In psychophysics, two measures of discriminability have been given much attention, with various arguments advanced promoting each. One is $\xi_{\nu}(\chi) = \chi + \Delta_{\nu}(\chi)$, which yields the stimulus intensity judged greater than stimulus intensity χ with probability ν , and the other is the so-called 'Weber function' measure $\Delta_{\nu}(\chi)$.

We argue two theses. First, in many psychoacoustic intensity discrimination experiments, $\xi_v(\chi)$ grows as a power function of χ , the equation $\xi_v(\chi) = \chi^{\beta(v)} K(v)$ giving a fit to the data which is much better than the obtained for the near-miss equation $\Delta_v(\chi) = \chi^{\alpha(v)} C(v)$. The estimates of $\beta(v)$ are systematically smaller than 1 but noticeably higher than the corresponding estimates of the exponent $\alpha(v)$ of the near-miss equation. Second, these results imply, by a logical argument, that the exponent $\beta(v)$ of the power law must be nonconstant with v in all those common situations in which a particular averaging over conditions has taken place. Our arguments are mathematical and empirical, based on many well-known data.