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Abstract.  An individual’s learning rule is completely uncoupled if it does not depend on the 

actions or payoffs of anyone else. We propose a variant of log linear learning that is 

completely uncoupled and that selects an efficient pure Nash equilibrium in all generic n-

person games that possess at least one pure Nash equilibrium. In games that do not have such 

an equilibrium, there is a simple formula that expresses the long-run probability of the various 

disequilibrium states in terms of two factors: i) the sum of payoffs over all agents, and ii) the 

maximum payoff gain that results from a unilateral deviation by some agent. This 

welfare/stability trade-off criterion provides a novel framework for analyzing the selection of 

disequilibrium as well as equilibrium states in n-person games. 
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1. Learning equilibrium in complex interactive systems 
 

Game theory has traditionally focussed on situations that involve a small number of players. 

In these environments it makes sense to assume that players know the structure of the game 

and can predict the strategic behavior of their opponents. But there are many situations 

involving huge numbers of players where these assumptions are not particularly persuasive. 

Commuters in city traffic are engaged in a game because each person’s choice of route affects 

the driving time of many other drivers, yet it is doubtful that anyone ‘knows the game’ or 

fully takes into account the strategies of the other players as is usually posited in game theory. 

Other examples include procedures for routing data on the internet, and the design of 

information sharing protocols for distributed sensors that are attempting to locate a target. 

 

These types of games pose novel and challenging questions. Can such systems equilibrate 

even though agents are unaware of the strategies and behaviors of most (or perhaps all) of the 

other agents? What kinds of adaptive learning rules make sense in such environments? How 

long does it take to reach equilibrium assuming it can be reached at all? And what can be said 

about the welfare properties of the equilibria that result from particular learning rules? 

 

In the last few years the study of these issues has been developing rapidly among computer 

scientists and distributed control theorists (Papadimitriou, 2001; Roughgarden, 2005; Mannor 

and Shamma, 2007; Marden and Shamma, 2008; Marden, Arslan, and Shamma, 2009; 

Marden et al., 2009; Asadpour and Saberi, 2009; Shah and Shin, 2010). Concurrently game 

theorists have been investigating the question of whether decentralized rules can be devised 

that converge to Nash equilibrium (or correlated equilibrium) in general n-person games (Hart 

and Mas-Colell, 2003, 2006; Foster and Young, 2003, 2006; Young, 2009; Hart and Mansour, 

2010). Among control theorists and computer scientists, the issue is not whether a given 

learning rule is descriptively accurate as a model of human behavior, but whether it leads to 

good system-wide performance when agents are endowed with this behavior; in other words 

the learning procedure and the agents’ payoffs are treated as design elements of the system. 

 

To date the main focus of attention has been on potential games, since these arise frequently 

in applications (Marden and Shamma, 2008; Marden, Arslan, and Shamma, 2009). For this 

class of games there exist extremely simple and intuitively appealing learning procedures that 
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cause the system to equilibrate from any initial conditions. A notable example is logit 

learning, in which an agent chooses actions with log probabilities that are a linear function of 

their payoffs. In this case equilibrium occurs at a local or global maximum of the potential 

function. However, the potential function need not measure the overall welfare of the agents, 

hence the equilibrium selected may be quite inefficient. This is a well-known problem in 

congestion games for example. The problem of inefficient equilibrium selection can be 

overcome by a congestion pricing scheme, but this requires some type of centralized (or at 

least not fully decentralized) mechanism for determining the price to charge on each route 

(Sandholm, 1998). 

 

The contribution of this paper is to demonstrate a simple learning rule that incorporates log 

linear learning as one component, and that selects an efficient equilibrium in any game with 

generic payoffs that possesses at least one pure Nash equilibrium.  (An equilibrium is efficient 

if there is no other equilibrium in which someone is better off and no one is worse off.) By 

‘select’ we mean that, starting from arbitrary initial conditions, the process is in an efficient 

equilibrium in a high proportion of all time periods. Our learning rule is completely 

uncoupled, that is, the updating procedure does not depend on the actions or payoffs of 

anyone else. Thus it can be implemented even in environments where players know nothing 

about the game, or even whether they are in a game. All they do is react to the pattern of 

recent payoffs, much as in reinforcement learning (though the rule differs in certain key 

respects from reinforcement learning). 

 

Our notion of selection – in equilibrium a high proportion of the time – is crucial for this 

result. It is not true that the process converges to equilibrium or even that it converges to 

equilibrium with high probability. Indeed it can be shown that, for general n-person games, 

there exist no completely uncoupled rules with finite memory that select a Nash equilibrium 

in this stronger sense (Babichenko, 2010; see also Hart and Mas-Colell, 2003, 2006). 

 

The learning rule that we propose is related to the trial and error learning procedure of Young 

(2009), and more distantly related to the ‘learning by sampling’ procedure of Foster and  

Young (2006) and Germano and Lugosi (2007).1 An essential feature of the rule is that a 

player has two different search modes: i) deliberate experimentation, which occurs with low 

                                                 
1 Another distant relative is the aspiration-based learning model of Karandikar et al. (1998). In this procedure 
each player has an endogenously generated aspiration level that is based on a smoothed average of his prior 
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probability and leads to a change of strategy only if the latter has a higher payoff; ii) random 

search, which leads to a change of strategy that may or may not have a higher payoff (the 

probability of acceptance is merely biased towards strategies with high payoffs).  

 

A crucial difference between our procedure and trial and error learning is that a player does 

not always accept the outcome of an experiment even when it does result in higher payoffs: 

acceptance is probabilistic. Our rule also differs in that the probabilities of accepting the 

outcome of an experiment (or of a random search) can be expressed as a log linear function of 

the payoff gain (in the case of an experiment) or the payoff level (in the case of a random 

search). The advantage of this approach is that it leads to a simple formula for computing the 

stochastically stable states of the process. This formula shows that the learning process selects 

an efficient pure Nash equilibrium whenever a pure Nash equilibrium exists, and identifies the 

disequilibrium states that are selected when a pure Nash equilibrium does not exist. In the 

latter case there is a tradeoff between welfare and stability: the most likely disequilibrium 

state is one that maximizes a linear combination of: i) the total welfare (sum of payoffs) 

across all agents and ii) the payoff gain that would result from a deviation by some agent, 

where the first is weighted positively and the second negatively. 

 

2. The learning model  

 

We first describe the learning rule informally, then give a detailed definition. A key feature of 

the rule is that an agent can search in one of two ways. In ‘quiet’ search he occasionally 

experiments with new strategies and adopts a new one with a probability that increases with 

the realized gain in payoff compared to his previous strategy. In ‘noisy’ search he frequently 

tries out new strategies and adopts a new one with a probability that increases in the realized 

level of payoff.  These two forms of search can be associated with different ‘psychological 

states’. A content agent is not strongly motivated to search but occasionally does so anyway 

(quiet search). A discontent agent flails around trying out new things frequently (noisy 

search). In the first type of search, the probability of acceptance is determined by the change 

in payoff, whereas in the second situation the probability of acceptance is determined by the 

level of payoff. The rationale is that in noisy search an agent tries out many different 

                                                                                                                                                         
payoffs.  He changes strategy with positive probability if his current payoff falls below his current aspirations. 
Unlike the present method, this procedure does not necessarily lead to Nash equilibrium behavior even in 2 x 2 
games. 
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strategies before settling on one of them, hence the payoff level seems more salient than the 

change in payoff from the previous period.2 

 

A second feature of the learning process is the mechanism that triggers transitions between 

content and discontent states. The essential idea is that a transition from content (c) to 

discontent (d) occurs when an agent’s realized payoff goes down for several periods in 

succession and he did not search during those periods. In other words, a c d transition is 

triggered by a (negative) change in payoff that was not instigated by the agent, but rather by a 

change of strategy by someone else (whom the agent cannot necessarily see).  By contrast, a 

d c  transition occurs when an agent tires of searching and accepts his current strategy as 

‘good enough’.   

 

To illustrate these ideas in a concrete case, consider a commuter who ordinarily takes a 

certain route to work.  The realized cost is the journey time (the negative of the payoff), which 

depends on the routes taken by other commuters. Suppose that congestion on his usual route 

worsens and the journey time increases. If this persists he may become discontent and start 

looking actively for a different route. We hypothesize that the probability of settling on a new 

route depends on how short it turns out to be. This is the logic of the c d c   transitions.  

But even if our commuter is reasonably content, he may not be completely content, and thus 

may occasionally try out new ways to go to work. Our hypothesis is that he adopts such 

‘experiments’ with a probability that is monotone increasing in the improved travel time.  

 

We now describe the learning rule in detail. Let   be an n -person game on a finite joint 

action space ii
A A  and let ( )iu  be i ’s utility function. The state of player i  is a triplet 

 , ,i i i iz m a u , where i ia A  is the player’s benchmark  action (the action he normally plays 

in this state), iu  is his benchmark payoff (what he currently expects to get), and im  is his 

mood (which determines his current search behavior). There are four distinct moods: content 

(c), discontent (d), watchful (c-), and hopeful ( c ). The state of the process is denoted by a 

triple ( , , )z m a u  where m  is an n-vector of the moods of the various players, a  is an n-

vector of their benchmark actions, and u  is an n-vector of their benchmark payoffs. For 

                                                 
2  Learning rules with high and low rates of exploration have been studied in a variety of settings, including 
computer science (Bowling and Veloso, 2002) and biology (Thuijsman et al., 1995).  
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simplicity we assume that each iu  is consistent with some payoff in the game, that is, 

( )i iu u a  for some a A . Since A  is finite, it follows that the state space Z  is also finite. 

The process evolves in discrete time periods 1,2,3,...t  , where ( )z t  denotes the state of the 

process at time t. 

 

Figure 1 depicts the possible one-period transitions for a specific player i . Other transitions 

may occur during the same period for other players, and the combination of all of these 

transitions determines the transition function between states. However, we can omit specific 

reference to the actions and payoffs of players other than i , because the only effect they have 

on i ’s transitions is through i ’s realized payoffs.  

 
We explain the various cases in turn. A content-content transition occurs when player i  

decides to experiment with a new action. This event has probability 0  . Call the resulting 

payoff iu . If iu  is higher than i ’s current benchmark payoff iu , then with probability 

 i iG u uq    he adopts the experimental action and the experienced payoff as his new 

benchmarks. (The actions are not shown to keep the figure uncluttered.) 

 

The second case is a discontent-content transition. When a player i  is discontent he chooses 

an action at random each period, according to some fixed distribution that is independent of   

and has full support on iA . Player i ’s current search ends when he spontaneously accepts his 

current action and its associated payoff as his new benchmarks. The probability of this event 

is  iF up  . (In Young (2009) this probability was assumed to be bounded away from zero 

and independent of  . This change in the model has important implications for its equilibrium 

selection properties and requires a different proof.)  
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Figure 1. The structure of transitions for a given player i. 
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An indirect transition occurs when player i ’s payoff changes and he does not experiment. 

Thus the change must have been caused by some other player (whom he may not be able to 

observe). We call this a passive change in payoff. It causes player i  to go on the alert: if the 

new payoff iu  is higher than his current benchmark iu  his mood changes to c , whereas if 

the new payoff is lower than his current benchmark his mood changes to c . In the ensuing 

period he moves from c  to d  if his payoff stays below iu , and moves from c  to c  if his 

payoff is above or equal to iu . (Note that i ’s payoff in the first period ( iu ) may differ from 

his payoff in the second ( iu  ) because of changes in the behavior of other players. Note also 

that payoff reversals relative to the benchmark cause player i  to flip-flop between c  and c , 

hence these transient states can persist for several periods. 

 

 In summary, the parameters of the learning process consist of the experimentation probability 

  and the two acceptance functions ( )F u  and ( )G u .  Note that the domain of F  is the set 

of payoff levels { ( ) : }i iU u a a A   , whereas the domain of G  is the set of nonnegative 

payoff differences {[ ( , ) ( , )] : , , }          i i i i i i i i i i i iU u a a u a a a a A a A . 

 

We shall begin by assuming that F  and G  are nonnegative, strictly decreasing, linear 

functions, and that they are the same for all players. Later we shall show how to extend our 

results to the situation where the acceptance functions differ among players and are non-

linear.  Let 

                                           1 2 1,  where 0 ,F u f u f f                                                   (1) 

                                        1 2 1( ) ,  where 0G u g u g g      .                                          (2) 

 

We assume that the coefficients if , ig  are such that ( )F u  and ( )G u  are strictly positive for 

all u U and  u U . We shall also assume that F and G  are small in the following sense:  

 

                                                0 ( ) 1/ 2G u    and 0 ( ) 1/ 2F u n  .                              (3) 

 

This means that the probabilities of acceptance are substantially greater than the probability of 

experimentation. In particular, the probability ( ) G u  of accepting the outcome of an 

experiment is greater than  ; moreover if all agents are discontent then the probability that 
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they all become content again ( ( ) nF u ) is also greater than  . We do not claim that these 

bounds are best possible but they are easy to work with and yield sharp analytical predictions. 

 

This rule can be viewed as a variant of log linear learning that we shall call log linear trial 

and error learning.  To see the connection, let   e , where 0  .  Then the log 

probability of accepting the outcome of an experiment is 

 

                          1 2(accept experiment with payoff gain 0)      P u g u g .                 (4) 

 

Similarly, the log probability of accepting the outcome of a random search is 

 

                                   1 2(accept search with payoff )P u f u f    .                                 (5) 

 

Notice that the probability of acceptance depends on the cardinality of the payoff gain or 

payoff level respectively. Hence the players’ utilities cannot be rescaled or translated at will, 

as is the case with von Neumann Morgenstern utility functions. The larger the payoff gain 

from an experiment, the higher the probability that it will be accepted. Similarly, the larger 

the current payoff level that results from a random search, the higher the probability that the 

current action will be accepted. It follows that interpersonal comparisons of utility can be 

made, because they imply different acceptance rates among the players. 

 

3. Discussion 

 

Learning rules that employ slow and fast search have been discussed in a variety of settings. 

In computer science, for example, there is a procedure known as WoLF (Win or Lose Fast) 

that has a qualitative flavor similar to the rule proposed above (Bowling and Veloso, 2002). 

The basic idea is that when a player’s payoff is high relative to realized average payoff he 

updates his strategy slowly, whereas he updates quickly if his payoff is low compared to the 

realized average. This approach is known to converge to Nash equilibrium in 2 x 2 games but 

not in general (Bowling and Veloso, 2002). Similar ideas have been used to model animal 

foraging behavior (Houston, Kacelnik, and McNamara, 1982; Motro and Shmida, 1995; 

Thuijsman, Peleg, Amitai, and Shmida, 1995). For example, bees tend to search in the 

neighborhood of the last visited flower as long as the nectar yield is high, and search widely 
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for an alternative patch otherwise (this is known as a near-far strategy). It would not be 

surprising if human subjects behaved in a similar fashion in complex learning environments, 

but to our knowledge this proposition has not been tested empirically. 

 

In any event, we make no claim that the rule we have described is accurate from an empirical 

standpoint. The contribution of the present paper is to demonstrate the existence of simple, 

completely uncoupled rules that select efficient equilibria in a wide class of games. This 

addresses an important problem in the application of game theory to distributed control, 

where the object is to guarantee good system-wide performance using completely 

decentralized adaptive procedures. The issue of descriptive accuracy does not arise here, 

because one can build the learning rule into the agents by design. What matters is that the rule 

is simple to execute and requires little information. In our procedure it suffices to keep track 

of just three items – mood, benchmark action, and benchmark payoff – and to compare these 

with the received payoff each period.  

 

4. Statement of the main result 

 

Our equilibrium selection result will be framed in terms of two quantities: the welfare of a 

state and the stability of a state. 

 

Welfare. The welfare of state ( , , )z m a u  is the sum of the players’ payoffs from their 

benchmark actions: 

                                                           
1

n

i
i

W z u a


 .                                                (6) 

  

Stability. An action-tuple a A  is a  -equilibrium for some 0   if 

 

                                                    ,  ,   ,  i i i i i ii a A u a a u a      .                             (7) 

 

The instability of a state ( , , )z m a u  is the minimum 0   such that a  is a  -equilibrium:  

 

          ( ) min { : the benchmark actions constitute a -equilibrium}S z   .                 (8) 
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Stochastic stability. The set of stochastically stable states *Z  of the process ( )z t  is the 

minimal subset of states such that, given any small 0  , there is a number 0   such that 

whenever 0    , *( )z t Z  for at least 1   of all periods t. 

 

Interdependence. An n-person game   on the finite action space A  is interdependent if, for 

every a A  and every proper subset of players J N  , there exists some player 

i J and a choice of actions Ja  such that ( , ) ( , )i J N J i J N Ju a a u a a   . 

 

In other words, given any current choice of actions a A , any proper subset of players J can 

cause a payoff change for some player not in J  by a suitable change in their actions.  Note 

that if a game has generic payoffs (and therefore no payoff ties), interdependence is 

automatically satisfied. However it is a much weaker condition. Consider, for example, a 

traffic game in which agents are free to choose any route they wish. There are many payoff 

ties because a local change of route by one player does not change the payoffs of players who 

are using completely different routes. But it satisfies the interdependence condition because a 

given player, or set of players, can (if they like) switch to a route that is being used by another 

player and thereby change his payoff. 

 

Aligned. The benchmarks in state ( , , )z m a u  are aligned if the benchmark payoffs result 

from playing the benchmark actions, that is, if ( )i iu u a for every player i . 

 

Equilibrium state.  A state z  is an equilibrium state if all players are content, their benchmark 

actions constitute a Nash equilibrium, and their benchmark payoffs are aligned with their 

benchmark actions. 

 

Theorem 1. Let   be an interdependent n -person game on a finite joint action space A . 

Suppose that all players use log linear trial and error learning with experimentation 

probability   and acceptance functions F  and G  satisfying conditions (1)-(3).  

 

i) If   has at least one pure Nash equilibrium, then every stochastically stable state is an 

equilibrium state that maximizes ( )W z among all equilibrium states,  and hence is efficient; 
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ii) If   has no pure Nash equilibrium, every stochastically stable state maximizes  

 

                                                               1 1( ) ( )f W z g S z .                                                     (9)          

 

Notice that this result involves a cardinal comparison of the players’ utilities. Players with 

large absolute utility are weighted heavily in the welfare function, and players with large 

utility differences are weighted heavily in the stability function. If a player’s utility function 

were to be scaled up, he would count more heavily in both the welfare and the stability 

function.  This would improve the likelihood of states in which this player has a high payoff, 

and decrease the likelihood of states in which this player has a large incentive to deviate. 

 

5. Examples 

 

Before turning to the proof we illustrate the result with two simple examples.  

 

Example 1. Let   be a symmetric 2 2  coordination game with payoff matrix 

 

 A  B  

A  ,a a ,c d  

B  ,d c  ,b b  

 

Assume that the equilibrium AA  is strictly risk-dominant, that is 0a d b c    . Let us also 

assume that the equilibrium BB  is Pareto optimal, that is, b a . By theorem 1 the learning 

process selects BB , that is, the benchmark actions are BB  a very large proportion of the time 

(and hence these actions are played a very large proportion of the time). This contrasts with 

many other adaptive learning procedures – including ordinary log linear learning – that select 

the risk dominant equilibrium in 2 x 2 games (Kandori, Mailath and Rob, 1993; Young, 1993; 

Blume, 1993, 1995, 2003). 
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Example 2. Let   be a 2 2  game with payoff matrix 

 

 A  B  

A  30,30  0,40  

B  24,23 10,20

 

This game has no pure Nash equilibria, so by theorem 1 the learning process selects the 

combination that maximizes 1 1f W g S   . Figure 2 illustrates the case 1 1/ 1f g   in which 

AA  is selected. In general the outcome depends on the ratio 1 1/f g  as shown in Figure 3. 

Note that the welfare maximizing state AA  is selected whenever 1 1/f g  is sufficiently large, 

that is, whenever the marginal change in the rate of acceptance by a discontent player (for a 

given small change in experienced payoff), is sufficiently large relative to the marginal 

change in the rate of acceptance of an experiment (for a given small change in the gain in 

payoff).  

 

 

Figure 2. The tradeoff between welfare (W ) and stability ( S ) when no equilibrium exists. 
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Figure 3.  Stochastically stable outcomes as a function of 1 1/f g  

 

6. Proof of theorem 1. 

 

Before turning to the details of the proof we provide an intuitive outline of the argument. 

When everyone is content, the learning process moves through a series of steps in which 

various players experiment and adopt new actions with probabilities that depend on the 

realized payoff gains. There are two possibilities.  

 

1. A sequence of experiments leads to increasing payoffs for some and no decrease for 

anyone. In this case everyone eventually becomes content with higher payoff benchmarks.  

 

2. A sequence of experiments ends with someone’s payoff going down and staying down for 

two periods in a row. This person becomes discontent and starts searching widely. With some 

probability his searching causes other players to become discontent and they start searching. 

A key part of the argument is that, once a single player becomes discontent, there is a positive 

probability that all players will become discontent where this probability is bounded away 

from zero independently of  . 

 

The process only re-enters a content state once everyone has settled down again. By 

assumption the probability that everyone settles on a particular combination of actions a A  

is proportional to ( ( ))iF u a

i

 , which is proportional to 
1 ( )i

i

f u a


 

.  Thus high welfare states 

have an advantage in the sense that the process flows into them with higher probability than to 

other states. However, one must also consider the probability that the process exits from any 

given state. Here the equilibria are advantaged because it requires at least two experiments to 

exit to another (non-transient) state, whereas to exit from a disequilibrium state requires at 

most one experiment. The essence of the proof is to show that when pure Nash equilibria 

exist, stability takes precedence over welfare, whereas if no pure equilibrium exists there is an 

explicit tradeoff  between welfare and stability. 
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We now turn to the details of the argument. The learning process defines a finite Markov 

chain on the state space Z . For every two states , 'z z Z there is a probability (possibly zero) 

of transiting from z  to 'z  in one period.  We shall write this one-period transition probability 

as a function of the experimentation rate  : 'zzP . The transition is feasible if ' 0zzP   whenever 

0  . The resistance of a feasible transition 'z z  is the unique real number ( , ') 0r z z   

such that ( , ')
'0

0 lim / r z z
zzP




   . The resistance of an infeasible transition is defined to 

be ( , ')r z z   . If the probability of a transition is bounded away from zero when   is small, 

we shall say that the transition has zero resistance or equivalently has probability of order 

(1)O . Similarly a transition with resistance r has probability of order ( )rO  . 

 

In general, a recurrence class of a finite Markov chain is a nonempty subset of states R Z  

such that: i) for every two distinct states , 'z z R  there is a positive probability path from z  

to 'z  and a positive probability path from 'z  to z ; ii) there is no positive probability path 

from any state in R  to a state outside of R . The first step in the proof is to characterize the 

recurrence classes of the unperturbed process 0P , that is, the process when 0  . In this 

situation, no one experiments and no one converts from being discontent to content. 

 

Notation.  Let 0Z  be the subset of states in which everyone’s benchmarks are aligned. Let 0C  

be the subset of 0Z  in which everyone is content, let 0E  be the subset of 0C  in which the 

benchmark actions constitute a pure Nash equilibrium and let *E  be the subset of 0E  on 

which welfare is maximized.  Finally, let  

 

                               D = {all states z Z  in which every player is discontent}.                 (10)  

 

Recall that if a player is discontent, he chooses an action according to a distribution that has 

full support and is independent of the current benchmark actions and payoffs. Moreover, the 

probability of accepting the outcome of such a search depends only on its realized payoff, and 

the old benchmarks are discarded. Hence, for any w D  and any z D , the probability of the 

transition w z  is independent of w . Next consider a transition of form z w  where 

w D and z D . In this case the action and payoff benchmarks are the same in the two 
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states, hence there is a unique w D such that z w . We can therefore collapse the set D 

into a single state D  and define the transition probabilities as follows: 

 

                                    ,   ( ) ( ) for all       z Z D P D z P w z w D                             (11) 

                                    ,   ( ) ( ) for some       z Z D P z D P z w w D                         (12) 

                                                       

Lemma 1. The recurrence classes of the unperturbed process are D  and all singletons{ }z  

such that 0z C . 

 

Proof. First we shall show that every element of 0C  is an absorbing state (a singleton 

recurrence class) of the unperturbed process ( 0)  . Suppose that 0z C , that is, the 

benchmarks are aligned and everyone is content. Since 0  , no one experiments and 

everyone replays his benchmark action next period with probability one. Hence the process 

remains in state z  with probability one. 

 

Next suppose that z D , that is, everyone is discontent. The probability that any given player 

becomes content next period is ( ) 0F   . (Recall that ( )F   is strictly positive.) Hence D  is 

absorbing, i.e. a singleton recurrence class. (Recall that a discontent player chooses each of 

his available actions with a probability that is bounded away from zero and independent of 

 .) 

 

It remains to be shown that there are no other recurrence classes of the unperturbed process. 

We first establish the following. 

 

Claim. Given any state z  in which at least one player is discontent, there exists a sequence of 

transitions in the unperturbed process to D .  

 

Consider a state in which some player i  is discontent. By interdependence he can choose an 

action that alters the payoff of someone else, say j . Assume that i  plays this action for two 

periods in a row. If j ’s payoff decreases then in two periods he will become discontent also. 

If j ’s payoff increases then in two periods he will become content again with a higher payoff 

benchmark. At this point there is a positive probability that the first player, i , will revert to 



 17

playing his original action for two periods. This causes player j ’s payoff to decrease relative 

to the new benchmark. Thus there is a positive probability that, in four periods or less, i ’s 

behavior will cause j  to become discontent. (The argument implicitly assumed that no one 

except for i  and j  changed action in the interim, but this event also has positive probability.) 

It follows that there is a series of transitions to a state where both i  and j  are discontent. By 

interdependence there are actions of i  and j  that cause a third player to become discontent. 

The argument continues in this manner until the process reaches a state where all players are 

discontent, which establishes the claim. 

 

An immediate consequence is that D  is the only recurrent state in which some player is 

discontent. Thus, to conclude the proof of lemma 1, it suffices to show that if z  is a state in 

which no one is discontent, then there is a finite sequence of transitions to D  or to 0C . 

Suppose that someone in z  is in a transient mood ( c or c ). Since no one is discontent and 

no one experiments, there is no change in the players’ actions next period, and therefore no 

change in their realized payoffs. Hence everyone in a transient mood switches to c or d in one 

period. If anyone switches to d there is a series of transitions to D . Otherwise everyone 

becomes content (or already was content) and their benchmarks are now aligned, hence the 

process has arrived at a state in 0C .   

 

We know from Young (1993, theorem 4) that the computation of the stochastically stable 

states can be reduced to an analysis of rooted trees on the vertex set R  consisting solely of the 

recurrence classes. By Lemma 1, R  consists of the singleton states in 0C , and also the 

singleton state  D . Henceforth we shall omit the set brackets    to avoid cumbersome 

notation. 

 

Edge resistance. For every pair of distinct recurrence classes w  and z , let ( )r w z  denote 

the total resistance of the least-resistant path that starts in w  and ends in z . We call w z  

an edge and ( )r w z  the resistance of the edge.  
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*r -function.  Define the function *( )r z as follows 

 

                                   *,        ( ) min{ ( ) : { }}z R r z r z w w R z      .                            (13) 

 

Easy. An easy edge from a state z  is an edge z w  , w z , such that *( ) ( )r z w r z  . An 

easy path is a sequence 1 2 ... mw w w    in which each edge is easy and all states are 

distinct. An easy tree is a tree all of whose edges are easy. 

 

The next three lemmas evaluate the function *r  on the various types of recurrence classes.  

 

Lemma 2.  0 *,       ( ) 2         e E r e and e D is an easy edge . 

 

Proof. Let 0( , , )e m a u E  , where a  is a pure Nash equilibrium. Consider any outgoing 

edge e z  where 0z C  and z e .  Since e  and z  are distinct, everyone is content, and the 

benchmark payoffs and actions are aligned in both states, they must differ in their benchmark 

actions. Now consider any path from e  to z  in the full state space Z . Along any such path at 

least two players must experiment with new actions (an event with probability 2( )O  ), or one 

player must experiment twice in succession (also an event with probability 2( )O  ) in order 

for someone’s benchmark action or payoff to change. (A single experiment is not accepted by 

the experimenter because a  is a Nash equilibrium, so the payoff from an experiment does not 

lead to a payoff gain. Furthermore, although some other players may temporarily become 

hopeful or watchful, they revert to being content with their old benchmarks unless a second 

experiment occurs in the interim.)  It follows that ( ) 2r e z  .   

 

It remains to be shown that the resistance of the transition e D  is exactly two, which we 

shall do by constructing a particular path from e  to D  in the full state space. Choose some 

player i . By interdependence there exists an action i ia a  and a player j i  such that i ’s 

change of action affects j ’s payoff: ( , ) ( )j i i ju a a u a  . Let player i  experiment by playing 

ia  twice in succession, and suppose that no one else experiments at the same time. This event 

has probability 2( )O  , so the associated resistance is two.  If ( , ) ( )j i i ju a a u a  , player j ’s 

mood changes to c  after the first experiment and to c  again after the second experiment. 
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Note that at this point j  has a new higher benchmark, namely, ( , )j i iu a a . Now with 

probability 2(1 ) n  player i  reverts to playing ia  for the next two periods and no one else 

experiments during these periods. This causes j  to become discontent. By the claim in the 

proof of Lemma 1, there is a zero-resistance path to the all-discontent state. The other case, 

namely ( , ) ( )j i i ju a a u a  , also leads to an all-discontent state with no further resistance. We 

have therefore shown that ( ) 2 r e D , and hence that e D  is an easy edge.   

 

Lemma 3.  0 0 *,   ( ) 1 ( ( ))z C E r z G S z     , and if z z  is an easy edge with 0z C , 

then ( ) ( )W z W z . 

 

Proof.  Let 0 0( , , )z m a u C E   , in which case a  is not a Nash equilibrium. Then there 

exists an agent i  and an action i ia a  such that    ,i i i i iu a a u a u    . Among all such 

agents i  and actions ia  suppose that    ,i i i i iu u a a u a    is a maximum. Let i  

experiment once with this action and accept the outcome of the experiment, and suppose that 

no one else experiments at the same time. The probability of this event is 1 ( )( )iG uO    . If the 

experiment causes everyone else’s payoff to stay the same or go up, and if no one experiments 

in the next period (with the latter event having probability (1 )n ), then a state z  is reached 

after one period in which everyone is content, the benchmarks are aligned 0( )z C  and 

( ) ( )W z W z . The total resistance of this path is ( ) 1 ( ( ))r z z G S z   . The other 

possibility is that the experiment causes someone else’s payoff to decrease, in which case 

there is a zero-resistance series of transitions to the state D .  Hence in this case we have 

( ) 1 ( ( ))  r z D G S z . We conclude that, if there is only one experiment, the process either 

transits to a recurrence class 0z C  satisfying ( ) ( ) W z W z , or it transits to D . In both 

cases the resistance of the transition is 1 ( ( )) G S z . 

 

If there are two or more experiments, the resistance is at least two. By assumption, however,  

  1/ 2G   , so making two experiments has a higher resistance than making one experiment 

and accepting the outcome (the latter has resistance 1 ( ( ))G S z < 1.5). It follows that 

*( ) 1 ( ( ))r z G S z  , and if z z  is an easy edge with  z D , then ( ) ( )W z W z .   
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Lemma 4. 0( , , ) ,   ( ) ( ( ))     i
i

z m a u C r D z F u a  and *( ) min ( ( ))a A i
i

r D F u a  . 

 

Proof. Let 0( , , )  D z m a u C . Recall that the transition probability ( )P w z  is the 

same for all w D , hence take any state 1 w D  as the starting point. The probability is  1O  

that next period every player i  chooses ia , in which case their realized payoffs are ( )i iu u a . 

They all accept these actions and payoffs as their new benchmarks with probability 

( ( ))
( ( ))

i
i i

F u a
F u a

i

 


 , hence ( ) ( )  i
i

r D z F u . 

 

We claim that in fact ( ) ( )  i
i

r D z F u . Let 0( , , )z m a u C  and consider a least-

resistant path 1 2, ,..., mw w w z . For each player i  there must be some time in the sequence 

where i  was discontent and accepted a benchmark payoff that was iu  or less. (There may 

also have been a time when i  was discontent and accepted a benchmark payoff that was 

strictly more than iu , but in that case there must have been a later time at which he accepted a 

payoff that was iu  or less, which means he must have been discontent.) The probability of 

such an acceptance is at most ( )iF u , because the probability of acceptance is increasing in iu .  

This reasoning applies to every player, hence the total resistance of this path from D  to z  

must be at least ( )i
i

F u . This proves that ( ) ( )  i
i

r D z F u . The claim that 

*( ) min ( ( ))a A i
i

r D F u a   follows from the fact that F  is monotone decreasing.   

 

w-tree. Identify the recurrence classes R  with the nodes of a graph. Given a node w, a 

collection of directed edges T  forms a w-tree if from every node z w  there is exactly one 

outgoing edge in T  and there is a unique directed path in T  from  z to w. 

 

Stochastic potential. The resistance ( )r T  of a w-tree T  is the sum of the resistances of its 

edges. The stochastic potential of w is ( ) min{ ( ) :  is a -tree}w r T T w  . 

 

In the next two lemmas we compute the stochastic potential of each type of recurrence class. 

From these computations theorem 1 will follow. 
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Lemma 5. There exists a D -tree *
D

T  that is easy. 

 

Proof. We shall conduct the proof on transitions between recurrence classes, each of which 

forms a node of the graph. Choose a node z D  and consider an easy outgoing edge z  . If 

here are several such edges choose one that points to D , that is, choose z D  if it is easy.  

This implies in particular that for every 0e E  we select the edge e D . (This follows from 

Lemma 2.) 

 

We claim that the collection of all such edges forms a D -tree.  To establish this it suffices to 

show that there are no cycles.  Suppose by way of contradiction that  1 2 1... mz z z z     

is a shortest cycle. This cycle cannot involve any node in 0E , because by construction the 

outgoing edge from any such edge points towards D , which has no outgoing edge. Therefore 

all 0 0kz C E  . Since all of the edges 1k kz z   are easy, Lemma 3 implies that  

1( ) ( )k kW z W z  . From this we conclude 1 1( ) ( ) ( )mW z W z W z  , which is impossible.   

 

Let                                                   * *( ) ( )DD r T   .                                                       (14) 

 

Lemma 6. For every 0z C  let zz w  be the unique outgoing edge from z  in *
DT  and 

define  

                                       * * =  with  removed and  added  z zD
T T z w D z .                        (15) 

 

*
zT  is a z -tree of least resistance and  

  

                                            *( ) ( ) ( )zz r z w r D z      .                                           (16) 

 

Proof.  Plainly, the tree *
zT  defined in (15) is a z-tree. Furthermore all of its edges are easy 

except possibly for the edge D z .  Hence it is a least-resistant z-tree among all z-trees that 

contain the edge D z . We shall show that in fact it minimizes resistance among all z-trees. 
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Let zT be some z-tree with minimum resistance, and suppose that it does not contain the edge 

D z .  Since it is a spanning tree it must contain some outgoing edge from D , say D z . 

We can assume that ( ) ( )  r D z r D z , for otherwise we could simply take out the edge 

D z  and put in the edge D z  to obtain the desired result.  

 

Let 1 2, ,..., nu u u be the benchmark payoffs in z and let 1 2, ,..., nu u u    be the benchmark payoffs in 

z . By lemma 4,  

 

                                 ( ) ( )  i
i

r D z F u  and ( ) ( )   i
i

r D z F u .                               (17) 

 

Since ( ) ( )  r D z r D z  and ( )iF u  is monotone decreasing in iu , there must be some i 

such that  i iu u . Let { : }i iI i u u  . Consider the unique path in zT  that goes from z  to z , 

say 1 2, ,..., mz z z z z   , where each kz  is in R  and they are distinct. Each edge 1k kz z   

corresponds to a sequence of transitions in the full state space Z , and the union of all these 

transitions constitutes a path in Z  from z  to z .  Along this path, each player i I  must 

eventually lower his payoff benchmark because his starting benchmark iu  is greater than his 

ending benchmark iu . Thus at some point i must become discontent and adopt a new 

benchmark that is iu  or lower.  Assume that this happens in the transition from ikz to 1ikz  . 

Since ( )iF u  is strictly decreasing, the probability of adopting a benchmark that is iu  or lower 

is at most ( )iF u .  Hence, along the path from  ikz to 1ikz   someone experiments and accepts, 

and at some stage player i becomes discontent and accepts a payoff that is iu  or lower. The 

first event has resistance at least 1 ( ( )) ikG S z  and the second has resistance at least ( )iF u . 

Therefore 

 

                                            1( ) 1 ( ( )) ( )   i i ik k k
ir z z G S z F u .                                     (18) 

 

We know from Lemma 3 that the least resistance of a path out of ikz  is *( ) 1 ( ( )) i ik kr z G S z  

Hence 1 *( ) ( ) ( )  i i ik k k
ir z z F u r z .  It follows that the total resistance along the sequence 

1 2, ,..., mz z z z z    satisfies 
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1 1

1 *

1 1

( ) ( ) ( )
m m

k k k
i

k i I k

r z z F u r z
 



  

     .                              (19) 

 

The resistance of the edge D z  satisfies  

 

                                       ( ) ( ) ( ) ( )
 

       i i i
i i I i I

r D z F u F u F u .                               (20) 

 

Hence in the tree zT  the outgoing edges from the nodes 1 2 1{ , , ,..., }mD z z z  have a total 

resistance that is strictly greater than 
1

*

1

( ) ( )
m

k
i

i k

F u r z




  . But in the tree *
zT  the edges from 

these nodes have a total resistance equal to 
1

*

1

( ) ( )
m

k
i

i k

F u r z




  . Furthermore, at every other 

node the resistance of the outgoing edge in zT  is at least as great as it is in *
zT  (because the 

latter consists of easy edges).  We conclude that *
zT  must minimize resistance among all         

z-trees , which completes the proof of lemma 6.   

  

To complete the proof of theorem 1, we shall first prove the following chain of inequalities: 

 

* * 0 * 0 0, , ,       e E e E E z C E   
( ) ( ) ( )

* *( )  ( )  ( )  ( )
i ii iii

e e z D        .                  (21)                          

 

(Recall that *E  consists of those equilibrium states 0e E  that maximize ( )W e .)  Let 

0( , , ) e m a u E . By construction e D  is an edge in the easy tree *
DT  (see the beginning of 

the proof of Lemma 5), so (16) implies that 

 

                                                   *( ) ( ) ( )e r e D r D e      .                                     (22) 

 

From Lemma 2 we know that ( ) 2 r e D . From Lemma 4 we know that 

 

                                          1 2( ) ( ( )) ( )     i
i

r D e F u a f W e nf .                                    (23) 

 



 24

From this and (22) we conclude that 

 

                                                    *
1 2( ) 2 ( )e f W e nf     .                                              (24) 

 

Now suppose that * *e E and 0 * e E E . Then *( ) ( )W e W e , so from (24) we conclude 

that *( ) ( )e e  .  This establishes (i). 

 

To prove (ii), let 0 * e E E  and 0 0z C E  . Recall from (16) that 

*( ) ( ) ( )zz r z w r D z      , where zz w  is an easy edge. Since 0 0z C E  , we 

know from Lemma 3 that ( ) 1 ( ( ))zr z w G S z    and from Lemma 4 that 

1 2( ) ( )   r D z f W z nf . Hence 

 

                                  0 0 *
1 2: ( ) 1 ( ( )) ( )z C E z G S z f W z nf         .                        (25) 

 

Since 0e E , (24) implies that  

 

                                                    *
1 2( ) 2 ( )e f W e nf     .                                            (26) 

 

Comparing (25) and (26) we see that ( ) ( )e z   provided 

 

                                                  1[ ( ) ( )] 1 ( ( ))f W z W e G S z   .                                           (27) 

 

The right-hand side of (27) is greater than ½ because we assumed that ( ( )) 1/ 2G S z  for all z 

(see condition (3)). The left-hand side is the sum of n differences ( ) ( )i i
i

F u F u , which is 

smaller than ½ because we assumed that 0 ( ) 1/ 2F n    (condition (3) again).  Hence (27) 

holds and therefore ( ) ( )e z  , which proves (ii). 

 

To prove (iii), observe that condition (3) implies  

 

                              1 2( ) max ( ) 1/ 2    and    ( ) 0uf W z nf n F u G u       .                      (28) 
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From this and (25) it follows that *( )z  . This completes the proof of (21). 

 

We shall now turn to the two cases of the theorem: a pure Nash equilibrium exists and a pure 

Nash equilibrium does not exist. 

 

Case 1. A pure Nash equilibrium exists ( 0E   ).  

 

By (21) we know that the welfare maximizing equilibrium states * *e E  minimize stochastic 

potential among all recurrence classes, hence they constitute the stochastically stable states. 

This establishes statement (i) of Theorem 1.  

 

Case 2. No pure equilibrium exists ( 0E  ). 

 

In this case the chain of inequalities (21) reduces to (iii), because there are no equilibrium 

states. In particular, D  cannot be stochastically stable. It follows from (25) that the 

stochastically stable states are precisely those 0z C  that minimize 

 

                                     
*

1 2

*
1 1 2

( ) 1 ( ( )) ( )

      ( ) ( ) ( 1)

z G S z f W z nf

g S z f W z nf

 



    

    
                                        (29) 

 

which is equivalent to maximizing 1 1( ) ( )f W z g S z . This concludes the proof of theorem 1. 

 

7. Heterogeneous and nonlinear acceptance functions 

 

The proof is constructed in a way that allows us to see the impact of relaxing our conditions 

on the acceptance functions F  and G . In particular, let us suppose that these functions differ 

among players and may be nonlinear. Suppose that i’s probability of accepting the outcome of 

an experiment is governed by the function  i iG u , and that i’s probability of stopping a 

search is governed by the function  i iF u . As before we shall assume that these acceptance 

functions are strictly decreasing. These assumptions are not very restrictive. They amount to 

saying that each agent accepts the outcome of an experiment with a probability that increases 
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with the payoff gain from the experiment, and accepts the outcome of a random search with a 

probability that increases with the payoff level of his current choice. 

 

To obtain tight analytical results, we need to assume (as before) that the probabilities of 

acceptance are large relative to the probability of experimentation. In particular it suffices to 

assume that 

 

                                        0 ( ) 1/ 2 and 0 ( ) 1/ 2i i i iG u F u n      for all i.                         (30) 

 

Let ( , , )z m a u and redefine the welfare function as follows: 

 

                                                         ( ) ( )i i
i

W z F u a  .                                                  (31)  

 

Since the functions iF  are monotone decreasing,  W z  is monotone increasing in each 

player’s utility  iu a . It follows that, among the equilibrium states,  W   is maximized at an 

efficient equilibrium. Define 

 

                              ( , , ) , : , 0
i ii i a A i i i i i i i iS z S m a u u a a u a u a a u a      max .      (32) 

 

Further, let      
i i iS z G S z  and define the instability of a state z to be 

 

                                                                   
i iS z S zmax .                                               (33)         

 

The larger  S z  is, the more likely it is that some player will accept the outcome of an 

experiment, hence it is a measure of instability. A straightforward modification in the proof of 

theorem 1 leads to the following: 

 

Theorem 2. Let   be an interdependent n -person game on a finite joint action space A . 

Suppose that each player i uses a learning rule with experimentation probability   and 

acceptance functions iF  and iG  satisfying conditions (1)-(3).  
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(i) If the game has a pure Nash equilibrium then every stochastically stable state is an 

equilibrium state that maximizes ( )W z  among all equilibrium states, and hence is efficient; 

 

(ii) If the game has no pure Nash equilibrium, the stochastically stable states maximize 

( ) ( )W z S z   among all 0z C . 

 

8. Concluding remarks 

 

In this paper we have identified a completely uncoupled learning rule that selects an efficient 

pure equilibrium in any n-person game with generic payoffs that possesses at least one pure 

equilibrium. This provides a solution to an important problem in the application of game 

theory to distributed control, where the object is to design a system of autonomous interacting 

agents that optimize some criterion of system-wide performance using simple feedback rules 

and that require no information about the overall state of the system. The preceding analysis 

shows that this can be accomplished by a variant of log linear learning and two different 

search modes – deliberate experimentation and flailing around. Theorem 1 shows that by 

choosing the probabilities of experimentation and acceptance within an appropriate range, the 

process is in a welfare-maximizing equilibrium a high proportion of the time. This allows one 

to reduce the price of anarchy substantially, because one need only compare the maximum 

welfare state to the maximum welfare equilibrium state. As an extra dividend we obtain a 

simple criterion for the selection of disequilibrium states. This criterion weights total welfare 

positively and the incentive to deviate negatively. As we have shown by example this concept 

differs from risk dominance. 

 

It is, of course, legitimate to ask how long it takes for the learning rule to reach an efficient 

equilibrium from arbitrary initial conditions. Prior work would lead one to expect that it may 

take an exponentially long time to learn Nash equilibrium as a function of the number of 

players, though this has only been shown for procedures that actually converge to Nash 

equilibrium (Hart and Mansour, 2010). Faster learning may be possible if one only insists on 

coming close to equilibrium with high probability, but this is a complex issue that we shall 

not attempt to address here.  
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Finally, we should note that the kind of learning rules we have described are not meant to be 

empirically descriptive of how humans actually behave in large decentralized environments. 

Our aim has been to show that it is theoretically possible to achieve efficient equilibrium 

selection using simple, completely uncoupled rules. Nevertheless it is conceivable that certain 

qualitative features of these rules are reflected in actual behavior. At the micro level, for 

example, one could test whether agents engage in different types of search (fast and slow) 

depending on their recent payoff history. One could also estimate the probability that they 

accept the outcome of a search as a function of their realized payoffs. At the macro level, one 

could examine whether agents playing a congestion game converge to a local maximum of the 

potential function, to a Pareto optimal equilibrium, or fail to come close to equilibrium in any 

reasonable amount of time. Whether or not our learning model proves to have features that are 

descriptively accurate for human agents, the approach does suggest some testable questions 

that to the best of our knowledge have not been examined before. 
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