As described above,

these differentials lead to a complete tie with certain voting rules, but they do not with

other rules. These differences, which explain all of the positional-pairwise conflicts, is

captured by the Fig. 3 tallies.

Theorem 3. (Saari 1999) Vectors from the basic, reversal, and Condorcet spaces are

mutually orthogonal. The basic and reversal subspaces are two-dimensional; they are

spanned by any two of the three defining vectors. Space T P3 is spanned by the basic,

reversal, and Condorcet spaces. The properties of these differentials follow.

(1) All ws tallies of a basic profile agree; for any ws method, the common BAj
tally

assigns 2 points to Aj and −1 points to each of the two remaining alternatives.



THE PROFILE STRUCTURE FOR LUCE’S CHOICE AXIOM 17

The ws ranking also is consistent with the rankings of the pairs when using the

standard pairwise computation; this pairwise computation for BAj
over a pair

including Aj assigns 2 points to Aj and −2 points to the other alternative. If

the pair does not involve Aj, both alternatives receive zero points.

(2) All pairwise tallies of a reversal differential end in 0 : 0 ties. Similarly, the

Borda tally (using w1/2) is a complete tie where each alternative receives zero

points. For all remaining ws, the outcome is determined by the relationships

were the ws tally for RAj
assigns 2− 4s points to Aj and 2s− 1 points to each

of the other two alternatives. Consequently, for s greater than, or less than, 1
2
,

the ranking reverses.

(3) All ws tallies of γC are a complete tie where each alternative receives zero points.

The pairwise computation of C creates a cycle whereby A � B, B � C, C � A

all by 1 : −1 tallies.
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Fig. 3. Profile decomposition

According to Thm. 3, any three-alternative probability profile can be uniquely ex-

pressed as

p = pNeu + pBa + pRev + pCon

where the Ba, Rev, Con subscripts identify a profile component in, respectively, the

Basic, Reversal, and Condorcet T P3 subspaces. As Thm. 3 asserts, the pBa differential

has the delightful property that all positional and pairwise decision rules agree: no

conflict can occur in tallies or rankings. Consequently, knowing the w0 plurality tallies

for the pBa term determines its ws tallies for all s (they all agree) and all pairwise

outcomes. Conversely, the pairwise tallies can be used to determine all ws tallies.

Since pBa does not allow any conflict in outcomes among decision rules and subsets of

alternatives, it follows that all conflict among decision rules and subsets of alternatives

is caused by the components pCon (for the pairwise tallies) and pRev (for the positional

outcomes). The pCon terms distorts the pairwise outcomes by adding a cyclic effect

to the values. As Thm. 3 indicates and as shown earlier, the pRev term has opposing
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effects on outcomes depending on whether s < 1
2
, as with the plurality system, or s > 1

2
,

as with the antiplurality approach.
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Fig. 4. Constructing an example

A way to illustrate Thm. 3 is to create a probability profile with the plurality ranking

of A � B � C, pairwise rankings that reflect the opposite C � B � A, and the

Borda ranking B � C � A. Since only the Borda method is immune to the pRev and

pCon terms (Thm. 3), the desired Borda B � C � A ranking requires using a Basic

component such as pBa = 3BB + BC = (−1,−3,−2, 1, 3, 2). (See Fig. 4a.)

According to Thm. 3, the only way the plurality ranking can differ from the Borda

outcome is to add appropriate pRev terms to the profile. In doing so, notice that the

plurality tallies of pBa +xRC +yRA for A, B, C are, respectively, −4−x+2y, 5−x−y,

and −1 + 2x − y. Thus a plurality A � B � C ranking requires choosing y > 3 and

2 > x ≥ 0. The x = 1, y = 4 choices define the pRev illustrated in Fig. 4b. According

to Thm. 3, pRev does not affect the Borda nor the pairwise rankings.

The desired conflict in pairwise rankings can occur only by adding a Condorcet com-

ponent. By computing the pBa pairwise outcomes, and using the Thm. 3 values for

Condorcet outcomes, simple algebra shows that adding pCon = −5C to pBa (Fig. 4c)

generates the desired pairwise rankings; pCon does not affect the positional rankings.

As pBa + pRev + pCon = (−1, 4,−14, 11, 0, 0) (add the values for each region from

the Fig. 4 triangles), the components become nonnegative by adding 14 to each term:

this corresponds to adding the Neutral profile. The total is (13, 18, 0, 25, 14, 14), so a

probability profile with the desired properties is

p = (
13

84
,
18

84
, 0,

25

84
,
14

84
,
14

84
).

Recall from Thm. 3 that the ws outcome for pRev has one ranking for s < 1
2

and the

opposite ranking for s > 1
2
. Consequently, we should expect that similar phenomenon

occurs for any profile with a sufficiently large pRev component. This property is satisfied

by the above p: the plurality tally is (31
84

, 28
84

, 25
84

) with an A � B � C ranking while the

antiplurality tally is ( 45
168

, 56
168

, 57
168

) with the opposite C � B � A ranking.
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3. Ranking probabilities

The structure of voting procedures helps to analyze Luce’s choice axiom with respect

to ranking probabilities. (In what follows, most proofs for statements are in Sect. 9.)

For other papers on ranking probabilities and related questions, see Fishburn (1994,

2002), Luce (1959, 1961, 1962, 1977), Marley (1968, 1982), and Yellott (1977, 1997).

Luce claims that his “best-first” (Eq. 1.8) model, where

R(A � B � C) = a× b

b + c
= a

b

1− a
, (3.1)

“is, in spirit, closely related to [the choice axiom]; however, it is logically independent of

it.” A quick way to recognize that there is a logical independence (for n = 3) is to use a

“number of equations and number of unknowns” argument. By doing so, it follows that

the choice axiom does not introduce enough independent equations to determine the

six ranking probabilities in a way to satisfy the choice axiom. Thus a way to interpret

the refined Eq. 3.1 probabilities is that they impose new assumptions, or, equivalently,

they add new independent equations to the system. Denote Luce’s profile by

pL(a, b) = (
ab

1− a
,

ac

1− a
,

ca

1− c
,

cb

1− c
,

bc

1− b
,

ba

1− b
), c = 1− a− b.

(3.2)

By specifying the Eq. 3.1 ranking probabilities, there is only one way to compute

the associated probability values of PT (X) = x, X = A, B, C to satisfy the choice

axiom: the computations must resemble a plurality vote. For instance, to ensure that

PT (A) = a, PT (A) must be the sum of probabilities for the two rankings where A is top

ranked; i.e.,

PT (A) = a
b

1− a
+ a

c

1− a
= a

b + c

1− a
= a. (3.3)

For n ≥ 3 alternatives where P (Aj) = aj, Eqs. 1.8, 3.1 generalize to

R(A1 � · · · � An) = a1 ×
a2

1− a1

× . . .× an−1

1−
∑n−2

1 aj

(3.4)

where to satisfy the choice axiom, Eq. 3.4 implicitly defines an unique way to compute

probabilities: it is equivalent to using the plurality vote on each subset S.

As a brief aside, recall (Sect. 1.1) that the choice axiom does not require an universal

set: alternatives can be added without renormalizing to make the sum of the proba-

bilities unity. This feature is nicely demonstrated with Eq. 3.4 by observing that the

transformation from R(A � B � C) = a b
1−a

to R(A � B � C � D) = [a b
1−a

] c
c+d

and

R(A � B � D � C) = [a b
1−a

] d
c+d

splits the original a b
1−a

value into two parts.

This description of Luce’s choice of Eq. 3.1 suggests ways to generalize his notions.

The alternative approach used here shows that:
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(1) Specifying the profile dictates how the PT (X) probabilities must be computed,

but it imposes an overly severe restriction on the profiles. A much larger space

of admissible profiles (for n ≥ 4 alternatives), which provides added modelling

flexibility, emerges by specifying only how to compute the probabilities. The

admissible profiles are then implicitly defined by the computational decision

rule and the choice axiom.

(2) There exists a continuum of new and natural ways to compute the PT (X) prob-

abilities. This class, which can be identified with voting decision rules, provides

new insights into the choice axiom.

3.1. Implicitly defined profiles. For the rest of this paper, after introducing an al-

ternative way to compute the probabilities, the choice axiom is used to implicitly define

all admissible profiles.

Definition 7. A Luce-Plurality probability decision rule for set S is where the proba-

bility for alternative Aj is the sum of the probabilities for each ranking in S where Aj

is top-ranked.

I call it the “Luce-Plurality rule” because this is the rule Luce uses and it is equivalent

to the plurality vote. By implicitly defining the profiles, we discover many new ones. To

explain with an analogy, consider the function f(x, y) =
√

x2 + y2. If we concentrate

on a specific domain point, such as (3, 4), we have that f(3, 4) = 5. But letting the

outcome 5 define the supporting domain points, we have that f−1(5) is a circle of

points that includes (3, 4) as a special case. Just as f−1(5) identifies a much larger

set of supporting domain points, the approach of implicitly defining the profiles from

the choice axiom identifies a significantly larger set of supporting probability profiles.

Indeed, this implicit approach augments the Eq. 3.4 profiles with so many new profiles

that they must be described in terms of dimensional differences (or degrees of freedom).

Theorem 4. For n = 3 alternatives, the only profiles satisfying the Luce-Plurality

decision rule and the choice axiom with the standard pairwise computation form a two-

dimensional manifold of P3; this profile space is parametrically described by Eq. 3.1.

For n ≥ 4, the profiles satisfying the Luce-Plurality decision rule and the choice axiom

(for the set of n-alternatives and all subsets) form a (n − 1) + [n! − 2n−1(n − 2) − 2]

dimensional subspace of Pn. This space is characterized by the (n − 1)-dimensional

space parameterized by Eq. 3.4 and a [n!− 2n−1(n− 2)− 2]-dimensional “kernel” space

of profiles.

The proof of this theorem is in Sect. 9



THE PROFILE STRUCTURE FOR LUCE’S CHOICE AXIOM 21

To indicate the sizable advantage offered by Thm. 4, while Luce’s Eq. 3.4 restricts

profiles to a (n− 1) dimensional submanifold of Pn, the approach of implicitly defining

profiles in terms of the computational method and the choice axiom allows a much richer

profile space to emerge. With n = 5 alternatives, for instance, Thm. 4 augments each

Eq. 3.4 profile with a 70-dimensional subspace of profiles; i.e., rather than just a four-

dimensional space of profiles, we have a 74-dimensional space of profiles that satisfy

the choice axiom. When n = 6, each profile in the original five-dimensional space

defined by Luce’s Eq. 3.4 has an associated 590-dimensional space of profiles with the

same outcomes and properties. Then, with n = 10, Eq. 3.4 defines a nine-dimensional

space of profiles; the implicit approach attaches to each profile a much richer 3,624,704

dimensional profile subspace.
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Fig. 5. Representation triangle and tetrahedron

a. Tetrahedron

b. Unfolded tetrahedron

c. Triangle computing

............. ...................... .............
...............

.................................

Now that we know there are other profiles that satisfy the choice axiom, the next task

is to identify them. The larger class of n = 4 profiles promised by Thm. 4 is described in

terms of the Representation Tetrahedron (Saari, 2000a); this higher dimensional version

of the representation triangle (Fig. 1) is used to represent four-alternative profiles. To

convert this tetrahedron into a planar figure, choose a vertex (D in Fig. 5a) and cut

along the three adjacent edges. By folding the three faces down (Fig. 5b), the 24

ranking regions are displayed in the flat figure. Again, the ranking associated with each

region is determined by its distance to the vertices. For instance, the • is in the region

closest to a B vertex, next closest to A, then to D, and finally to C, so it represents

B � A � D � C.

As in Fig. 1b, represent a profile by placing the ranking likelihood in the appropriate

ranking region. The Luce-Plurality value for PT (A) is the sum of the regions where A

is top-ranked. The description for the three alternatives of T = {A, B, C} was given

earlier: recall that this computation sums the values in the two lightly shaded regions

of Fig. 5c. Similarly, with the four alternatives T = {A, B, C,D}, PT (A) is the sum of

values in the six lightly shaded regions of Fig. 5b. The Luce-Plurality value of PS(A) for
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S = {A, B, C} ⊂ T is the sum all Fig. 5b ranking probabilities where A is top-ranked

among {A, B, C}: it is the sum of the six regions in the lightly and the two more heavily

shaded regions. (In the heavier shaded regions, the missing D is top-ranked and A is

second-ranked.) For four alternatives, P (A, B) is the sum of values in the twelve regions

to the left of the vertical line in the flattened tetrahedron of Fig. 5b. Other PS(U) values

for T = {A, B, C,D} are determined in a symmetric manner.

3.2. Finding all n = 4 profiles. The proof of Thm. 4 (Sect. 9) has two parts. The first

proves the known fact that any Eq. 3.4 profile satisfies the choice axiom. The second part

comes from Saari (2000a) where it is shown that there exists a [n! − 2n−1(n − 2) − 2]-

dimensional subspace of Pn where the profiles have no effect upon the plurality and

pairwise tallies.

The n = 4 profile changes, which augment the Eq. 3.4 probabilities and satisfy the

choice axiom, are indicated by the two arrows in Fig. 5b. These arrows mean that after

transferring the same probability value in the two directions among the four rankings, all

plurality and pairwise tallies remain unchanged. These Fig. 5b arrows, then, represent

where the Eq. 3.4 probabilities are altered by

R(A � C � B � D) = acb
(c+b+d)(b+d)

− γAC , R(A � C � D � B) = acd
(c+d+b)(d+b)

+ γAC ,

R(C � A � D � D) = cad
(a+d+b)(d+b)

− γAC , R(C � A � B � D) = cab
(a+b+d)(b+d)

+ γAC ,

where γAC is any value, positive or negative, constrained only by the requirement that

the resulting four ranking probabilities remain non-negative. The subscript indicates

that the changes cross the tetrahedron edge connecting vertices A and C. All possible

kernel terms come from the six tetrahedron edges where values are symmetrically trans-

ferred in the same fashion; the choices from the six edges define the six extra dimensions

of profiles promised by Thm. 4. By using the above geometric tallying process, a simple

computation shows that such profile changes do not affect the probability values.

According to Thm. 4, each choice of a, b, c, d values for the choice axiom generates a

six-dimensional subspace of P4 rather than just the unique Eq. 3.4 profile. To determine

this space, use the a, b, c, d values to define a specific Eq. 3.4 four-alternative profile.

The six-dimensional space of associated profiles (with identical probability outcomes

for each set S) are obtained from the six γUV variables associated with changes across

the edge connecting vertex U and V , U, V = A, B, C,D. The resulting values define

a six-dimensional linear space constrained only by the requirement that each ranking

probability is between zero and unity.
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4. Other probability decision rules

Luce’s claim that his definition of PT (X) is logically independent of the choice axiom

suggests that there must exist other approaches. Later I will show that there exists a sur-

prisingly wide spectrum of examples, but first a continuum of natural choices, motivated

by the ws-positional voting methods, are described. View these probability measures

as representing where a subject makes a distinction between the likelihood of selecting

Aj and the likelihood that Aj is top-ranked. Namely, in computing PT (Aj) = aj—the

probability that Aj is most desirable—the subject goes beyond using the likelihood that

Aj is top-ranked to include information about where Aj is second-ranked.

Definition 8. The three-alternative positional probability method ws = (1, s, 0), 0 ≤
s ≤ 1, is where P s

T (Aj) is the sum of the likelihoods of the two rankings where Aj is

top-ranked and s times the sum from the two rankings where Aj is middle ranked all

divided by (1 + s). Call the three decision rules defined by s = 0, 1
2
, 1, respectively, the

Luce-Plurality method, the Borda method, and the antiplurality method.

Using Fig. 5c, compute P s
T (A) by adding an s-multiple of the sum of the entries in

the two heavily shaded regions to the sum of the entries in the lighter shaded regions;

the final sum is divided by (1 + s). The P s
T (A), P s

T (B), P s
T (C) values for Fig. 1c

are, respectively, 2+6s
10(1+s)

, 5+2s
10(1+s)

, 3+2s
10(1+s)

. The term “antiplurality” for w1 reflects the

decision rule’s feature of equally weighting a first and second place alternative; it only

distinguishes between the top two and the bottom ranked alternative. As w1 identifies

and penalizes a bottom-ranked alternative, we will investigate the role of w1 when

developing profiles from “worst-first” instead of the “best-first” approach.

4.1. Ranking probabilities. When combined with the choice axiom, each ws-rule im-

plicitly defines associated ranking probabilities. A convenient way to find these rankings

and to associate them with the computational scheme is to expand the six rankings into

a space of 12 rankings. Do so by dividing each ranking, say A � B � C, into a larger

and smaller part of respective sizes 1/(1 + s) and s/(1 + s). Treat P s
T (A) as adding the

larger portion of the two rankings where A is top-ranked and the smaller portion of the

two rankings where A is middle-ranked. So, w1/4 = (1, 1
4
, 0) divides the jth ranking

into a portion of size 1/(1 + 1
4
) = 4

5
, with probability 4

5
pj, and a smaller portion of size

1
5
, with probability 1

5
pj. Computing P

1/4
T (A) in this manner leads to

P
1/4
T (A) =

4

5
(p1 + p2) +

1

5
(p3 + p6).

This division admits an interesting conditional probability interpretation that might

roughly describe how a subject assembles ranking probabilities. To illustrate with s = 1
4

and the type two ranking of A � C � B, the larger 1
1+(1/4)

p2 = 4
5
p2 could represent
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the probability of selecting A to be top-ranked given that C is second-ranked, while

the smaller 1
5
p2 is the likelihood of selecting C as second-ranked given that A is top-

ranked. Thus, p2 = 4
5
p2 + 1

5
p2 is the sum of probabilities of the two ways to assemble the

A � C � B ranking. In this fashion, P
1/4
T (A) is the sum of the conditional probabilities

where A is top and second-ranked. Thus a ws-method captures the sense where, for a

particular ranking say A � C � B, the ratio of [the likelihood C is second-ranked given

that A is top-ranked] to [the likelihood A is top-ranked given C is second-ranked] is s.

As described in Thm. 5, each ws-rule determines a two-dimensional section of P3

profiles. Notice how this theorem significantly expands the applicability of the choice

axiom by identifying a continuum of alternative ways to compute the probabilities. Also

notice the difference between the plurality and antiplurality profiles: this difference will

create reversal and other behaviors.

Theorem 5. For three alternatives and each s ∈ [0, 1], s 6= 1
2
, there is a uniquely

defined, smooth two-dimensional submanifold Ms of P3 profiles for which the ws-method

satisfies the choice axiom. The ranking probability for ranking σ is denoted by Rs(σ).

The space of probability profiles M1 for the antiplurality method is parameterized by

R1(A � B � C) = b(2− 1

1− c
) =

b(1− 2c)

1− c
(4.1)

(where the five remaining probabilities are obtained by appropriate permutations of the

names of the alternatives) for {(a, b, c) | a + b + c = 1, 0 ≤ a, b, c ≤ 1
2
}.

The Ms space of profiles associated with ws, s 6= 1
2
, are

Rs(A � B � C) =
1− s

1− 2s
R0(A � B � C)− s

1− 2s
R1(A � B � C)

(4.2)

The only P3 profile that allows P
1/2
T (X) (the Borda method with s = 1

2
) to satisfy the

choice axiom with the standard pairwise probability computations is complete indifference

(1
6
, . . . , 1

6
).

Proof. Add the probabilities for the rankings in the plurality and antiplurality ways to

determine that the pairwise and P 0
T (X) and P 1

T (X) outcomes are as specified. The ws

conclusions follow from the weighted sum definition of these profiles. The uniqueness

assertion follows immediately by specifying the number of equations and unknowns.

The assertions about the Borda method are described later �

Notice that Eq. 4.2 is not defined for s = 1
2
, the Borda method, and that the two

coefficients change sign at this s = 1
2

value. While this behavior can be explained in

terms of the equations, a more satisfying explanation is given later and in Sect. 6.

The Eq. 4.2 profile is illustrated in Fig. 6. For a description, start with the R1(σ)

values illustrated in the triangle on the right side of Fig. 6, and view the space as
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consisting of twelve, rather than six, rankings. The P 1
T (X) computations divide each

ranking into two equal parts; the P 1
T (A) computation takes one of the two portions from

each ranking where A is not bottom ranked. Thus the largest possible P 1
T (X) value is

a half; this explains the a ≤ 1
2

upper bound.
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Fig. 6. Defining ws = (1, s, 0) profiles

As Fig. 6 shows that Rs(σ) is a weighted combination of the plurality, R0(σ), and

antiplurality, R1(σ), ranking probabilities, a way to interpret Rs(σ) is to explain what

the plurality and antiplurality ranking probabilities mean. Luce derives the plurality

rankings from a “best-first” approach, so it remains to examine the R1(σ) antiplurality

computations. As the antiplurality emphasizes the bottom ranked alternative (the only

alternative not receiving points), it is reasonable to examine whether the R1(σ) values

admit an Eq. 1.9 “worst-first” scenario.

To start, the probability that C is bottom-ranked is p2 + p3 (the sum of ranking

probabilities where C is bottom ranked, see Fig. 1a). To satisfy the choice axiom, the

antiplurality outcome is P 1
T (C) = 1

2
(p1 + p4 + p5 + p6) = c. Combining these equations

with
∑6

j=1 pj = 1, it follows that the probability C is bottom ranked is p2+p3 = (1−2c).

The next Eq. 1.9 step is to compute the likelihood B is bottom ranked in {A, B};
according to Luce’s P (U, V ) = P ∗(V, U) condition, this is 1 − a

a+b
= b

a+b
= b

(1−c)
.

Multiplying these two values in a Eq. 1.9 sense yields the Fig. 6 and Thm. 5 value of

R1(A � B � C) =
b

(1− c)
(1− 2c). (4.3)

As anticipated, R1(σ) admits a natural “worst-first” explanation.

This analysis means that the Rs(σ) probabilities of Fig. 6 can be viewed as deter-

mining ranking probabilities with a weighted combination of “best-first” and “worst-

first” considerations—an interpretation that is compatible with the earlier “conditional

probability” representation of assembling ranking probabilities. Moreover, since the
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Rs(A � B � C) value changes with s, different ways to compute the ranking proba-

bilities lead to different values. In this manner, Thm. 5 generalizes the spirit of Luce’s

reversal result (Thm. 1) to a wider class of approaches and issues.

To conclude this subsection, the “worst-first” ranking probabilities for all n ≥ 3 are

described. As the antiplurality voting vector casts votes for all but the bottom ranked

alternative, a probability representation requires dividing each ranking into (n−1) equal

portions. The antiplurality outcome is the probability of the union of one portion from

each ranking where the specified alternative is not bottom ranked. Over subsets S ⊂ T ,

each ranking is divided into |S| − 1 parts; divide each ranking into an appropriate

number of portions where 1/(|S| − 1) of them are used for computations of set S. This

leads to a representation with the Eq. 3.4 flavor.

RAP (A1 � · · · � An) = (1− (n− 1)an)[1− (n− 2)an−1

1− an

] . . . [1− a2

1−
∑n−2

j=1 aj

].
(4.4)

As with Thm. 4, attached to each Eq. 4.4 choice is a [n!− 2n−1(n− 2)− 2] dimensional

“kernel” space of profiles. All profiles from this larger space satisfy the choice axiom

with the standard pairwise computation and the P 1
S(X) computation for each set S.

Corollary 1. For n ≥ 3 alternatives, Eqs. 3.4 and 4.4 define probability profiles that

with, respectively, the Luce-Plurality and antiplurality methods satisfy the choice axiom.

The first can be viewed as where the subject ranks alternatives from “superior choice

first and then downwards,” while the second represents profiles where a subject ranks

them from “inferior choice first and then upwards.” Attached to each profile is a [n!−
2n−1(n− 2)− 2] dimensional subspace with the same properties.

If a subject computes PT (X) by using a combination of “best-first” and “worst-first”

analyses, or if they uniformly include information about where alternative X is first and

second ranked, then the above identifies the profiles and decision rules.

4.2. Other consequences. As a twist on reversal effects (with n = 3), it is reasonable

to wonder whether reversing a ws-probability profile reverses the ws-outcome. While

this issue differs from Luce’s Thm. 1, it is related in spirit. First we need to provide a

precise definition for “reversing a profile.”

Definition 9. Let ρ be the operation that reverses a ranking; e.g., ρ(A � B � C) =

C � B � A. For p = (p1, p2, p3, p4, p5, p6), let ρ(p) = (p4, p5, p6, p1, p2, p3) be where the

probability assigned to a ranking with p now is assigned to the reversed ranking in ρ(p).
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To develop intuition as to whether reversing a profile provides any useful relationships,

experiment with pL(a, b) to obtain

ρ(pL(a, b)) = (
cb

1− c
,

bc

1− b
,

ba

1− b
,

ab

1− a
,

ac

1− a
,

ca

1− c
).

The Luce-Plurality outcome with pL(a, b) is P 1
T (A) = a, P 1

T (B) = b, P 1
T (C) = c while

the respective ρ(pL(a, b)) values are bc(1+a)
(1−b)(1−c)

, ac(1+b)
(1−a)(1−c)

, ab(1+c)
(1−a)(1−b)

. Beyond proving that

if the P 0
T ranking is A � B � C for pL then the P 0

T ranking for ρ(pL) is the reversed

C � B � A, it seems unlikely to find more useful reversal relationships.1

A more complicated reversal relationship, however, does exist. To motivate the

statement, because the antiplurality method emphasizes the bottom-ranked alterna-

tive it is, in a real sense, the reversal of the plurality method. After all, because

(1, 1, 0) = (1, 1, 1) − (0, 0, 1), a way to compute P 1
T (X) is to add the ranking proba-

bilities where X is bottom-ranked, subtract this value from 1, and then normalize the

values by dividing by 2. This is equivalent to subtracting the P 0
T (X) value of ρ(p) from

1. (The value of “1” comes from the components of (1, 1, 1).) Similarly, w1−s can be

viewed as the reversal of ws: this follows because (1, 1− s, 0) = (1, 1, 1)− (0, s, 1) where

(0, s, 1) refers to computing the ws-tally of ρ(p).

The only difference for voting profiles is that the ws-tally for candidate X for profile p

can be obtained by subtracting X’s w1−s tally from ρ(p) from n—the number of voters.

To illustrate with the Fig. 1b profile, a quick way to find ρ(p) is to interchange the values

in diametrically opposite regions. Once this is done, the w1−s tallies for A, B, and C

are, respectively, 6+12(1−s), 6+13(1−s), and 15+2(1−s). As n = 27, we recover the

ws tallies in Fig. 1b of, respectively, 27− [18− 12s] = 9+12s, 27− [19− 13s] = 8+13s,

and 27− [17− 15s] = 10 + 15s.

Denote a profile’s “tally” by τ s(p) = (P s
T (A), P s

T (B), P s
T (C)). The following theorem

states that an appropriate combination of these reversals always has tallies satisfying a

precise numerical relationship; this relationship trivially extends to all n ≥ 3 values.

Theorem 6. The following relationship among P s
T (X) values is satisfied for any prob-

ability profile p and s ∈ [0, 1].

(1 + s)τ s(p) + (1 + (1− s))τ 1−s(ρ(p)) = (1, 1, 1). (4.5)

Proof. It suffices to establish Eq. 4.5 for one alternative, say A. According to the

definition, the ws outcome for p is

(1 + s)P s
T (A) = p1 + p2 + sp3 + sp6

1Notice that bc(1+a)
(1−b)(1−c) > ac(1+b)

(1−a)(1−c) if and only if 1−a2

a > 1−b2

b . Since 1−x2

x is a strictly decreasing
function, the P 0

T rankings for pL and ρ(pL) always reverse each other. This relationship need not hold
for other probability profiles nor for P 1

T .
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while the w1−s computation for ρ(p) is

(1 + (1− s))P 1−s
T (A) = p4 + p5 + (1− s)p3 + (1− s)p6.

The sum of the two expressions is
∑

j pj = 1; this proves the theorem. �

It is worth emphasizing that Thm. 6 holds for any probability profile, not just those

specified in Thm. 5 and Fig. 6. To suggest applications of Thm. 5, notice that since

τ 0(pL(a, b)) = (a, b, c), we obtain τ 1(ρ(pL(a, b)) = (1
2
(1− a), 1

2
(1− b), 1

2
(1− c)) Thus as

a > b > c creates a Luce-Plurality ranking of A � B � C, the antiplurality ranking of

the reversal of p, of ρ(p), is the opposite C � B � A. Similarly, the P 0
T (X) values of

the reversal of the Fig. 6 profile p for s = 1 must be τ 0(ρ(p)) = (1− 2a, 1− 2b, 1− 2c).

In general, applying ws to the reversal of the Fig. 6 profile for 1− s leads to

τ 1−s(p) = (a, b, c), τ s(ρ(p)) =
1

1 + s
(1− (2− s)a, 1− (2− s)b, 1− (2− s)c).

(4.6)

To illustrate with the Fig. 1c probability profile that does not satisfy the choice axiom,

τ 0(p) = (1
5
, 1

2
, 3

10
), so τ 1(ρ(p)) = (2

5
, 1

4
, 7

20
).

A lesson learned from Thm. 6 is that the nearly half-century long discussion about

reversal effects and Thm. 1 may have concentrated on the wrong relationships. Instead,

Eq. 4.5 offers an accurate reversal argument that holds for all probability profiles. More-

over, this expression goes beyond “best-first” and “worst-first” considerations to relate

other reversal effects. More precisely, while we would like ws and w1−s to give the same

ranking for a profile p, we come close; w1−s gives the reversed ranking to the reversed

profile ρ(p). (See Sect. 6.)

It is interesting to notice (Thm. 6) that only the Borda method (s = 1
2
) admits a

relationship between a profile and its reversal. (This follows because w1−s = ws only for

s = 1
2
.) This assertion seems to be unfortunate because, in general, the Borda method

fails to satisfy the choice axiom with the standard pairwise computation (Thm. 5). But,

as shown next, both this new reversal effect and the choice axiom are satisfied by using

a nonstandard, nonlinear pairwise computation.

Definition 10. For n = 3, let PBorda(A, B) = 2(p1+p2)+p3+p6

1+2(p1+p6)+(p2+p5)
. The numerator of

PBorda(A, B) is the sum of ranking probabilities for the rankings where A is middle

ranked and twice the ranking probabilities where A is top-ranked. The denominator is

the sum of the numerators for PBorda(A, B) and PBorda(B, A).

PBorda(A, B) determines whether A is more likely than B by differentiating informa-

tion about where A is top-ranked from information where A is second-ranked; PBorda(A, B)

even uses information from the B � A � C ranking where B is ranked above A. In

terms of Fig. 5c, PBorda(A, B) is the normalized value of twice the sum of the terms
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in the lightly shaded region (placing more value on where A is top-ranked) plus the

sum of the terms in the heavily shaded region (where A is second-ranked). What adds

interest to this nonstandard pairwise computation is that with PBorda, the Borda method

satisfies the choice axiom for all probability profiles; there are no restrictions. While the

Luce-Plurality approach holds only when restricted to a two-dimensional selection of

probability profiles, the Borda method satisfies the choice axiom for all profiles.

Theorem 7. For T = {A, B, C}, if PT (X) is computed by using the Borda, s = 1
2
,

method and pairwise probabilities are computed by using PBorda(U, V ), then the system

satisfies the choice axiom for all probability profiles.

The P
1/2
T (X) values for a probability profile p and its reversal ρ(p) are related in the

following manner. For any p, we have τ 1/2(ρ(p)) = (2
3
, 2

3
, 2

3
)− τ 1/2(p).

Proof. The first statement involves an elementary computation, the second is a direct

consequence of Eq. 4.5. �

The Borda system satisfies the choice axiom without needing to impose severe con-

straints on the choice of profiles, and it satisfies a reasonable reversal effect. From a

mathematical perspective, this system is ideal for selecting ranking probabilities and

using the choice axiom: it appears to be superior to the plurality approach. Whether

the system models the behavior of subjects is a different, unexamined issue.

We encounter a mystery. Why does the Borda approach satisfy the choice axiom for

all probability profiles while the other ws-methods are constrained to highly restricted

choices? A “number of equations and number of unknowns” answer comes from com-

paring the information used to compute P s
T (A) and P (A, B). With Fig. 1a, notice that

P 0
T (A) = p1+p2 = a while P (A, B) = p1+p2+p3 = a+p3: the point to observe is that the

two decision rules use different information. Consequently, without imposing the severe

restriction that p3 = a
a+b

− a, the choice axiom cannot be satisfied. Carrying this ar-

gument one step further, recall that the choice axiom requires P (A, B) =
P 0

T (A)

P 0
T (A)+P 0

T (B)
.

With T = {A, B, C}, the information needed to compute P (A, B) is p1 + p2 + p3.

In contrast, the different p1+p2

(p1+p2)+(p5+p6)
information is needed for the right-hand side

P 0
T (A)

P 0
T (A)+P 0

T (B)
; one equation needs information about p3 while the other requires informa-

tion about p5 and p6. This radical difference in informational content means that very

strong profile restrictions must be imposed to satisfy the choice axiom.

In other words, P 0
T (A) uses information coming only from where A is top-ranked

while P (A, B) uses this information and certain information about where A is second

ranked. As it is obvious, if two decision rules use different information, agreement (e.g.,

satisfying the choice axiom) occurs only by imposing coordinating constraints on the

information: the Fig. 6 constraints are mandatory.
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This argument has other subtle messages. Because P (A, B) uses information different

from that used to compute P 0
T (A), P 0

T (B), the standard pairwise computation violates the

Eq. 1.5 spirit that the choice axiom attaches an intrinsic intensity to each alternative.

In contrast, because the Borda method and PBorda(A, B) use the same information to

compute outcomes, agreement holds for all profiles. In other words, PBorda and the

Borda method appear to better capture the intrinsic intensity concept central to Luce’s

axiom. A similar argument holds for all ws-methods (where the numerator for P (A, B)

is (p1+p2)+s(p3+p6) and the denominator is the sum of the numerators for P (A, B) and

P (B, A)) when the same form of information is used for all computations, for different

S, and for n ≥ 3. A different explanation is in Sect. 6.

To illustrate the Thm. 7 statement about the Borda probabilities, since τ 1/2(p) =
2
3
(0.5, 0.6, 0.4) = (1

3
, 2

5
, 4

15
) for the Fig. 1c profile, τ 1/2(ρ(p)) = 2

3
(0.5, 0.4, 0.6) = (1

3
, 4

15
, 2

5
).

Observe the striking symmetry. To interpret this relationship, notice that [P
1/2
T (X)− 1

3
]

describes how the likelihood of selecting X differs from the average likelihood (1
3
) of

selecting an alternative. Since [2
3
− P

1/2
T (X)] = 1

3
− [P

1/2
T (X) − 1

3
], the second state-

ment asserts for any probability profile that the τ
1
2 (p) and τ

1
2 (ρ(p)) tallies are the same

distance from the average (1
3
, 1

3
, 1

3
) values but reversing a profile reverses the sign.

These last comments provide an interpretation for Eq. 4.5. Dividing both sides of

this equation by three shows that the τ s(p) and τ 1−s(ρ(p)) tallies describe a balanced

weighted difference relative to the average (1
3
, 1

3
, 1

3
) values.

5. Comments about reversal

The above comments about the Borda method suggest that maybe Thm. 1 can be

understood in terms of informational differences in the computations of “best-first” and

“worst-first” probability computations. To underscore the point, I include other ways to

describe reversal conditions. With the Thm. 5 profiles, for instance, we might wonder

when the ranking probabilities associated with w0 and w1 agree: as described next,

agreement holds only for complete indifference.

Corollary 2. For n = 3, the w0 and w1 ranking probabilities agree if and only if

a = b = c = 1
3
. More generally with the exception of the Borda method, (i.e., for

s1, s2 ∈ [0, 1
2
) ∪ (1

2
, 1], s1 6= s2), the ws1 and ws2 values for their ranking probabilities

agree if and only if a = b = c = 1
3
. Thus the ranking probabilities agree if and only if

all rankings have the same probability of 1
6
.

Proof. For the Rs(A � B � C) and Rs(B � A � C) values to agree for s = 0, 1, we

need that ab
1−a

= b(1−2c)
1−c

and ba
1−b

= a(1−2c)
1−c

. Cancelling b from the first expression and a
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from the second leads to
a

1− a
=

1− 2c

1− c
=

b

1− b
.

The first and last terms require a = b. From the first two terms, c = 1−2a
2−3a

= 1−(a+b)
2−3a

=
c

2−3a
, or a = 1

3
. That is, a = b = c = 1

3
. Substituting these values into the Fig. 6

expressions force all ranking probabilities to equal 1
6
. The s1 6= s2 assertion follows from

their different Fig. 6 weights. �

While the above technical proof verifies the assertion, a more satisfying explanation

comes from examining differences in the kind of information used by the different deci-

sion rules. For instance, P 0
T (A) = p0

1 + p0
2 while P 1

T (A) = p1
1 + p1

2 + p1
3 + p1

6 where ps
j is

the Fig. 6 jth ranking probability using the s weight. Since P 1
T goes beyond a p1

1 + p1
2

tally to include p1
3 + p1

6, the significant difference in sources of information requires us

to anticipate agreement only in highly restrictive settings. Restating this comment in

a mathematical perspective where different sources of information are interpreted as

different variables, Cor. 5 must be anticipated because (as shown in Sect. 7) the pair-

wise probability computations required for the choice axiom define a four-dimensional

subspace of P3 where, generically, two two-dimensional surfaces from P 0 and P 1 meet

only in points: this intersection point is the profile of complete indifference.

5.1. Various reversal approaches. There are at least three ways to construct the

“worst-first” probability for the A � B � C ranking.

(1) Luce introduces a second probability P ∗
T that satisfies his axiom to determine

what it means for C to be judged the inferior choice; this leads to Thm. 1.

(2) The antiplurality profile uses the likelihood that C is bottom ranked leading to

the Fig. 6 values for s = 1 and Cor. 2. (The likelihood of being bottom ranked

need not be the likelihood of being judged the inferior choice.)

(3) A third approach does not change decision rules (as Luce does) by always using

a specified decision rule. The probability C is judged inferior is the probability

that C is judged superior for ρ(p).

All three approaches lead to an extreme Cor. 2 type conclusion. To indicate why this

happens with the last approach, first define a ranking probability using a “best-first”

approach and a ws-system. For profile p = (p1, . . . , p6), the ranking probability for

A � B � C, the p1 value, must satisfy the P s
T (A)P (B, C) expression or

p1 =
1

1 + s
[p1 + p2 + s(p3 + p6)](p1 + p5 + p6). (5.1)

A similar expression holds for each pj.
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The “worst-first” outcome of P ∗(C)P ∗(B, A), where P ∗
T (C) is the P s

T (C) value for

ρ(p) = (p4, p5, p6, p1, p2, p3) and P ∗(B, A) = P (A, B), defines the p1 value equation

p1 =
1

1 + s
[p1 + p6 + s(p2 + p5)](p1 + p2 + p3) (5.2)

with similar expressions for the other pj values. Although Eqs. 5.1, 5.2 are based on

the same information (i.e., the same variables), the weight placed on this information is

combined in different independent ways. Consequently, agreement can be expected only

in restrictive settings. Stated mathematically, these expressions involve different, inde-

pendent equations for the variables, so a “number of equations and unknowns” argument

indicates that a solution is highly restricted. Indeed, it can be shown (with algebraic

manipulations) that agreement holds only for the profile of complete indifference.

5.2. Worst-first. Rather than being surprised by disagreements between the “best-

first” and “worst-first” ranking probabilities, we should be surprised if Thm. 1, or any

of the various modifications offered here, allowed agreement with even one degree of

freedom. After all, if two two-dimensional surfaces (one defined by the “best-first”

approach and the other by the “worst-first” construction) in the four-dimensional sub-

space of P3 (required for the pairs to satisfy the choice axiom) intersect in a line, the

expressions must have a strong degree of dependency; a dependency that might prove

to be valuable.

To explain this dependency comment with more familiar geometry, consider a straight

line and a two-dimensional plane in R3. If the line and plane never intersect, the line

has the strong relationship of being parallel to the plane. If the straight line intersects

the plane in several points, we have the stronger relationship that the line is in the

plane; it is a special case of the plane. The general and expected situation is where

the line meets the plane in a single point. Similarly, the general condition for two two-

dimensional surfaces in the appropriate P3 subspace is to meet in a point (or, if not

“flat” affine spaces, in isolated points). Consequently, if the surfaces meet in a line,

they must enjoy a strong relationship; a relationship that might provide insight into

individual decision making.

This extra relationship does not hold for the choice axiom; the only wayR(σ) = R∗(σ)

agreement can be achieved over all T = {A, B, C} rankings is with the probability profile

of complete indifference. For n = 3 this conclusion is due to Luce (1959), (Luce, Bush,

Galanter, 1965). Block and Marschak (1960) extended the result to all n. (Also see

Yellott (1997).) What makes this conclusion surprising, as reflected by the attention

it has received, is that, intuitively, we expect the subject to use the same information

to determine both R(σ) and R∗(σ), so both outcomes should agree. This is not the

case; the following proof that R(σ) = R∗(σ) requires “complete indifference” shows
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that different information is used with the two approaches. As demonstrated, the real

source of the problem is a consequence of using the standard way to compute pairwise

probabilities; e.g., these problems do not arise when the Borda method is used with

PBorda. Indeed, the source of the problem becomes apparent just by recognizing that

P (A)P (B, C) = (p1 + p2)(p1 + p5 + p6) while P ∗(C)P (A, B) = (p1 + p6)(p1 + p2 + p3):

different information is used in each computation.

The first step in computing R∗(A � B � C) is to determine P ∗
T (C). A natural way

to determine the likelihood that C is judged the inferior alternative is to compute the

probability that C is the superior choice with ρ(pL). This likelihood is

p1 + p6 = R(A � B � C) +R(B � A � C) = a
b

a + b
+ b

a

a + b
. (5.3)

Luce shows that the P ∗
T value is different; it is (see Luce, 1959, Thm. 1, page 16)

P ∗
T (C) =

ab

ab + ac + bc
=

1
c

1
a

+ 1
b
+ 1

c

. (5.4)

This Eq. 5.4 value dictates the complete indifference conclusion, so it is important to

understand, beyond algebraic computations, why it arises.

While the P ∗
T (C) computation is the p1 + p6 sum, the reason the Eq. 5.4 value occurs

is for P ∗ to satisfy the choice axiom. Namely, these pj terms have different values; call

them p∗j . The source of these different p∗j values comes from the fact that P ∗(C) =

p∗1 + p∗6 = c∗ while P ∗(C, B) = p∗1 + p∗6 + p∗5 = c∗

b∗+c∗
where, with the P (B, C) = P ∗(C, B)

assumption, P ∗(C, B) = b
b+c

. In other words, P ∗(C, B) uses more information than

P ∗(C), so a strict constraint must be imposed on the p∗5 value. (By symmetry, a

constraint is imposed on all p∗j values.) The P (B, C) = P ∗(C, B) assumption relates

the x and x∗ values, x = a, b, c. Compare this source of p∗5 with the very different source

of information defining p5; e.g., p5 = P (C, A)−PT (C). The following result (particularly

Eq. 5.5), shows that this interpretation of the R∗(σ) values is consistent with Eq. 5.4.

Proposition 3. For n = 3, assume PT and P ∗
T are defined over T and its subsets with

imperfect discrimination. Suppose PT satisfies the choice axiom, and that P ∗
S(Aj) is the

probability that Aj is judged inferior in S. Assume that P ∗(B, A) = P (A, B) and that

P ∗
T satisfies the choice axiom. If R∗(A � B � C) = P ∗

T (C)P ∗(B, A), we have that

R∗(A � B � C) = [
a

a + b
][

ab

ab + ac + bc
] = P ∗(B, A)− P ∗

T (B). (5.5)

With the same assumptions for n ≥ 3, the probability profile is given by

R∗(A1 � . . . � An) =
n∏

j=2

P ∗
Sj

(Aj) (5.6)
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where Sj consists of the top j ranked alternatives {A1, . . . , Aj} and

P ∗
Sj

(Aj) =
a1a2 · · · aj−1∑j

i=1(a1a2a3 · · · aj/ai)
=

1
aj∑j
i=1

1
ai

.

Proof. The product representations are direct consequences of (Luce, 1959, Thm. 1, page

16). The subtraction representation follows from Fig. 1 where B is bottom ranked only

with type two and three rankings, so P ∗
T (B) = p∗2+p∗3. But since P ∗(B, A)(= P (A, B)) =

p∗1 +p∗2 +p∗3, we have that p∗1 = R∗(A � B � C) = P ∗(B, A)−P ∗
T (B). To check whether

this geometric representation agrees with the assumptions, substitute P ∗(B) = ac
ab+bc+ac

and P (A, B) = a
(a+b)

into the second expression; algebraic computations prove that, with

imperfect discrimination, equality holds. (By use of Fig. 4, a related, more complicated

expression follows for n = 4.) �

This difference in the kind of information used to define pj and p∗j imposes a strong

constraint in order to achieve agreement.

Proposition 4. Using the assumptions of Thm. 1, a necessary and sufficient condition

for R(A � B � C) = R∗(A �∗ B �∗ C) is P (A, B) = P (B, C) or

P (B, C)− PT (B) = P (A, B)− P ∗
T (B). (5.7)

Moreover, P (B, C) = P (A, B) if and only if P ∗
T (B) = PT (B).

In words, for ranking probabilities to agree whether computed top-down or bottom-

up, a necessary and sufficient condition is that the PT likelihood of the middle ranked

alternative being the superior choice equals its P ∗
T likelihood of being the inferior choice.

Proof. With imperfect discrimination, P (A, B) = P (B, C) if and only if ac = b2. But

R(A � B � C) = R∗(A �∗ B �∗ C) if and only if

ab

(b + c)
= (

a

a + b
)(

ab

ab + ac + bc
). (5.8)

By cross multiplying and collecting terms, equality holds iff ab(1−a−b−c) = c(b2−ac).

As the left hand side is zero, it follows from imperfect discrimination that equality holds

iff b2 = ac. This proves the assertion.

Equation 5.7 follows from the p1 and p∗1 representations. To prove that P ∗
T (B) = b iff

P (A, B) = P (B, C), notice that P ∗
T (B) = b iff ac = b(ab+ac+bc), or ac(1−b) = b2(1−b).

With imperfect discrimination, equality holds iff ac = b2; this proves the assertion. �

As an alternative is middle ranked in precisely two strict rankings, the “worse-first”

and “best-first” surfaces agree along the three lines P ∗(X) = P (X), X = A, B, C. But

these lines of agreement intersect only at the point of complete indifference, so the

only way all ranking probabilities agree, whether computed from top down or bottom
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up, is with the profile of complete indifference. This is Luce’s (1959) conclusion; also

see Yellott (1997). Namely, the combination of the standard way to compute pairwise

probabilities with the choice axiom force very different information to be used when

computing R(σ) and R∗(σ); these differences permit agreement only with complete

indifference.

Theorem 8. Under the assumptions of Thm. 1, pj = p∗j for all j = 1, . . . , 6, iff P ∗(A) =

a, P ∗
T (B) = b, P ∗

T (C) = c. This condition, which requires a = b = c = 1/3, requires the

profile to be of complete indifference where each ranking probability is 1
6
.

Proof. The equivalence in the first statement follows from the above discussion. Ac-

cording to the above, P ∗
T (B) = b iff P (A, B) = P (B, C) iff p1 + p2 + p3 = p1 + p5 + p6 iff

p2 + p3 = p5 + p6 iff p∗2 + p∗3 = p∗5 + p∗6 iff P ∗
T (B) = P ∗

T (C) iff b = c. The a = b equality is

found similarly. The fact that the profile is one of complete indifference follows either

from the form of pL(a, b) or by solving the three equations for PT (X) = 1
3

and the

expressions P (A, B) = P (B, C) = P (A, C) = 1
2

for the pj values. �

6. Explanations and the Ranking Axiom

To answer some of the remaining mysteries we have encountered, I use the earlier

(Sect. 2) results from the positional and pairwise voting literature.

6.1. Choice Axiom. Theorem 3 shows that all conflict among outcomes of the pairs

and the triplet disappears by restricting attention to the basic profiles, or by using

Borda’s method and restricting profiles so that they have no Condorcet term. Alter-

natively, we could search for a judicious combination of Condorcet and reversal profiles

that alters the pairwise outcomes in just the correct amount to agree with the adjusted

P 0
T (X) values of the triplet. This last scenario characterizes precisely what happens

with the choice axiom and Luce’s profile of Eqs. 3.2, 3.4 as well as with all the profiles

of Thm. 4, Fig. 6.

All conflict due to the pairwise vote and tallies is caused by the pCon term (which

does not affect ws-outcomes). This component causes all cycles and non-transitive

pairwise rankings, all differences among methods using pairwise votes, all differences

between the tallies of the pairwise majority votes and other voting rules and so forth.

The explanation, as developed in Saari (1999, 2000a, b) is that the Condorcet term can

be viewed as replacing this portion of transitive preferences with cyclic preferences.

As this last observation explains properties of the choice axiom, it is worth being

more explicit. The Condorcet triplet A � B � C, B � C � A, C � A � B creates

a cycle manifested here by two A � B and one B � A rankings, two B � C and

one C � B rankings, and two C � A and one A � C rankings. But the same
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sequence of pairwise rankings results from profiles that violate transitivity by having

cyclic preferences. (Two choices, for instance, are the A � B � C, C � B � A and

A � B, B � C, C � A preferences and the two A � B, B � C, C � A cyclic choices

with one B � A, C � B, A � B.) Even if transitive preferences are intended, it can be

shown that the decision rule interprets the data as coming from cyclic preferences.2 In

particular, the Condorcet term causes all problems; indeed, if profiles have no Condorcet

terms, then Arrow’s conditions are satisfied by the Borda method rather than just a

dictator. (Also see Saari, Sieberg 2001.)

With probability profiles, the Condorcet term reflects a subject’s cyclic ambiguity in

ranking the alternatives. It is interesting how the choice axiom implicitly mandates this

ambiguity when the standard pairwise computation is used.

The Condorcet term only affects P (A, B) values, so other profile components must

be introduced to alter the P s
T (X) values to achieve Luce’s numeric precision. These are

the pRev terms that have no influence on pairwise or Borda outcomes, but they create

differences among P s
T (X) outcomes (for s 6= 1

2
). The Thm. 5 ranking profiles, then,

require a precise level of pRev components to correspond with the profile’s Condorcet

component. It is this needed precision among reversal and Condorcet components that

imposes the restrictions on the profiles that satisfy the choice axiom.

Recall from Part 2 of Thm. 3 that this pRev term has an opposing effect on the

Luce-Plurality computation (which emphasizes the top-ranked alternative) as with the

anti-plurality computation (which emphasizes the bottom ranked alternative). Thus,

the larger the magnitude of this pRev term relative to pBa, the greater the difference

when emphasizing the best or the worst alternative. As different P s
T computations have

different pRev outcomes, a different component level of the Condorcet term is needed

to coordinate the P s
T (X) and P (A, B) values to satisfy the choice axiom; the phrase

“compensating errors” is a way to describe this affect of adding components that should

cancel. This description, where different amounts of profile differentials are needed for

different s values, shows that the ranking probabilities can be expected to coincide only

when the Condorcet and pRev values are zero: this is the profile of complete indifference.

6.2. Borda properties. Other remaining mysteries are to explain why the Borda

P
1/2
T (X) is excluded from Thm. 5 and why the Eq. 4.2 coefficients approach infinity

as s → 1
2
. To explain, since the Condorcet component of a profile affects the P (A, B)

values, something must be done to appropriately adjust the Borda P
1/2
T (X) values. But

Thm. 3 proves this is impossible because reversal and Condorcet terms do not effect

the Borda outcome. Similarly, as s → 1
2
, it follows from Thm. 3 that the P s

T value for

2This conflict between actual preferences and the way a decision rule must “interpret” them explains
Arrow’s Theorem and suggests ways to circumvent his negative assertion (Saari 2001).
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pRev must approach zero. To compensate, larger amounts of pRev is needed. But as s

passes through 1
2
, the reversal terms has a reversed effect on the P s

T (X) ranking, so the

Condorcet term needs to be reversed; the coefficients of Eq. 4.2 reverse sign.

The interesting fact is that by replacing the standard pairwise computation with

PBorda(A, B), all of the difficulties with the Borda method disappear (Thm. 7). As

explained next, PBorda(A, B) is not affected by Condorcet terms, so there is no need to

adjust P
1/2
T (X) values.

Theorem 9. For n = 3 alternatives, the PBorda(U, V ) outcome of any reversal or

Condorcet component for any pair is zero. The only terms in a profile that affects the

PBorda(U, V ) outcome are the neutral pNeu and basic pBa components.

Proof. This is a direct computation; e.g., use Fig. 3. �

6.3. Decompositions. A way to underscore the above comments about the need for

coordination among the components is to identify the pRev and pCon components in the

Thm. 5 profiles. The next theorem computes this decomposition for any probability

profile; the result is then applied to determine the decomposition of Thm. 5 profiles.

Theorem 10. (Saari, 1999) By vector addition, a profile expressed in the

p = aBBA + bBBB + aRRA + bRRB + γC3 + kK (6.1)

form can be written in the p = (p1, . . . , p6) format. Conversely, for a given probability

profile p = (p1, . . . , p6), the vector v = (aB, bB, aR, bR, γ, k) of coefficients of the Eq. 6.1

profile decomposition are obtained from the matrix expression v = T (p) where

T =
1

6


2 1 −1 −2 −1 1
1 −1 −2 −1 1 2
0 1 −1 0 1 −1
−1 1 0 −1 1 0
1 −1 1 −1 1 −1
1 1 1 1 1 1

 (6.2)

Proof. Expressing Eq. 6.1 in a matrix representation p = A(v), we have that matrix

T = A−1 converts profile p into its profile decomposition format. �

The decomposition of the Thm. 5 profiles, determined by using matrix T , follows.

Theorem 11. The profile decomposition for the Luce-Plurality profiles is

(1) aB = 1
6
[ ab
b+c

+ a− c− bc
a+b

+−ba−c
a+c

],

(2) bB = 1
6
[a b−c

b+c
− c− ac

a+b
+ b + ba

a+c
],

(3) aR = 1
6
[ac[ 1

b+c
− 1

a+b
] + b c−a

c+a
]

(4) bR = 1
6
[a c−b

b+c
+ bc[ 1

a+c
− 1

a+b
]]
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(5) γ = 1
6
[ c(a−b)

a+b
+ a(b−c)

b+c
+ b(c−a)

c+a
],

The decomposition for the Antiplurality profiles is

(1) aB = 1
6
[ (2b+a)(1−2c)

a+b
+ (c−a)(1−2b)

a+c
− (2b+c)(1−2a)

b+c
],

(2) bB = 1
6
[ (a+2b)(1−2c)

a+b
− (2a+c)(1−2b)

a+c
+ (c−b)(1−2a)

b+c
],

(3) aR = 1
6
[−a(1−2c)

a+b
+ (c−a)(1−2b)

a+c
− c(1−2a)

b+c
]

(4) bR = 1
6
[− b(1−2c)

a+b
+ c(1−2b)

a+c
+ (c−b)(1−2a)

b+c
]

(5) γ = 1
6
[ (b−a)(1−2c)

a+b
+ (a−c)(1−2b)

a+c
+ (c−b)(1−2a)

b+c
],

The decomposition of the ws profiles is (1−s)/(1−2s) times the Plurality term minus

s/(1− 2s) times the Antiplurality term.

Proof. This is T (p) where p has a Eq. 1.8 representation. �

Notice the careful coordination between Reversal and Condorcet terms. For instance,

since a+b = 1−c, we see from the denominators of aR and γ how, as a or a+b approach

unity, the terms become quite dominant. Also, by experimenting with different a, b

values, one can see the different signs of the reversal and Condorcet terms for s = 0, 1.

The careful coordination needed to achieve the numerical precision required by the

choice axiom is fascinating.

An alternative way to use ws methods to define ranking approaches is to find a profile

decomposition of the Thm. 3 form that emphasizes the ws voting rule. This program

has been carried out (Saari 2002): for convenience, definitions are given.

Definition 11. (Saari 2002) For a specified ws computation method, 0 ≤ s ≤ 1, an

Aj-Basic profile differential, Bs
Aj

, assigns 2− s points to each ranking where Aj is top-

ranked, 2s− 1 points to each ranking where Aj is middle ranked, and −(1+ s) points to

each ranking where Aj is bottom ranked. The ws Basic profile space, consisting of all

Basic profile differentials, is the T P3 subspace spanned by {Bs
Aj
}3

j=1.

The Aj-Orthogonal profile differential, Os
Aj

, assigns −s points to each ranking where

Aj is top ranked, 1 point where Aj is middle ranked, and −1 + s points to each ranking

where Aj is bottom ranked. The ws Orthogonal subspace, consisting of all Orthogonal

profile differentials, is the T P3 subspace spanned by {O3
Aj
}3

j=1.

Only the ws Basic terms affect a ws computation (Saari 2002). So, for the Luce-

Plurality method, the space of profiles given by

p = a0
B(2, 2,−1,−1,−1,−1) + b0

B(−1,−1,−1,−1, 2, 2) + k(1, 1, 1, 1, 1, 1)

describes all outcomes; terms in the Condorcet and Orthogonal direction affect, re-

spectively, pairwise and other ws and pairwise computations. What is interesting, and

relates to the reversal concerns, is that while the Luce-Plurality method is not affected



THE PROFILE STRUCTURE FOR LUCE’S CHOICE AXIOM 39

by any profile components in the w0 Orthogonal directions of (0, 0, 1,−1,−1, 1) and

(1,−1,−1, 1, 0, 0), these profile components do affect all other ws methods. This con-

clusion captures, in another sense, our earlier arguments.
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Fig. 7. ws standard profiles

It remains to briefly discuss the Ranking Axiom of Sect. 1. A quick approach is to

notice that the main difference from the choice axiom is that Ranking Axiom foregoes

numerical precision for consistency in rankings. Consequently, it follows from continuity

considerations that for each ws method there is an open set surrounding the manifold

of its Fig. 6 profiles where the ranking axiom is satisfied but the choice axiom is not.

In fact, with the profile decomposition, it is possible to describe this region in terms of

simple algebra by using an approach similar to that given in Saari (1999) to describe

when all voting paradoxes occur. The advantage is obvious; the conditions now become

robust in that they hold for a much wider selection of probability profiles. Also, as

described above, in a neighborhood about the basic profiles, the Ranking Axiom holds

while Luce’s does not. This establishes the existence of a continuum of examples that

satisfy the Ranking but not the choice axiom.

7. Generalizations and a binary decomposition

It remains to examine more closely the binary probabilities and to show that many of

the above results can be generalized. Again, the Fig. 1 geometric profile representation

is used. As an aside to show how this approach facilitates computations, recall from

Fig. 1a that the standard P (B, A) computation (Def. 3, Eq. 1.16) is the sum of the

probabilities of the three rankings in the shaded region; i.e., P (B, A) = p4 + p5 + p6.

To find all profiles satisfying Debreu’s three pairwise conditions where the sum of each

pairwise probability is 1
2
, place x, y, and z in each of two diametrically opposing ranking

regions. (So, we are using the reversal configurations of Sect. 2.) Since all choices of

these values require x + y + z = 1
2
, any choice from this continuum suffices.
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7.1. Choice profile sets. To implicitly define the profiles and decision rules that sat-

isfy the choice axiom, it is important to describe the restrictions that are imposed on

the admissible profiles when its condition 2 is applied only to pairs of alternatives.3 The

next definition emphasizes the consequences of the choice axiom for binaries. As we have

seen, further restrictions arise by applying Luce’s conditions to |S| = j, j = 3, . . . , n.

Definition 12. Let the choice binary outcomes for the n alternatives {A1, . . . , An} be

where there exist n positive scalars {a1, . . . , an},
∑n

j=1 aj = 1, so that for all i 6= j,

P (Ai, Aj) = ai/(ai +aj). In the (n!−1)-dimensional profile space Pn, the choice profile

set, denoted by CBn, is the set of all profiles p where the pairwise outcomes under a

specified computation are choice binary outcomes.

To explain this definition, the choice axiom requires ai/(ai+aj) values for the pairwise

computations for choices of aj. But the manner in which the profiles are combined to

determine these values can vary. So, the “specified computation” refers to how to

compute pairwise probabilities. Space CBn are those profiles where, with the specified

computation of pairwise probabilities, the probabilities have the required form.

To verify that CB3 restricts profiles, notice that the Fig. 1c profile is not in CB3. If

it were, the standard pairwise computation giving its A ∼ B and A ∼ C tied outcomes

would require, from Eq. 1.7, that P (B, C) = 1
2
: this value contradicts the 7

10
to 3

10

dominance of B over C. So, a way to understand the choice axiom is to determine the

CBn structure. (Also see Fishburn 2002.) The following result is stated for the standard

pairwise computation, but it holds for any linear pairwise computation that includes an

open set of choice binary outcomes.

Theorem 12. For n ≥ 2 alternatives and the standard pairwise computation, CBn is a

smooth submanifold of profile space Pn with codimension
(

n
2

)
− (n− 1).

For three alternatives, CB3 is a codimension
(
3
2

)
− (3 − 1) = 1 submanifold. By

excluding only one dimension, CB3 is a four-dimensional surface in the five-dimensional

profile space P3. As already shown, profiles satisfying ws-outcomes and the choice axiom

form a two-dimensional section of this four-dimensional space. For five alternatives, CB5

is a [5!− 1]− [
(
5
2

)
− (5− 1)] = 119− 6 = 113 dimensional surface in the 119-dimensional

space P5. In contrast, PBorda (Def. 10) eliminates all dimensional restrictions on CB3.

By being a smooth lower dimensional submanifold (i.e., a smooth surface) of profile

space, CB3 constitutes an unlikely event (i.e., a set with Lebesgue measure zero). Con-

sequently, it is unlikely for an arbitrarily selected profile to satisfy even the binary part

3Logically, this description should precede Sect. 3, and it did in an earlier version. But following a
referee’s suggestion, the material was reorganized to make the paper easier to follow.
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of the choice axiom. As “unlikely assertions” are standard for profile restrictions, differ-

ent restrictions can be compared in terms of the dimensions of their spaces of admitted

profiles. This dimensional comparison shows that CBn is a reasonably relaxed restric-

tion. For instance, as Black’s (1958) condition (imposed in voting to achieve binary

consistency) for three alternatives excludes the two voter types (hence two dimensions)

where a particular alternative is bottom ranked, it defines a three-dimensional surface

of profiles. With the three choices of the specified alternative, Black’s condition defines

the union of three three-dimensional submanifolds. By excluding two dimensions, rather

than only one, Black’s approach constitutes a more severe profile restriction than CB3.

But even though Black’s condition is stricter, it does not achieve the numerical precision

of Luce’s system and it allows many ranking inconsistencies (Saari and Valgones, 1999).

7.2. Representation cube. A factor that complicates determining the geometric struc-

ture of CBn is its large dimension. Therefore, rather than a direct analysis, I develop an

indirect approach to exploit the linearity of pairwise tallies. The idea is that because

the tally is linear, the pairwise outcomes inherit certain geometric traits of CBn. For

instance, if the pairwise outcomes (the image set) fail to have certain convexity proper-

ties, then CBn also fails to have these structures. In this indirect manner we prove that

CBn is a nonlinear submanifold (that is, a nonlinear surface).

While the approach and conclusions hold for any number of alternatives, I emphasize

n = 3 alternatives primarily because these conclusions can be described in terms of the

familiar three-dimensional geometry. To do so, I use the representation cube (Saari,

1995) defined by the coordinates (xA,B, xB,C , xC,A) where

xU,V = P (U, V )− P (V, U), U, V = A, B, C. (7.1)

It follows that

−1 ≤ xU,V ≤ 1, xU,V = −xV,U

where xU,V = 1,−1 represent, respectively, perfect discrimination in selecting U and V .

For any p ∈ P3, the associated x = (xA,B, xB,C , xC,A) resides in the orthogonal cube;

this is the R3 cube [−1, 1]3 defined by the eight vertices (±1,±1,±1). Let Ej ∈ P3 be

the probability defined by pj = 1; namely, Ej is where a selection is made from each pair

with perfect discrimination. Thus the six probabilities {Ej}6
j=1 define the six vertices

Probability Vertex Vj Probability Vertex Vj

E1 (1, 1,−1) E4 (−1,−1, 1)
E2 (1,−1,−1) E5 (−1, 1, 1)
E3 (1,−1, 1) E6 (−1, 1,−1)

(7.2)

As p = (p1, . . . , p6) ∈ P3 is the convex sum
∑6

j=1 pjEj, the linearity of how xU,V is

computed implies that each x is a linear combination of the vertices {Vj}6
j=1.
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Definition 13. The representation cube for three alternatives, denoted by RC3, is the

convex hull defined by the vertices {Vj}6
j=1.
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There is a representation cube for all n ≥ 4, but because RCn is in a
(

n
2

)
dimen-

sional space (six-dimensional for n = 4), indirect arguments are required to analyze its

properties. (Readers interested in RCn should consult Saari (2000a).) The represen-

tation cube RC3, depicted in Fig. 8, starts with an orthogonal cube. Only six of the

eight vertices represent transitive unanimity profiles, so two of them never arise with

probability comparisons. One, (1, 1, 1), represents the impossible cyclic outcome where

each of A � B, B � C, C � A occurs with perfect discrimination. (The other vertex,

(−1,−1,−1) represents the reversed cycle.) To convert the orthogonal cube into RC3,

connect the relevant unanimity vertices with lines and flat surfaces; this construction

excludes the two small tetrahedrons that have the cyclic vertices.

Proposition 5. With a specified linear computational rule for pairs, each p ∈ Pn

defines a unique point x ∈ RCn. Conversely, for each x ∈ RCn and with the standard

computational approach, there exist p ∈ Pn that define x. If no coordinate of x ∈ RCn

is ±1 (i.e., no perfect discrimination), then with the standard approach, x is supported

by a (n!− 1−
(

n
2

)
)-dimensional linear subspace of Pn.

For n = 3, Prop. 5 asserts that if x ∈ RC3 is not on a face of the orthogonal

cube (which implies perfect discrimination for some pair), then x is supported by a

two-dimensional continuum of profiles. To illustrate, because p1 = (1
4
, 1

5
, 0, 1

5
, 7

20
, 0),

p2 = (1
5
, 3

20
, 1

10
, 3

20
, 3

10
, 1

10
), and p3 = (1

4
, 1

20
, 3

20
, 1

5
, 1

5
, 3

20
) are linearly independent and each

(with the standard pairwise computation) defines x = (− 1
10

, 1
5
, 1

10
), the two-dimensional

subspace of profiles

{p ∈ P3 |p = (1− s− t)p1 + sp2 + tp3, for all s, t where p ∈ P3}
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also defines x. This n = 3 alternative, two-dimensional space is spanned by the reversal

vectors defined in Sect. 2.

Recall that RX (Def. 6) adds zero points to any candidate’s pairwise tally, so the

reversal terms do not affect pairwise tallies. But the sum of the RX components is zero,

so p∗ = p + γRX defines another probability profile as long as γ is selected so that all

p∗ components are non-negative. As already described (Sect. 2), these RX vectors span

a two-dimensional space and form the kernel of the standard pairwise computations for

n = 3 alternatives.

Corollary 3. For n = 3, let p be a specified profile and let γA, γB, γC be scalars so that

p∗ = p +
∑

X=A,B,C

γXRX (7.3)

also is in CB3. For the standard computation of pairwise votes p and p∗ have the same

pairwise tallies for all pairs. Conversely, if p∗ and p have the same pairwise tallies,

then they are related in the Eq. 7.3 form. Thus, p ∈ CB3 if and only if p∗ ∈ CB3.

This pairwise voting kernel is two-dimensional for three alternatives, and its dimension

rapidly increases with the number of alternatives; e.g., each RC5 outcome (that is,

specific probabilities for each of the ten pairs coming from five alternatives) is supported

by not a single profile, but by a 109-dimensional space of profiles. Imagine the enormous

potential flexibility for modeling that is admitted by this 109-dimensional jump.

By combining Prop. 5 with Thm. 12, we see that CBn can be thought of as the

product of an (n−1) dimensional manifold with the (n!−1−
(

n
2

)
)-dimensional pairwise

voting kernel. To understand the geometric structure of CBn, it suffices to identify the

pairwise voting kernel (Cor. 3) and a particular (n− 1)-dimensional portion of CBn.

To demonstrate that CB3 is very nonlinear, note from Def. 12 and Eq. 7.1 that the

binary outcomes in RC3 allowed by CB3 profiles define the surface

x = (
a− b

a + b
,
b− c

b + c
,
c− a

c + a
) ∈ RC3.

By using a + b + c = 1, the parametric representation of the two-dimensional surface of

pairwise outcomes in RC3 generated by CB3 is

x = (
a− b

a + b
,
2b + a− 1

1− a
,
1− 2a− b

1− b
), a ≥ 0, b ≥ 0, a + b ≤ 1. (7.4)

Theorem 13. The pairwise outcomes of CB3 define a smooth, two-dimensional non-

linear surface in RC3. Using (x, y, z) as the RC3 coordinates, the hyperbolic surface

is

xyz + x + y + z = 0. (7.5)
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Proof. As Eq. 7.4 is a parametric representation of the CB3 pairwise outcomes, Eq. 7.5

follows from elementary algebra. �

A convenient way to visualize the geometry of the CB3 pairwise outcomes is to hold

one Eq. 7.5 variable fixed and then describe the resulting curve—an hyperbola. As Eq.

7.5 is symmetric in the three variables, the analysis is the same for whichever variable

is held fixed. Figure 9 displays three sections of this surface.

The symmetry of the CB3 pairwise outcomes is displayed in Fig. 9. For instance,

when x = 0 (meaning a A ∼ B pairwise tie, or indifference), the section is the straight

line y +z = 0. Choosing x values that differ only by sign, as in Figs. 9b, c, the resulting

sections of CB3 pairwise outcomes differ by a reflection about the y + z = 0 diagonal

line. (Similar symmetries hold for any number of alternatives.)

.......................................................................................................................................................
...............
...............
...............
...............
...............
...............
...............
...............
................................................................................................................................................................................................................................................................................. .......................................................................................................................................................

...............

...............

...............

...............

...............

...............

...............

...............

................................................................................................................................................................................................................................................................................. .......................................................................................................................................................
...............
...............
...............
...............
...............
...............
...............
...............
.................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................y y y

z z z

a. x = 0 b. x = 3
4

c. x = −3
4

Fig. 9. Sections of the L3 pairwise outcome space

...........................................................................................................................................................................................................................

..............................................................................................................................................................................................................................

When x → 1 (that is, when approaching perfect discrimination of A over B), the

curved hyperbola bends to become the union of two particular edges of the x = 1 face

of RC3. Similarly, as x → −1 the limit is two of the edges of the x = −1 face of RC3.

(These are the two edges that can be drawn without using the cyclic vertex.)

Corollary 4. The intersection of the closure of the surface of CB3 pairwise outcomes

with the RC3 surface is the union of the six RC3 edges connecting vertex V1 to V2 to

. . . to V6 to V1.

(For n > 3 alternatives, the edges are replaced with higher dimensionalRCn surfaces.)

Proof. On the x = 1 face, Eq. 7.5 becomes yz + y + z + 1 = (y + 1)(z + 1) = 0. This

equation is satisfied if y, z = −1. This defines the equations for two of the edges. �

According to Cor. 4, part 3 of the choice axiom is a boundary condition introduced

to ensure continuity for part 2 of the axiom. Namely with perfect P (A, B) = 1 discrim-

ination given by x = 1, rather than allowing any outcome from the full x = 1 face, only

those from two edges are allowed. Using Fig. 8 to envision the CB3 pairwise outcomes,

the surface starts as the union of two edges from the x = 1 RC3 face. As x decreases in

value, the corresponding section is a hyperbola with ends on the V3-V4 edge and V1-V6

edges of RC3. When x = 0, the section is a straight line. The surface for negative x
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values is a reflection of what occurred for |x| until it ends at x = −1, which consists of

the two edges on the x = −1 face (representing P (B, A) = 1).

7.3. Consequences. If a subject doubts her original evaluation p1 of the alternatives

because evidence suggests that p2 is a more accurate assessment, we might expect her

to settle on some average. Stated in mathematical terms, it is reasonable to expect the

four dimensions of CB3 to admit an appropriate straight line of profiles. But this is not

the case; instead, CB3 is so nonlinear that it admits statements of the following kind.

(This assertion extends to any number of alternatives.)

Corollary 5. With any linear computation of pairwise probabilities, the set CB3 is not

convex. Indeed, for any two profiles p1 6= p2 that satisfy the choice axiom with different

pairwise probabilities and without ties, then, with the possible exception of one λ ∈ (0, 1)

value, the profile

p3 = λp1 + (1− λ)p2

does not satisfy the choice axiom.

Proof. Because p1 and p2 define different points on the CB3 surface in RC3 without

ties, the outcomes are not on a linear portion of the surface. But a line connecting any

two distinct points of this type on the surface can meet the surface in at most one other

point. As the pairwise computations are linear, the pairwise outcome for p3 is in the

interior of this line segment. This completes the proof. �

According to Cor. 5, if a subject adheres to the choice axiom, she must exhibit

curvilinear, rather than rectilinear, changes in profiles,4 changes that seem to be highly

incompatible with the linear computations of probabilities. The curvature, and this

curvilinear comment, are direct consequences of using the standard way to compute

pairwise probabilities. In contrast, the PBorda (Def. 10) approach does allow rectilinear

choices; by not suffering this limitation, we have another argument for using PBorda.

This curvature can be understood by using the Fig. 8 representation cube. In this

cube, the basic profile outcomes (see Sect. 2) lie in what is called the transitivity plane

(Saari 1999) given by x+y + z = 0. It turns out (Saari 1999) that if a profile’s outcome

is not in the transitivity plane, then the profile must have a Condorcet component. As

such, Fig. 9 proves that almost all CB3 outcomes are out of the transitivity plane; e.g.,

the general case is for a CB3 profile to have Condorcet components.

4As Luce reminded me, the (component wise) geometric mean pλ
1p1−λ

2 does satisfy the axiom. This
product nature nicely captures the above curvilinear assertion about the nature of profiles that we now
know is required by the choice axiom. Furthermore, it underscores a difference with other ways to
compute probabilities that are discussed in Sect. 4.
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Now that the binary requirements of the choice axiom have been discussed, the next

step is to identify the restrictions that are imposed on profiles with three alternative

subsets. We already have done so in Sect. 3, but I now provide a more general approach.

(For n = 3, this completes the description of the profiles because the probability choices

of each alternative being top-ranked defines the a, b, c values.)

7.4. Other probability decision rules. As already noted, Luce’s claim that his def-

inition of PT (X) is logically independent of the choice axiom suggests that there must

exist a wide selection of approaches. Earlier (Sect. 3) I introduced a continuum of

choices different from that described by Luce: it remains to find a general result.

To do so in mathematical terms, express Eq. 1.8 as a smooth mapping

F : {(a, b) | 0 ≤ a, b, a + b ≤ 1 } → P3, (7.6)

For Eq. 1.8, F (a, b) = pL(a, b) is a point in the two-dimensional set of profiles where

the {A, B} and {A, C} respective pairwise probability values are ( a
a+b

, b
a+b

), ( a
a+c

, c
a+c

).

As shown next, most mappings that can be expressed in an Eq. 7.6 format define a way

to compute PT (X) that is compatible with the choice axiom.

Theorem 14. For T = {A, B, C}, almost all choices of smooth mappings Eq. 7.6,

where F (a, b) = p is a probability profile with {A, B}, {A, C}, and {B, C} respective

values of ( a
a+b

, b
a+b

), ( a
a+c

, c
a+c

), and ( b
b+c

, c
b+c

) where c = 1 − a − b, admit at least a

local way to compute the probabilities PT (Aj) = aj in a manner that satisfies the choice

axiom.

Proof. Rather than using the implicit function theorem, the proof uses an explicit repre-

sentation. To ensure that the pairwise computations hold, combine Cor. 3 with pL(a, b)

to express F (a, b) = (p1, . . . , p6) as

F (a, b) = pL(a, b) + α(a, b)RA + β(a, b)RB. (7.7)

To compute PT (A), add the ranking probabilities where A is top ranked and a

weighted “s” multiple of the ranking probabilities where A is second ranked. (In Fig.

6c, add an s multiple of sum of the probabilities from the two heavier shaded regions

to the sum of the probabilities from the lightly shaded regions.) The computational

scheme for PT (A) requires choosing the value of s so that

a = a + {2α− β + s[−2(2α− β) +
ca

1− c
+

ba

1− b
]}. (7.8)

As long as the term in the square bracket is not zero, and this is true (at least locally)

for almost all choices of F , an s value can be found with the desired properties. �
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These alternative ways to compute PT (X) use information beyond those rankings

where X is top-ranked to include information (through the “s” value) about when X

is second ranked. While Thm. 14 proves there are an uncountable number of ways to

assign ranking probabilities with an associated PT (X) computation, it is unsatisfying

from an esthetic and maybe a practical perspective. This is because the computational

method, the value of s, may change with the a and b values and when computing PT (B)

and PT (C). This blemish, of course, is avoided by using the Sect. 4 approach where a

fixed s weight is required for each PT (X) computation and all a and b.

Theorem 14 holds for any linear pairwise computation method adopted to define P3.

To illustrate by using the P3 space defined by the pairwise computational method of

Eq. 1.14, instead of the standard Eq. 3.1, F (a, b) assigns p1 = 3
2
[ ab
a+b

− 1
18

] for the ranking

A � B � C. To satisfy the choice axiom, the associated P ′
T (A) is

P ′
T (A) =

7

9
[p1 + p2] +

1

9
[p3 + p4 + p5 + p6]. (7.9)

More generally, P ′
T (X), X = A, B, C, is the 2

3
multiple of the Luce-Plurality outcome

of these particular ranking probabilities plus 1
9
. The point is not whether the result-

ing P ′
T (X) is realistic, but rather to demonstrate that the choice axiom holds with a

surprisingly rich class of ways to define probabilities.

8. Concluding comment

The natural sense captured by Luce’s axiom, where a subject endows each alter-

natives with a certain level of intensity, probably explains a continued interest in the

choice axiom nearly a half century after it was first introduced. But by adopting the

perspective that the axiom implicitly defines all ways to compute probabilities along

with the associated form of the ranking probabilities, it turns out that many structures

and potential extensions of this axiom remain to be discovered. Indeed, while the geo-

metric approach introduced here leads to a richer selection of alternative computational

approaches, where the subject uses more information, and a significant relaxation on

the choice of ranking probabilities, it is only an indication of what is possible. Also, by

examining the information being used to make decisions, or compute probabilities, a

different explanation of the reversal problem is obtained: it casts doubt on the standard

way to compute P (A, B) and other probabilities.

9. Proofs

Proof. Thm. 12. The proof uses the codimension argument of the standard implicit

function theorem. The general setting, used in singularity theory (e.g., see Golubitsky

and Guillemin (1973)) has a smooth mapping H : Rm → Rn where for a smooth
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submanifold Σ ⊂ Rn we wish to find the dimension of H−1(Σ). If H has a transverse

intersection with Σ (that is, where the image of H meets Σ, the tangent space for Σ

and DH(Rm) span Rn), then the codimension of H−1(Σ) in Rm equals the codimension

of Σ in Rn.

Our image space is R(n
2), the space of all binary outcomes, while H is the mapping

computing these outcomes. We know from Saari (1995) that the image has an open

set and that the transversality condition is satisfied. If Σ is the set of choice binary

outcomes, it is of dimension n − 1 or codimension
(

n
2

)
− (n − 1). The conclusion now

follows. �

Proof. Prop. 5. We need to prove that with the standard pairwise computation, each

x ∈ RCn is supported by a Pn subspace of codimension
(

n
2

)
. The argument is the same

as the above proof for Thm. 12 where Σ now is the point x that has codimension
(

n
2

)
.

The transversality condition follows from the construction of RCn. �

Proof. Cor. 3. That the reversal terms are in the kernel follows from a direct compu-

tation. The proof that this is the total kernel follows from Saari (1999) and the profile

decomposition described in Thm. 3. �

Proof. Thm. 4. As the assertion about the dimension of the kernel follows from Saari

(2000a, b), it remains to show that the Eq. 3.4 profiles satisfy Luce’s conditions; i.e.,

that PT (Aj) = aj and PS(Aj) =
PT (Aj)P

Ak∈S PT (Ak)
. A proof of this assertion is in (Luce and

Suppes, 1965), but for completeness, a proof is given here. To prove that PT (Aj) = aj,

it suffices to prove that PT (A1) = a1, and it suffices to consider A1 � A2 � · · · � An as

a representative ranking. What simplifies the validation is that the form of R is

R(A1 � · · · � An) = a1 × a2

1−a1
× . . .× an−1

1−
Pn−2

1 aj

= PT (A1)PSn−1(A2) . . . PSn−(n−3)
(An−2)P (An−1, An) (9.1)

where Sn−k = {Ak+1, . . . , An}. Hence, properties of the probabilities simplify the com-

putations. This is indicated with the computations carried out next.

To verify this assertion PT (A1) = a1, I show that if n − k of the n alternatives are

selected and ranked in the first n − k position, say A1 � A2 � · · · � An−k, then

the sum of the ranking probabilities for the k! ways to complete the ranking with all

alternatives, that is
∑

σ R(A1 � · · · � An−k � σ) where σ is a ranking of the alternatives

{An−k+1, . . . , An}, has the form∑
σ

R(A1 � · · · � An−k � σ) = a1
a2

1− a1

. . .
an−k

1−
∑n−(k+1)

j=1 aj

. (9.2)

Since Eq. 9.2 is of the PT (A1)PSn−1(A2) . . . PSn−(n−(k+1))
(An−k) form, to change Eq.

9.1 into Eq. 9.2 form, the approach is to sum over all alternatives in Sn−(n−(k+1)) =
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{An−k, . . . , An} to cancel probability terms at the end of this expression. This is what

is done.

For k = 2, there are two ways to rank the last two alternatives An−1 and An. The

sum of the two ranking probabilities has the common factor a1
a2

1−a1
. . . an−2

1−
Pn−3

j=1 aj
, de-

fined by the common ranking of the first n − 2 alternatives, times (an−1 + an)/(1 −∑n−2
j=1 aj). As

∑
aj = 1, this last term equals unity, so the sum of the ranking prob-

abilities is the common factor that is the k = 2 version of Eq. 9.2. In the Eq.

9.1 terms, we have R(A1 � · · · � An−1 � An) + R(A1 � · · · � An � An−1) =

PT (A1)PSn−1(A2) . . . PSn−(n−3)
(An−2)[P (An−1, An)+P (An, An−1)], where the term in the

brackets must equal unity. The same approach is used in an iterative fashion.

Assume Eq. 9.2 holds for k = i; we show that it holds for k = i + 1. Since it

holds for k = i, for each ranking of the first n − (i + 1) alternatives, there are pre-

cisely i + 1 ways to add the next alternative Aα. According to the induction hy-

pothesis, the sum of the ranking probabilities for each way to complete the ranking is

[a1
a2

1−a1
. . .

an−(i+1)

1−
Pn−((i+1)+1)

j=1 aj

] aα

1−
Pn−(i+1)

j=1 aj

. The sum over all of these values has the common

factor in the brackets times
∑n

α=n−i aα/[1−
∑n−(i+1)

j=1 aj]. Again, since
∑

aj = 1, the last

term equals unity, so the final value is the common factor; this is Eq. 9.2 for k = i + 1,

which completes the induction hypothesis. The P (A1) = a1 assertion follows from Eq.

9.2 for k = n− 1.

Again, using the Eq. 9.1 formulation to explain this computation, Eq. 9.2 for k =

i becomes PT (A1)PSn−1(A2) . . . PSn−(n−(i+2))
(An−(i+1))PSn−(n−(i+1))

(An−i). The goal is to

replace the last An−i with all choices from Sn−(n−(i+1)) = {An−i, . . . , An} and take the

sum. This leads to PT (A1)PSn−1(A2) . . . PSn−(n−(i+2))
(An−(i+1)) times a sum of terms that

must add to unity.

To verify that PS(Aj) =
PT (Aj)P

Ak∈S PT (Ak)
, it suffices to prove that

PS∗n−k
(A1) =

a1∑n−k
j=1 aj

, S∗
n−k = {A1, . . . , An−k}. (9.3)

To explain the difference between Eq. 9.2 and 9.3 by using Fig. 1a, notice that PT (A)

is the sum of the ranking probabilities of regions 1 and 2 while P (A, B) is the sum of

the ranking probabilities of regions 1, 2, and 3; hence, with Eq. 9.1,

P (A, B) = PT (A) + PT (C)P (A, B). (9.4)

What is needed is to establish that this equation holds.

For k = 1, PS∗n−1
(A1) is the sum of all ranking probabilities where A1 is top ranked

plus those where A1 is second ranked and An is top ranked; notice, this last sum is

PT (An)PS∗n−1
(A1) for whatever form PS∗n−1

(A1) assumes. As established above, the first

sum is a1. The sum of ranking probabilities where A1 is second ranked and An is
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top ranked is, according to Eq. 9.2, an
a1

1−an
. Thus PS∗n−1

(A1) = a1 + an
a1

1−an
= a1

1−an
,

which is Eq. 9.3 for k = 1. Restating this computation in Eq. 9.4 terms, we must

establish that the specified form of PS∗n−1
(A1) equals PT (A1) + PT (An)PS∗n−1

(A1), or

that PT (A1)/[1− PT (An)] has the predicted PS∗n−1
(A1) form; a quick calculation proves

that it does.

Assuming that Eq. 9.3 holds for k = i, we show that it holds for k = i + 1. Here,

PS∗
n−(i+1)

(A1) = PS∗n−i
(A1)+KPS∗n−i

(An−i) where KPS∗n−i
(An−i) denotes the partial com-

putation of PS∗n−i
(An−i), which excludes those ranking probabilities where alternatives

from S∗
n−(i+1) are ranked above A1. By use of Eq. 9.1, whatever the form of PS∗

n−(i+1)
(A1),

we have that KPS∗n−i
(An−i) = PS∗n−i

(An−1)PS∗
n−(i+1)

(A1). Thus, we need to determine

whether PS∗
n−i)

(A1)/[1−PS∗n−i
(An−1)] has the predicted representation for PS∗

n−(i+1)
(A1).

According to the induction hypothesis

PS∗n−i
(A1)

1− PS∗n−i
(An−1)

=
a1/

∑n−i
j=1 aj,

1− [an−i/
∑n−i

j=1 aj]
=

a1

a1 + · · ·+ an−(i+1)

is the desired expression. �

Proof. Cor. 1. Because Eq. 4.4 can be expressed in an Eq. 9.1 format, the proof is

essentially the same as the proof of Thm. 4 given above. �
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