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Abstract

Effective decision-making for crisis response depends upon the rapid
integration of limited information from (possibly unreliable) human
sources. Here, a Bayesian modeling framework is developed for in-
ference from informant reports. Reports are assumed to arrive via a
Poisson-like process, whose rates are dependent upon the (unknown)
state of the world in addition to assorted covariates. A hierarchi-
cal modeling structure is used to represent error processes which vary
based on informants’ group memberships, with the possibility of mul-
tiple, overlapping memberships for each informant. Procedures are
shown for sampling from the joint posterior distribution of the param-
eters, and for obtaining posterior predictive quantities.

Keywords: informant accuracy, hierarchical Bayesian models, event
history analysis, change-point models, crisis response

1 Introduction

While sensor systems (USGS, 1999) and remote sensing (Kaiser et al., 2003;
Kerle and Oppenheimer, 2002) can play a significant role in early warning,
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situation assessment, and loss assessment for certain hazards (particularly
those of a large-scale geological or weather-related nature), a great deal of
information involving hazards such as tornadoes, fires, and severe traffic
accidents is derived from human sources. When such an event occurs, in-
formant reports from persons on the scene (e.g.,via 911 calls) may be the
first indicators of trouble. To prevent the initial event from escalating into
a disaster – and, generally, to enhance post-impact response – effective use
of informant reports is a must.

Unfortunately for this effort, the accuracy of informant reports for a
wide range of phenomena is generally acknowledged to be poor (Bernard
et al., 1984). Biases of perception and recall lead to errors of both omission
(false negatives) and commission (false positives), with an overall tendency
towards altering reports in the direction of expected or familiar patterns
(Freeman et al., 1987). (Such cognitive biases may in part account for
the “apathy effect” noted both by practitioners (Auf der Heide, 1989) and
by researchers in the field (Drabek, 1986).) To overcome this difficulty,
researchers have turned to inferential systems which seek to model and/or
compensate for errors in informant reports (Batchelder and Romney, 1988;
Butts, 2003). Such modeling is of particular importance in the context
of crisis events, where respondant behaviors may be especially sensitive to
the anomalous nature of the situation (Drabek, 1986), and where it may
be necessary to make decisions based on very limited data. By explicitly
incorporating behavioral processes and background knowledge into a formal
modeling framework, we can make the most of the information we have.

Here, we provide a general Bayesian model for informant reports which
arrive in continuous time via a “spontaneous” reporting process (i.e., without
direct inquiry on the part of the researcher). The objective of the modeling
process is simultaneous inference for an event history (e.g., the unfolding of
a multi-stage crisis event) and for informant accuracy. The approach used
here can be considered a special case of the multiple changepoint model
(e.g., Carlin et al., 1992; Raftery and Akman, 1986; Smith, 1975), in which
unobservable alterations in the background environment (here assumed to
be synonymous with the evolution of the crisis event) are inferred based
on the sequence of incoming reports. The resulting posterior distributions
can be used to characterize the current state of knowledge about an ongoing
crisis (including the degree of uncertainty regarding said knowledge), thereby
facilitating decision-making for post-impact response.
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1.1 Notation

In the text which follows, the pdf (or pmf, where no danger of confusion
exists) for a random variable x is denoted p(x). The conditional density of
x given y is denoted p(x|y); distinctions between prior, likelihood, and pos-
terior densities are made using conditional notation. The symbol ∼ (read:
“is distributed as”) is also used in some cases to indicate equivalence be-
tween distributions. Conventional distributions are denoted by abbreviated
names, in Roman type, and will be defined where first introduced. Thus,
x ∼ N(µ, σ2) should be read as stating that x is distributed normally with
parameters µ and σ2.

2 States of the World, and Basic Modeling As-
sumptions

We conceive of the state of the world, S, in terms of a series of n propositions
which are either true (1) or false (0) at any given instant in time. Thus,
at time t, we assume that S(t) ∈ {0, 1}n. In general, the state of the
world is unknown, although we will usually assume that we can identify
some (possibly imaginary) time point t0 at which S is known with certainty.
Over time, the state of the world may change; that is, certain propositions
may change state from 0 to 1, or 1 to 0. It will be assumed throughout the
treatment which follows that all changes are irreversible for the time interval
under study: thus, a proposition may move from 0 to 1, but it cannot then
return to 0. Furthermore, we will generally assume that S is defined in such
a way as to make 0 the base state, and 1 the transition state. This is not
strictly necessary, but greatly simplifies exposition.

Given that S hypothetically begins in some known state – represented
by the zero vector – at time zero, our primary objective is to infer the vector
of transition times for the elements of S away from the ground state. We
represent this transition vector by θ, where θ ∈ (0,∞)n. For the moment,
we defer any assumptions regarding the prior distribution of θ, as these will
be developed subsequently. Of more immediate importance is the notion
that the state of the world in any given instant – parameterized by θ – has
a strong impact on informant reports. It is this issue to which we now turn.
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3 Likelihood for Informant Reports

Let us consider some known population of m individuals, each of whom has
the potential to observe S. For the fixed time interval from tα to tω (called
the reporting interval), we allow each informant the option of reporting on
the state of the world; each such report occurs as a discrete event, and for
the time being we take reports to represent statements asserting a change
in one of the n elements of S. Each informant is assumed to report at most
one change per element within the reporting interval.1 The data thereby
generated can be expressed by two matrices. First, we have a report matrix,
Y R ∈ {0, 1}m×n, which is coded Y R

ij = 1 iff the ith informant reported a
change in element j. Second, we have a timing matrix, Y t ∈ (tα, tω)m×n, in
which Y t

ij = t if Y R
ij = 1 and the report occurred at time t. (For (i, j) such

that Y R
ij = 0, Y t

ij is undefined.)
During the reporting interval, reports by informants are assumed to ar-

rive via a Poisson-like process whose rate parameter varies as a function
of the informant/element pair, the transition vector θ, and some arbitrary
covariate set X. Conditional on these rates, all reporting events are taken
to be independent of one another (that is, we presume that dependencies
among informant reports can be modeled via the latent rate structure).
For clarity in exposition, we divide the rate function into two regimes: λ−,
which represents the latent rate for the interval 0 ≤ t < θj ; and λ+, which
represents the latent rate for the interval θj ≤ t ≤ tω. More formally:

λ− (θ, X, i, j) ≡ λ−
ij (1)

λ+ (θ, X, i, j) ≡ λ+
ij (2)

where λ−
ij , λ

+
ij ∈ (0,∞). While we will discuss the structure of λ in more

detail below, let us note for the moment that it will generally be reasonable to
presume that λ− (θ, X, i, j) < λ+ (θ, X, i, j) for any given parameter values.
Where the two rates differ greatly, the timing of informant reports will
contain a great deal of information about θ – this lies at the heart of the
model which follows.

Given the above assumptions, the form for the likelihood of a single
informant/element pair can be recognized as a fairly standard event history
model (Blossfeld and Rohwer, 1995). Specifically, we have:

1That is, our data should be interepreted in terms of first reporting times – multiple
reports from the same party are not considered here.
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p
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Y R

ij , Y t
ij

∣∣ θ, λ−, λ+, tα, tω, X
)

=
[
S
(
θj

∣∣λ−
ij

)
S
(
tω − θj

∣∣λ+
ij

)]1−Y R
ij

×

[(
h
(
Y t

ij − tα
∣∣λ−

ij

)
S
(
Y t

ij − tα
∣∣λ−

ij

))I(Y t
ij<θj)

×
(
S
(
θj

∣∣λ−
ij

)
h
(
Y t

ij − θj

∣∣λ+
ij

)
S
(
Y t

ij − θj

∣∣λ+
ij

))1−I(Y t
ij<θj)

]Y R
ij

(3)

where I is the standard indicator function, h is the hazard function for
the (i, j) pair, and S is the pair’s survival function.2 Utilizing the assump-
tion of piecewise constant rates embodied in Equation 1 and 2, we observe
that the waiting time distribution for informant reports must be (piecewise)
exponential. For a given rate λ, the exponential density is given by

p(t|λ) = λe−λt; (4)

thus, the associated cumulative distribution function of the waiting time is

F (t|λ) =
∫ t

0
p(x|λ)dx = 1− e−λt. (5)

To obtain the survival function, we simply apply the definition,

S(t|λ) = 1− F (t|λ) = e−λt, (6)

which then gives us the hazard function:

h(t|λ) =
p(t|λ)
S(t|λ)

= λ. (7)

Substituting the above into Equation 3, we can then obtain the likelihood
for a single informant/element pair under the piecewise constant rate model:

p
(
Y R

ij , Y t
ij

∣∣ θ, λ−, λ+, tα, tω, X
)

=
[
e−λ+

ij(tω−θj)−λ−ijθj

]1−Y R
ij

×
[(

λ−
ije

−λ−ij(Y
t
ij−tα)

)I(Y t
ij<θj) (

λ+
ije

−λ+
ij(Y

t
ij−θj)−λ−ijθj

)1−I(Y t
ij<θj)

]Y R
ij

(8)

2The hazard function reflects the limiting probability of a first (or, in this case, unique)
state transition for an interval beginning at a specified time point, as the interval length
approaches zero. Relatedly, the survival function represents the probability that no tran-
sition has occurred by a given point in time.
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The joint likelihood of Y R and Y t then follows trivially from the condi-
tional independence of informant/element pairs:

p
(
Y R, Y t

∣∣ θ, λ−, λ+, tα, tω, X
)

=
m∏

i=1

n∏
j=1

p
(
Y R

ij , Y t
ij

∣∣ θ, λ−, λ+, tα, tω, X
)
.

(9)

3.1 Reporting Rate Parameterization

While the event structure model of Equation 8 is reasonably straightforward,
much of its substantive content is dependent on the structure of the latent
rate functions. Although these functions could be chosen in any of a number
of ways, our approach is to employ a log-linear framework. Specifically, we
assume vectors of weights, β, and sufficient statistics, s, such that

λ− (θ, X, i, j) = e
∑`−

k=1 β−k s−(θ,X,i,j) (10)

and

λ+ (θ, X, i, j) = e
∑`+

k=1 β+
k s+(θ,X,i,j), (11)

where β− ∈ R`+ , β− ∈ R`− s− : (θ, X, i, j) 7→ R`− , and s+ : (θ, X, i, j) 7→
R`+ . Since the effects of the sufficient statistics are multiplicative in the
reporting rates, the above implies that the associated weights can be in-
terpreted as per a proportional hazards model (Cox, 1972) with the proviso
that proportional effects hold only within transition regimes.3 Thus, a di-
chotomous statistic, si, with a weight of βi will multiply the base reporting
rate by a factor of eβi where si = 1, having no effect otherwise.

The specific choice of statistics for the rate functions is a substantive
matter, and will obviously depend on the problem at hand. It is notable,
however, that many of the types of statistics which would normally be used
in a fixed effects model would be appropriate here.4 For instance, if infor-
mants can be labeled as belonging to a series of (possibly non-exclusive)
classes, dichotomously coded variables for class membership could easily be
employed as rate modifiers. Similarly, effects for particular elements (or
classes of elements) of S may be appropriate, e.g., if it is believed that some

3I.e., the two respective intervals [0, θj) and [θj , tω].
4Although these effects are considered to be random variables from a Bayesian point

of view, they are nevertheless “fixed” in the sense that they are not modeled as arising
from a population distribution. A hierarchical alternative is developed below.

6



elements are more easily noticed (or more subject to false reports) than
others. Indeed, for n > 1, it is even possible to include fixed effects for
each informant (reflecting individual differences in reporting rates); this is
unlikely to be practical where m is large, however.

3.1.1 Hierarchical Forms for Rate Parameters

In many circumstances, it is natural to presume the some or all of the
effects which contribute to the λ functions arise via a hierarchical process of
some form or other. This is particularly likely to be the case where certain
informant properties (e.g., group memberships) can be interpreted in terms
of a series of subpopulations, such that each such population is in its turn
drawn from some larger or more general category. In addition to being
plausible on a priori grounds, imposition of hierarchical structure onto rate
parameters can be used to concentrate the distribution of probability across
models, thereby potentially increasing data efficiency.

The general approach for the use of such hierarchical forms is straight-
forward. For some set of weights, β+, β−, we express the joint density of the
betas as

p(β+, β−) = p(β+, β−|φ)p(φ|φ′)p(φ′|φ′′) . . . , (12)

where φ, φ′, φ′′, . . . reflect vectors of parameters at each respective hierar-
chical level. Note that – since this is a model for β rather than Y – the
use of such a form does not alter the model likelihood, and indeed is more
properly considered to be a constraint on the prior structure. (We treat
the topic here, however, due to its substantive role.) Where successive lev-
els reflect random population samples, a hierarchical normal model tends
to suggest itself; other forms are possible, however, depending on what is
known regarding the structure of the covariates.

4 Prior Structure

We have already touched on the issue of prior structure for the informant
reporting model, vis a vis the use of hierarchical structure for reporting
rate parameters. Here, we consider this matter more broadly. While the
particular choice of priors for the informant reporting model must naturally
be driven by the substantive knowledge of the problem at hand, some general
guidelines can nevertheless be suggested. The treatment presented here thus
focuses on basic heuristics for cases which are most likely to be encountered
in practice.
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Our first issue with respect to choice of parameter priors for the infor-
mant reporting model is the identification of a priori independence among
parameters. Obviously where such independence may be safely assumed,
it is useful to deploy it; we do not, however, wish to impose it where in-
appropriate. Where, then, can we generally presume independence to be a
reasonable assumption? In many cases, we would suggest, such a division
can be made between the elements of θ (which reflect the evolving state of
the world) and the elements of β (which reflect the underlying mechanisms
which govern the reporting process). Irrespective of what is being reported
on, the mechanisms of the reporting process (the “laws of nature,” so to
speak) should remain the same. Note that such an assumption does not
imply that the realized reporting rates (λ+, λ−) are a priori independent of
θ, since these are indeed functions of θ – rather, it implies that whatever role
θ plays in the reporting process, that role is independent of θ itself. (Note
also that this assumption does not imply the a posteriori independence of θ
and β, which is another matter entirely!) Given this, then, we may express
the joint posterior with the decomposition

p(θ, β−, β+) = p(θ)p(β−, β+), (13)

and then consider each factor in turn.
For the elementwise transition points (θ), the degree of dependence in

the prior structure is predicated on the nature of the elements themselves. If,
for instance, the ith element of S is present only if the jth element is present,
then p(θ) must be such that p(θi ≥ θj) = 1. Alternately, S may represent
a series of disconnected propositions, in which case it may be reasonable to
assume transition times for its elements to be independent. In this case, a
natural prior model for θ would be a product of exponential densities, i.e.

p(θ) =
n∏

i=1

ρje
−ρiθi . (14)

Such a model includes the assumption that the a priori hazard of transition
is constant and known, for each element of S. Where the constant hazard
assumption is reasonable but it is difficult to identify a plausible rate, a
hierarchical mixture over ρ is a logical choice. For instance, if the a pri-
ori transition rate for each element could be specified up to a log-normal
distribution, a model such as

p(θ) =
n∏

i=1

(
ρie

−ρiθi

)
Lnorm

(
ρi|µi, σ

2
i

)
(15)
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would be appropriate. Alternately, a non-constant transition hazard may
suggest a model based on Weibull or Gamma densities. The former, in par-
ticular, is a versatile density which is widely utilized in failure-rate research.
Where independence of transitions cannot be assumed, but where dependen-
cies between transitions are correlative rather than logical, the multivariate
log-normal model may provide a reasonable approximating density. Again,
the specific density to be used must be chosen based on substantive consid-
erations.

Turning to the rate effect parameters, it should be emphasized that a
priori independence cannot generally be assumed here. If nothing else, we
should expect that covariates which enhance reporting accuracy will have
opposing signs in β− and β+, which implies an a priori negative correla-
tion between parameters for these effects. (Negative correlations may also
be reasonable for some covariates which reduce reporting accuracy, e.g. by
inflating λ− while simultaneously reducing λ+.) Covariates whose general
tendencies are to increase or decrease overall reporting will, on the contrary,
be associated with positive correlations between β− and β+. Similarly, com-
plex correlation structure may be present within each β vector; the hierar-
chical models already considered provide one example of this. Given these
considerations, a simple but fairly general model for the joint prior of the β
parameters takes the form

p(β−, β+) ∝

1 +

([
β−

β+

]
− µ

)T

Σ−1

([
β−

β+

]
− µ

)
ν


− ν+1

2

(16)

∝ tν

([
β−

β+

]∣∣∣∣µ,Σ
)

, (17)

i.e. the multivariate t density with degrees of freedom parameter ν, location
vector µ, and scale matrix Σ. While this model allows for intuitive setting
of location and scale, like the normal density, it also allows for the presence
of heavy tails (an important consideration for robustness). Where a hierar-
chical form for effect parameter priors is desired, the above can be extended
by the addition of hyperprior distributions for ν, µ, and/or Σ.

Whatever the final distributional form used, the importance of checking
the joint parameter priors before model fitting should be stressed. In par-
ticular it is important that the prior predictive distributions of λ+ and λ−

be examined, for various reporting scenarios. Since – for most applications
– λ−

ij < λ+
ij in the vast majority of cases, it should likewise be true that
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p(λ−
ij ≥ λ+

ij) � 0.5 for most models. If prior predictives for a given choice of
prior are inconsistent with this expectation, they should be reexamined (and
likely adjusted). Similarly, it is important to establish that the mean report-
ing rates produced by the prior model reasonably reflect the actual number
of reports likely to be made by informants over the reporting interval. If, for
instance, past experience has shown that only 5% of a given population will
produce a report within a similar time frame to that of the present study,
then priors which imply that something on the order of 50% of the current
population will produce reports are immediately suspect. While it may be
possible in some cases to spot such problems by examination of the prior
parameters, the complexity of the reporting model suggests that this will
not prove efficacious in most instances: where doubt remains, inspection
of prior predictive draws (produced via statistical simulation) is the most
straightforward way to identify potential difficulties.

5 Posterior Inference

Having constructed a likelihood for the incoming informant reports, and
having chosen priors which are appropriate for the problem at hand, we are
now ready to consider posterior inference. By Bayes’ Theorem, the joint
posterior must satisfy the relation

p
(
θ, β−, β+ | Y R, Y t, X, tα, tω

)
∝ p

(
Y R, Y t

∣∣ θ, β−, β+, X, tα, tω
)
p (θ) p(β−, β+)

(18)

∝ q
(
θ, β−, β+ | Y R, Y t, X, tα, tω

)
, (19)

which (with appropriate substitutions) gives us the posterior density up
to a constant of proportionality. Because of the difficulty of working with
this density, we adopt the standard practice of conducting inference via the
analysis of posterior draws; although we cannot simulate the distribution in
question directly, we may closely approximate it by means of Markov Chain
Monte Carlo (MCMC) methods (Gamerman, 1997).

A simple Metropolis algorithm for posterior simulation of the informant
reporting model is shown in Algorithm 1. Note that this procedure begins
by sampling θ and β−, β+ from their respective prior densities; while this is
a not-unreasonable choice of starting point where the prior distribution is
fairly informative, alternatives may be preferable in the event that the prior
does not admit direct simulation. (So long as the starting point is within
the posterior support, convergence is guaranteed in the limit.) After the ini-
tial point is chosen, simulation proceeds by drawing candidate moves which
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are accepted with probability min

(
1,

q
(
θ(i),β−

(i)
,β+(i)|Y R,Y t,X,tα,tω

)
q
(
θ(i−1),β−(i−1),β+(i−1)|Y R,Y t,X,tα,tω

)
)

,

where q is the unnormalized posterior density and ·(i) represents the ith
simulation draw. Candidates for the simple model are drawn by perturbing
each current draw by a lognormal factor (in the θ case) or a normal term
(in the β case), with standard deviation ε set on a per-item basis. (Thus,
the resulting Markov Chain is symmetric, as is required for the Metropolis
algorithm.) In the limit, as the number of iterations grows, the set of draws
thus obtained will converge to the joint posterior for the reporting model
parameters.

Algorithm 1 Posterior Simulation for the Informant Reporting Model
1: procedure Draw from θ, β−, β+|Y R, Y t, X, tα, tω
2: Draw θ(1) from p(θ)
3: Draw β−(1)

, β+(1) from p(β−, β+)
4: i := 2
5: repeat
6: for j ∈ 1, . . . , n do
7: Draw θ

(i)
j ∼ Lnorm(ln θ

(i−1)
j , ε2θj

)
8: end for
9: for j ∈ 1, . . . , ` do

10: Draw β−
j

(i) ∼ N(β−
j

(i)
, ε2

β−j
)

11: Draw β+
j

(i) ∼ N(β+
j

(i)
, ε2

β+
j

)

12: end for
13: Draw u ∼ U(0, 1)

14: if u >
q
(
θ(i),β−

(i)
,β+(i)|Y R,Y t,X,tα,tω

)
q
(
θ(i−1),β−(i−1),β+(i−1)|Y R,Y t,X,tα,tω

) then

15: θ(i) := θ(i−1)

16: β−(i) := β−(i−1)

17: β+(i) := β+(i−1)

18: end if
19: i := i + 1
20: until θ(·), β−(·)

, β+(·) ∼ θ, β−, β+|Y R, Y t, X, tα, tω

21: return θ(·), β−(·)
, β+(·)
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5.1 Convergence Acceleration for the MCMC Algorithm

Although convergence of the MCMC is guaranteed by the irreducibility of
the chain, this property holds only in the limit of infinite sample size – for
realistically obtainable samples, slow convergence may result in very poor
approximations to the posterior. In addition to the use of convergence di-
agnostics for the assessment of posterior draws (see Gamerman (1997) for a
review), it may be desirable to attempt to accelerate chain convergence by
various means. Perhaps the simplest and most obvious method of conver-
gence for a chain such as that shown in Algorithm 1 would be the replace-
ment of independent normal/lognormal candidate draws by joint draws with
scale matrix chosen to approximate the posterior correlation structure of the
parameters. While this last is not known, it can be estimated using either
the Hessian matrix of the joint posterior, or a smaller set of approximate
posterior draws taken using the initial (unaccelerated) algorithm. (Note
that an overall scale reduction is recommended prior to using the estimated
correlation structure, so as to avoid extreme moves.) Careful monitoring of
convergence, together with judicious tuning of the proposal densities, can
greatly improve model performance.

6 Conclusion

The process of drawing inferences from potentially error-prone informant re-
ports is a difficult one, and one whose success depends critically upon one’s
ability to adequately model the report generation process. At the same
time, such inferences are of central importance to crisis response. Here, a
modeling framework has been shown for reports which arrive continuously
at rates which vary as a function of the state of the world as well as ex-
ogenous covariates. Methods for conducting posterior inference via MCMC
methods were shown, and suggestions have been provided vis a vis the set-
ting of priors based on (pre-event) background knowledge. It is hoped that
this work will serve to provide a useful “first step” towards model-based
integration of human-derived information in crisis response settings, while
further extending the larger literature on the problem of informant-based
inference.
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