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Abstract

One of the oldest but least understood matching problems is Gale
and Shapley’s (1962) “roommates problem”: is there a stable way to
assign 2N students into N roommate pairs? Unlike the classic mar-
riage problem or college admissions problem, there need not exist a
stable solution to the roommates problem. However, the traditional
notion of stability ignores the key physical constraint that roommates
require a room, and it is therefore too restrictive. Recognition of
the scarcity of rooms motivates replacing stability with Pareto op-
timality as the relevant solution concept. This paper proves that a
Pareto optimal assignment always exists in the roommates problem,
and it provides an efficient algorithm for finding a Pareto improve-
ment starting from any status quo. In this way, the paper reframes a
classic matching problem, which previously had no general solution,
to become both solvable and economically more meaningful.
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1 Introduction

Economics is often defined as the study of how to efficiently allocate scarce
resources. As such, assignment problems are at the heart of economics. Two-
sided matching theory asks how to best match agents of two distinct types.
Examples include students and schools, residents and hospitals, or kidneys
and people in need of a transplant. A different but related question asks
how to best pair two agents of the same type. Examples of these one-sided
matches include roommates at a university, lab partners in a science class,
and partners in a police force. Two-sided matching theory has been well
studied by economists who have created an elegant and applicable theory.
One-sided matching theory has been comparatively neglected1.

This neglect is likely due to the very paper that introduced it. In their classic
1962 article College Admissions and the Stability of Marriage, Gale and
Shapley introduce both the marriage problem and the roommates problem.
While Gale and Shapley prove a stable match always exists in a two-sided
market, they introduce the roommates problem to demonstrate that a stable
pairing need not exist in a one-sided market. Since a stable match need not
exist, economists have been stymied in their attempts to find and analyze
solutions to this important assignment problem. Unfortunately, this has
led many economists to turn their attention elsewhere, and as a result, the
economics literature on this classic problem is sparse.

This paper starts by questioning if stability is the correct equilibrium concept.
Gale and Shapley define a set of marriages as unstable if either there exist a
man and woman who are not married but prefer each other to their current
spouse or there exists someone who would prefer to be single than married

1Roth and Sotomayor (1990) is an excellent introduction to the two-sided matching
literature. Gusfield and Irving (1989) is also a nice introduction. Interestingly, although
the economics literature on the roommates problem is very small, there is a comparatively
large computer science literature on it. Roth and Sotomayor, two economists, mention
the roommates problem only as an example. In contrast, Gusfield and Irving, two com-
puter scientists, devote nearly a quarter of the book to the roommates problem. Finding
a traditionally-stable roommate pairing (if one exists) is considered a “hard” algorithmic
question. The bulk of their presentation is a polynomial-time algorithm for finding a
traditionally-stable pairing when one exists. Tan (1991) establishes a necessary and suffi-
cient condition for the existence of a stable pairing. Chung (2000) extends Tan’s result to
a sufficient condition for the existence of a stable pairing when preferences are weak.
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to their current partner. Stability in the roommates problem is borrowed
from the marriage model. A pairing is unstable if two students prefer to
live with each other rather than their current assignment.2 Stability fits the
marriage model so well that no other solution concept has been needed or
suggested. The same is not true of the roommates problem. Roommates
face an additional constraint that married couples do not; roommates must
have a room in which to live. A student may prefer another to her assigned
roommate; however, she needs a room in which to live and presumably does
not have the right to evict her current roommate. Therefore, the traditional
notion of stability is too restrictive.

I will present Gale and Shapley’s original example to highlight this point.

Example (Gale and Shapley, 1962): A Stable Assignment Need Not
Exist

Suppose there are four students: α, β, γ and δ. α’s top choice is β, β’s
top choice is γ, γ’s top choice is α, and all three rank δ last. Gale and
Shapley define an assignment to be unstable if two students are not currently
roommates but prefer each other to their current assignment. Under this
definition, there does not exist a stable assignment since whoever is assigned
to δ prefers the other two students to δ and is the top choice of one of these
students. In the words of Gale and Shapley:

“...whoever has to room with δ will want to move out, and one
of the other two will be willing to take him in.”

While one of the other two may be willing to take him in, it is quite a
different matter whether this student is able to take him in. In order to take
him in, either his current roommate must voluntarily leave, be evicted, or
an additional room must be available. With a scarcity of rooms and with no
student willing to change his assignment to δ, the original assignment is an
equilibrium after all.

2I am interested in the case where each student is required to have a roommate. Con-
sequently, I do not include in my definition of stability the additional requirement that
each student prefers her assignment to being unassigned.
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If an agent can dissolve her partnership unilaterally, then stability is the natu-
ral equilibrium concept. If she finds someone she prefers who also prefers her,
then both parties will dissolve their current partnership and pair together.
As a result, the original assignment is not an equilibrium. However, if a part-
nership requires bilateral agreement to dissolve, then two agents wanting to
change their assignment is not enough to disturb the original pairing. If bilat-
eral agreement is required, an assignment will only be changed if all involved
parties agree. Since an agent will only agree if the new assignment makes
her better off, any deviation from the original set of assignments must be a
Pareto improvement. Therefore, when bilateral agreement is required to dis-
solve a partnership, Pareto optimality, not stability, is the proper equilibrium
concept. If an assignment is Pareto optimal, then there is no reassignment
that all parties will consent to; therefore, the original assignment will not be
disturbed.

Most of matching theory studies assignments that can be unilaterally dis-
solved. Assignments which can only be dissolved with bilateral agreement
are an important but little studied second category. As argued above for
the roommates problem, an essential but scarce input creates the need for
bilateral agreement. Additional examples include police officers who require
a police car to do patrol and partners in a science class who must work at
a common laboratory. The same requirement can be created by a legally
binding contract that can only be modified by mutual consent. For example,
many professional athletes have no-trade clauses in their contract which they
may waive at their discretion. In the presence of such clauses, the assign-
ment of an athlete to a team can only be disturbed when all relevant parties
approve the trade.

This paper focuses on the roommates problem as reconsidered using the
equilibrium concept of Pareto optimality. I will show there always exists an
efficient assignment. Therefore, unlike the case where stability is applied,
an equilibrium always exists in the roommates problem. Moreover, I show
an inefficient assignment can always be Pareto improved to an efficient one.
These results motivate several questions. If an assignment has not been
made, how should we make it? If an assignment has been made, how can
we determine if the assignment is efficient? If an assignment is inefficient,
how can we Pareto improve it? These questions are the focus of this paper.
In particular, the last two turn out to be complicated. To answer them I
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introduce an algorithm, The Roommate Swap, which identifies whether an
assignment is inefficient and finds a Pareto improvement when it is.

Much of the analysis in this paper relies on tools from graph theory. Networks
are a natural way of representing assignment problems, particularly one like
the roommates problem where two agents are paired. In particular, my
algorithm relies heavily on applying Edmund’s Blossom algorithm3 to the
graph theoretic representation of the roommates problem.

The paper is organized as follows. Section 2 formally introduces the prob-
lem and proves existence. Section 3 details the Roommate Swap algorithm.
Section 4 examines the strategic implications of several assignment mech-
anisms. Section 5 looks at extensions and modeling issues, and section 6
concludes. The appendix provides several technical proofs and a discussion
of the computational complexity of the Roommate Swap algorithm.

2 The Roommates Problem Revisited

We wish to assign 2N students to M rooms. Students have preferences over
all other students that are strict, complete, and transitive. All rooms are
identical and students have no preference as to which room they are assigned.

An assignment is a function that pairs students. Every student is assigned
to exactly one other student, and assignments are symmetric.

Definition 1. Let S be a set of students with |S| = 2N . A function µ : S → S
is an assignment of S if:

1. µ(s) 6= s.

2. µ(s1) = µ(s2)⇒ s1 = s2.

3. µ(µ(s)) = s.

The traditional equilibrium concept is based on the notion of a blocking pair.

3Edmunds (1965).
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Definition 2. Two students s and t are a blocking pair to an assignment
µ if µ(s) 6= t but s �t µ(t) and t �s µ(s). An assignment is stable if there
does not exist a blocking pair4.

As argued in the introduction, this is not the proper equilibrium concept for
the roommates problem. A roommate assignment is an equilibrium if it is
Pareto optimal.

Definition 3. An assignment µ is inefficient if there exists a different
assignment µ′ such that for every student s, µ′(s) �s µ(s). An assignment is
Pareto optimal (efficient) if it is not inefficient.

Since preferences are strict, if µ′ Pareto improves µ, then at least four stu-
dents must strictly prefer µ′ to µ. As the following result proves, the set of
stable assignments is a subset of the set of efficient assignments.

Proposition 1. If an assignment is stable, then it is Pareto efficient.

Proof. I will prove the contrapositive. If an assignment µ is inefficient, then
there exists an assignment µ′ that Pareto improves µ. Let s be any student
such that µ(s) 6= µ′(s). Since µ′ is a Pareto improvement of µ, both µ′(s) �s
µ(s) and s �µ′(s) µ(µ′(s)). Therefore, s and µ′(s) form a blocking pair to
µ.

Note that the reverse direction need not hold. An assignment can be Pareto
efficient but not be stable. In Gale and Shapley’s original example, no as-
signment is stable yet every assignment is Pareto efficient.

With the following assumptions, the general case of 2N students and M rooms
reduces to the more familiar case of 2N students and N rooms:

Assumption 1. Each student prefers having a room to not having a room.

Assumption 2. Each student would rather have a room to herself than to
be assigned a roommate.

4The traditional definition of stability also includes the constraint that the person
prefers her assignment to being unassigned. In my model every student must be assigned
to some room, so I omit this additional constraint.
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Assumption 3. At most two students can be assigned to a room.

Note that if N > M , some students will not be assigned a room. Such a
student cannot be involved in a Pareto improving switch by Assumption 1.
Similarly, if N < M , a number of students will not be assigned a roommate.
Assumption 2 implies such a student will never be involved in a Pareto im-
proving switch. Therefore, the only set of students relevant for this problem
are those who have been assigned a roommate. By Assumption 3, this set
has exactly twice as many students as rooms. Without loss of generality, for
the rest of the paper I will assume there are 2N students and N rooms.

Gale and Shapley show that an assignment without a blocking pair need not
exist. However, an efficient assignment always exists.

Proposition 2. An efficient roommate assignment always exists.

Proof. (Random serial dictatorship5) Assign every student a priority (ran-
domly or otherwise). Assign the student with highest priority her most pre-
ferred roommate and remove them both from consideration. From students
who remain, assign the student with highest priority her most preferred
roommate among those students that are unassigned. Remove these two
from consideration and repeat until no students remain. This assignment is
Pareto efficient. To see this, note that if a student is involved in a Pareto
improvement, then necessarily her roommate must be involved as well. The
student with highest priority, s1, receives her top choice, s2, so neither she
nor her choice can be involved in a Pareto improvement. Let s3 be the stu-
dent who chooses second. Since neither s1 or s2 are involved in any Pareto
improvements, if s3 is part of a Pareto improvement she must be reassigned
to a student among S \ {s1, s2}. However, s3 already receives her top choice
among this set. Therefore, s3 (and consequently the student she chooses)
is not part of any Pareto improvement. Similarly, the student who chooses
third is not part of any Pareto improvement, and so on.

5Abdulkadiroglu and Sonmez (1998) is a very nice paper on the Random Serial Dic-
tatorship mechanism. They analyze it in the context of a housing allocation problem
where n students are to be assigned to n rooms, but it is rather interesting how robust
the Random Serial Dictatorship is. The same mechanism can be used to make a Pareto
efficient assignment of a student and a room, two students to be roommates, three or more
students to be roommates, students to be roommates and the room they will live in, etc.
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The following is a stronger statement and implies Proposition 1. It is stated
to motivate the Roommate Swap algorithm.

Proposition 3. If an assignment µ is inefficient, there exists an efficient
assignment µ′ which Pareto improves µ.

The proof is straightforward but is included as it motivates the need for the
Roommate Swap Algorithm.

Proof. Let µ be an assignment and PI(µ) be the set of strict Pareto improve-
ments of µ. Transitivity of preference implies ∀µ′ ∈ PI(µ), P I(µ′) ⊆ PI(µ).
Since µ′ ∈ PI(µ) \ PI(µ′), P I(µ′) ⊂ PI(µ). Since there are only a finite
number of possible assignments, the following chain must converge to the
empty set:

PI(µ) ⊃ PI(µ1) ⊃ PI(µ2) ⊃ . . . , where µi ∈ PI(µi−1)

In particular, there must exist an j such that PI(µj) = ∅. µj is an efficient
assignment which Pareto improves µ.

Put simply, if µ is not efficient, there exists a Pareto improvement µ1. µ1

is either efficient or can be Pareto improved to µ2, etc. We must eventu-
ally reach an efficient assignment, and since preferences are transitive, this
assignment must Pareto improve µ.

Propositions 2 and 3 motivate two distinct but related problems. The first
problem is how to make an efficient assignment when no assignment has yet
been made. The second is how to Pareto improve an inefficient assignment
to an efficient one. Although these two problems are very similar, it is sur-
prising how different these processes end up being. The serial dictatorship
used in Proposition 2 to show existence provides a linear-time procedure for
finding an efficient assignment. In contrast to the ease of finding an efficient
assignment, it is rather difficult to even determine if any given assignment is
efficient let alone how to improve it. Preferences between students need not
interact when assigning students, but they interact directly when determining
if one assignment Pareto improves another. This makes it significantly more
complicated to determine if an assignment is efficient than it is to simply find
an efficient assignment.
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Students Number of Possible Assignments

2 1
4 3
6 15
8 105
10 945
12 10,395
14 135,135
16 2,027,025
18 34,459,425
20 654,729,075
30 6,190,283,353,629,370

2N (2N)!
2N (N !)

At this point the reader may object as there is an obvious and trivial al-
gorithm to determine if an assignment is efficient. Namely, one could sim-
ply look at each possible reassignment and determine if it Pareto improves
the original. If no assignment Pareto improves the original, then the orig-
inal is efficient. Unfortunately, this algorithm is of no practical use as
the growth of the number of assignments relative to students being as-
signed is factorial. Specifically, given 2N students there exists (2N)!

2N (N !)
=

(2N − 1)(2N − 3)(2N − 5) · · · (3)(1) many ways of assigning them to be
roommates.6 Even for small N, this is prohibitively large. For example, there
exists on order of 6 quadrillion (6 × 1015) many ways to assign 30 students
to be roommates. Therefore, a more sophisticated process is required.

3 The Roommate Swap Algorithm

This section demonstrates an O(n2) algorithm for determining if an assign-
ment is efficient. Moreover, when an assignment is inefficient I provide an
O(n3) algorithm, The Roommate Swap, for finding a Pareto improvement.7

6A short proof appears in the Appendix.
7A discussion on the computational complexity of the algorithm appears in the ap-

pendix.
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Much of the analysis uses tools from graph theory, so it is necessary to present
some definitions and results. This document is intended to be self-contained,
but I refer the reader to Introduction to Graph Theory, second edition, by
Douglas West for a more detailed analysis of graph theory.

A graph consists of vertices and edges between them. For my purposes, all
edges are undirected.

1. Two vertices are adjacent if there is an edge between them.

2. The degree of a vertex v, denoted d(v), is the number of vertices it is
adjacent to.

3. A path is a sequence of vertices {v1, v2, . . . , vk} such that no vertex
appears twice and any two consecutive vertices are adjacent.

4. A cycle is a sequence of vertices {v1, v2, . . . , vk} such that no vertex
appears twice, any two consecutive vertices are adjacent, and v1 and
vk are adjacent.

5. Two vertices are connected if there is a path between them. Since our
graphs are undirected, connected is a reciprocal relationship. A graph
is connected if all vertices are connected.

6. A vertex is incident to an edge if it is one of the edge’s endpoints.
G \ v is the graph that results from deleting the vertex v and all edges
incident to v.

7. A vertex v is a cut-vertex if G is connected, but G \ v is not.

8. A block is a maximal subgraph containing no cut vertex.

Note that the subgraph consisting of two vertices and an edge between them
contains no cut-vertex, so any edge is either a block or a subset of a block. I
will refer to any block containing only two vertices as a trivial block. Since
every vertex in our graph has at least one edge, this is the smallest block
possible. Figure 1 shows an example where the blocks have been circled.

Definition 4. Given an assignment µ, a set of students X is closed under
roommates if s ∈ X implies µ(s) ∈ X.
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Figure 1: An example of a graph with four blocks.

Given a set of preferences � and assignment µ, I will induce a graph, Gµ
�, as

follows:

• Each vertex corresponds to a student. Label the vertices s1 through
sn. When referring to the graph, I will use the term vertex and student
interchangeably.

• A solid edge is drawn between roommates. By definition, each vertex
is incident to exactly one solid edge.

• Draw a dashed edge between any two students that form a blocking
pair to µ. That is to say, if si prefers sj to her current roommate and
vice versa.

When the preferences and assignment are clear from the context, I will just
refer to the graph as G. I will call a path that alternates between dashed
and solid edges (or vice versa) an alternating path. Similarly, a cycle that
alternates between dashed and solid edges is an alternating cycle.

Lemma 1. An assignment µ is efficient under preferences � if and only if
Gµ
� contains no alternating cycle. Moreover, if µ′ Pareto improves µ and s is

a student such that µ(s) 6= µ′(s), then s is contained in an alternating cycle
in Gµ

�.

The intuition for sufficiency is captured in Figure 2. In an alternating cy-
cle, we can simply “swap” roommates. We eliminate the solid edges, make
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Figure 2: An alternating cycle with its corresponding Pareto improvement.

S1

S2

S3 S4

S5

S6

S7S8

S1

S2

S3 S4

S5

S6

S7S8

the dashed edges in the cycle solid, and leave everyone outside the cycle un-
changed. This is a well-defined reassignment that Pareto improves the initial
assignment.

Proof. Suppose Gµ
� contains an alternating cycle C. An alternating cycle is

closed under roommates as each vertex is incident to a solid edge in the
cycle. This implies V (G)\C is closed under roommates as well (V(G) means
the vertex set of G). We will construct a Pareto improvement µ′. For every
v ∈ V (G) \ C let µ′(v) = µ(v). This is well defined since V (G) \ C is closed
under roommates. For every v ∈ C, let µ′(v) be the vertex it shares a dashed
edge with in the cycle C. This is well defined as each vertex is incident to
exactly one dashed edge in the cycle and sharing a dashed edge is a reciprocal
relationship. A dashed edge indicates that both vertices prefer each other to
their original assignment. Therefore, µ′ Pareto improves µ.

Suppose that µ′ is a Pareto improvement of µ. Let G′ be the subgraph
consisting of all solid edges in Gµ

� and only the dashed edges between vertices
not paired by µ that are paired by µ′ (since µ′ is a Pareto improvement, there
must be a dashed edge between such vertices). Note that any vertex v in G′

either has degree8 1 (if µ(v) = µ′(v)) or degree 2 (if µ(v) 6= µ′(v)). Moreover,
for any vertex v, if d(v) = 2, then d(µ(v)) = d(µ′(v)) = 2. Choose any vertex
t such that d(t) = 2. t is connected via a solid edge to µ(t). Since d(t) = 2,
d(µ(t)) = 2 and so µ(t) must be connected via a dashed edge to µ′(µ(t)).

8The degree of a vertex v, denoted d(v), is the number of edges v is incident to.
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µ′(µ(t)) must be connected via a solid edge to µ(µ′(µ(t))) which must be
connected to a dashed edge via µ′(µ(µ′(µ(t)))), and so on. Eventually this
process must cycle as there is only a finite number of vertices. However, a
cycle to any vertex s 6= t would mean the degree of s is at least three which
is not possible. Therefore, the process must cycle back to our first vertex t.
Moreover, it must cycle via a dashed edge as we have already exhausted t’s
solid edge. By construction, this is an alternating cycle.

Lemma 2. Let t be any student.

1. t and µ(t) are contained in a unique block, Bt.

2. If t is part of an alternating-cycle C, then C ⊆ Bt.

3. If t is involved in a Pareto improvement, then Bt is non-trivial. That
is to say if there exists an assignment µ′ such that µ′ Pareto improves
µ and µ′(t) 6= µ(t), then |Bt| > 2.

Proof.

1. Since there is an edge between t and µ(t), they are in at least one block
together. Since the intersection of two blocks contains at most one
student,9 t and her roommate must be in exactly one block together.
Call this block Bt.

2. A cycle contains no cut-vertex, so it must be a subset of a block. An
alternating-cycle containing t must contain µ(t) since t lies on a solid
edge in the alternating-cycle. Since Bt is the unique block containing
t and µ(t), the cycle must be contained in Bt.

3. If t is involved in a Pareto improvement, then by Lemma 1 t is contained
in an alternating-cycle. By (2) this alternating-cycle is contained in Bt,
so Bt must contain more than just t and µ(t).

9See West pg. 156. The intuition is that if if two blocks B1 and B2 share two vertices,
then after cutting a vertex, at least one of the two must remain. Call this vertex v. v
is connected to all remaining vertices as it is in a block with each of them. But if every
vertex has a path to v, then all vertices are connected. Therefore B1∪B2 has no cut-vertex
contradicting the maximality of a block.
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Lemma 2, part (2) says that if a student t is part of a Pareto improvement
(and consequently an alternating-cycle), then she must be reassigned to a
member of Bt. Therefore, no edge between t and a vertex outside of Bt can
be part of an alternating-cycle. Let G′ be the graph obtained by deleting all
edges between t and any vertex not in Bt. Then G contains an alternating-
cycle if and only if G′ contains an alternating-cycle. This motivates the
following procedure.

Pruning a Graph

1. Start with a graph G.

2. Determine the set of blocks B1, B2, . . . , Bm.

3. For each student-roommate pair s and µ(s), locate the unique block
that both are in. Remove all edges from either s or µ(s) to any student
outside this block.

A key point is that if a student s was in a block B with µ(s) 6∈ B, then after
pruning the graph, s is no longer in B. By iterating the pruning process we
end up with a graph in which all blocks are closed under roommates. Note
that these blocks may be trivial, but by Lemma 2, the students in such a
block are not involved in any Pareto improvements.

Proposition 4. Any non-trivial block closed under roommates contains an
alternating cycle.

The algorithm in this proof was inspired by Edmunds’ Blossom Algorithm
from graph theory10 and Gale’s Top-Trading Cycles Algorithm.11

Proof. Look at any non-trivial block B closed under roommates. Every ver-
tex v in B must be incident to a dashed edge. Otherwise v is only connected

10Edmunds (1965). A discussion of the Blossom algorithm appears in West, page 142.
11Shapley and Scarf (1974).
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Figure 3: A “Blossom”.

si−2 si−1 si

si+1 si+2 si+3

si+6 si+5 si+4

(by a solid edge) to µ(v) which would mean removing µ(v) disconnects v
from the rest of the block. This is not possible since a block contains no
cut-vertices. Start with any vertex s. First take a dashed edge to a new
vertex s1 then continue on a solid edge to s2 = µ(s1). Continue alternating
between dashed and solid edges until we cycle. We must eventually cycle
since there is a finite number of vertices.

If our cycle is even (a cycle is even if it contains an even number of vertices),
then we are done. By construction, an even cycle alternates between dashed
and solid edges and is therefore an alternating cycle. Therefore, assume our
cycle is odd, {si, si+1, si+2, . . . , si+2m}. By construction, any odd cycle looks
like Figure 3, except possibly of different length. Edmunds refers to this as
a blossom. The vertices {s1, s2, . . . , si} are the stem, si is the base of the
blossom, and si must connect to si+1 and si+2m via dashed edges.

There must by a dashed edge from one of si+1, si+2, . . . , si+2m to a vertex
outside the cycle. Otherwise si would be a cut-vertex as deleting it would
disconnect si+1, si+2, . . . , si+2m from the rest of the graph. What we will
do is contract the odd cycle into a single super-vertex S1

i . The superscript
indicates the number of contractions we performed to result in Si. See Figure
4 for an example. Make any edge that was previously between a vertex in the
cycle and a vertex t outside the cycle now between S1

i and t. Note that there
is a solid edge between si−1 and S1

i and all other edges incident to S1
i must be

dashed as for any sj ∈ {si+1, si+2, . . . , si+2m}, µ(sj) ∈ {si+1, si+2, . . . , si+2m}.

Now continue with one of the unexplored dashed edges incident to S1
j . Again,

we must eventually cycle. If the cycle is even, stop. If the cycle is odd,
contract the blossom and continue. There must always be an unexplored
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dashed edge out of an odd cycle (or else the base vertex would be a cut
vertex), so after any odd cycle we will be able to continue. Since we have a
finite number of vertices and edges and each contraction reduces the number
of vertices, we cannot continue indefinitely. The algorithm only stops with
an even cycle, and since the algorithm must eventually terminate, we must
eventually reach an even cycle.

Any alternating cycle containing super-vertices can be expanded to an al-
ternating cycle containing no super-vertices. No matter how we enter the
blossom, either the edge to the left or to the right is solid. We can follow
the cycle in the direction of the solid edge all the way to base vertex. This
is an alternating path to the base, the cycle connects to the base with a
dashed edge, and then continues along the stem starting with a solid edge.
So indeed, this expands an alternating path through a super-vertex to an
alternating path through the cycle that was contracted. If our super-vertex
is the result of multiple contractions, then our base vertex is now a super-
vertex but otherwise nothing changes. Moreover, the base is a super-vertex
containing fewer contractions, so we can proceed by induction on the number
of contractions to get the desired result.

Proposition 4 implies a simple procedure for determining whether an assign-
ment is efficient.

Determining if an assignment µ is efficient given preferences �.

1. Induce graph Gµ
�.

Figure 4: A blossom before and after contraction.

si−1 si

si+1 si+2

si+4 si+3 si+5

si−1 S1
i

si+5
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Figure 5: A non-trivial block closed under roommates, but s1 and s2 are not
contained in any alternating-cycle.

s1 s3 s5

s2 s4 s6

2. Iteratively prune Gµ
� until all blocks are closed under roommates.

3. If all blocks are trivial, then our assignment is efficient. If there exists a
non-trivial block, then by Proposition 4 and Lemma 1, our assignment
is inefficient.

The algorithm in the proof finds an alternating cycle when one exists. Once
we have located an alternating cycle then just as we did in Figure 2 on page
11, we “swap” roommates to get a Pareto improvement, . For this reason I
call the algorithm the Roommate Swap. Note that we have now answered the
two key questions from the previous section. The Roommate Swap identifies
if a given assignment is efficient. Moreover, when an assignment is inefficient,
it finds a Pareto improvement.

The Roommate Swap determines if a given assignment is efficient. However,
a particular student likely does not care whether the assignment can be
Pareto improved. Rather, she would like to know if she can be part of a
Pareto improvement. Unfortunately, Proposition 4 does not generalize to
the statement if a student t is contained in a non-trivial block closed under
roommates, then t is involved in a Pareto improvement. Figure 5 is a non-
trivial block that is closed under roommates, but s1 and s2 are not part of
any Pareto improvements.

The Roommate Swap does not determine if a particular student can improve
her assignment. However, it is not biased. If we randomly choose the vertex
we start with, and when we have a choice, we randomly choose which edge
to continue on, then the Roommate Swap will find any Pareto improvement
with probability that is uniformly bounded away from zero. Therefore, if the
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Roommate Swap is run repeatedly, it will determine if an individual student
is involved in a Pareto improvement with probability one.

4 Strategic Implications

This paper has focused on two problems: finding an efficient assignment and
finding an efficient Pareto improvement of an inefficient assignment. Contin-
uing the pattern from previous sections, finding a strategy-proof mechanism
for making an assignment is easier than finding a strategy-proof mechanism
for improving an assignment. In fact, we will find that there does not exist
a mechanism for selecting a Pareto improvement of a given assignment that
makes truthful revelation of preferences a dominant strategy. These results
follow very closely the results for two-sided matching theory presented in
Roth and Sotomayor (1990).

Following the matching literature, I will use dominant strategy as my equi-
librium concept.

Definition 5. A dominant strategy is a strategy that is a best response
to all possible strategies of the other agents. An assignment mechanism is
strategy proof if it is a dominant strategy for each agent to reveal her
preferences truthfully.

There does exist a strategy-proof mechanism for making an efficient assign-
ment. In fact, we have already seen this mechanism several times.

Observation 1. The serial dictatorship is strategy proof.

In the serial dictatorship, a student’s preferences are irrelevant unless she is
the one choosing her roommate. Since she gets her top choice, she does best
when she submits her true preferences regardless of the preferences submitted
by other students.

Finding an incentive compatible, efficient assignment mechanism is very
closely related to Social Choice theory and Arrow’s Impossibility Theorem.
The Gibbard-Satterthwaite Theorem says that if arbitrary preferences are

17



possible, then the unique incentive-compatible, Pareto optimal mechanism is
the dictatorship mechanism. Unfortunately this cannot be directly applied
as we are restricting the domain of allowable preferences. A students is only
allowed to have preferences over her own assignment, and therefore, she is
forced to be indifferent between many assignments. For example, a student
does not have a single most-preferred assignment, but rather, she is indiffer-
ent among all assignments that match her to her most-preferred roommate. A
dictator mechanism would not be Pareto optimal as, among her top choices,
the dictator would select a Pareto optimal assignment only by chance. The
serial dictatorship is the generalization of the dictatorship mechanism that
has the properties of incentive compatibility and Pareto optimality. Due
to the corresponding uniqueness results for the dictatorship mechanism, it
seems likely that the serial dictatorship is the unique incentive-compatible
mechanism for selecting an efficient assignment.

Lemma 3. There does not exist a strategy-proof mechanism for selecting a
Pareto improvement of an inefficient assignment.

Lemma 3 is proved in the appendix. This is quite a general result, but it is
rather easy to proof. A strategy-proof mechanism must be able to handle
any initial assignment and any profile of preferences. Following the path of
Roth (1982), I demonstrate a case that no mechanism is able to handle.

5 Extensions and Modeling Issues

5.1 Extensions to the Model

Not surprisingly, the existence of an efficient solution is quite general. For
example, if students have preferences over both their roommate and the
room they are assigned, then Propositions 2 and 3 still hold. In fact, the
same proofs are still valid. Similarly, if more than two students are assigned
to be roommates, the same existence results hold.

This paper has focused on one-sided matches, but there are many interesting
examples of two-sided matches with a physical constraint. Whenever a two-
sided match requires bilateral approval to dissolve, then any Pareto optimal
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assignment will be an equilibrium. For example, an airline matches a pilot
with a navigator in order to fly an airplane. The presence of a physical
constraint, the airplane, means a blocking pair is not enough to disturb an
assignment.

The extra structure inherent in a two-sided match makes it easier to find a
Pareto improvement to a two-sided match than a one-sided match. Here we
can use a slight variation of the Top Trading Cycles algorithm12 to determine
if an assignment is Pareto optimal and to Pareto improve the assignment
when it is not. For a given pilot p, define a navigator n to be achievable
for p if n weakly prefers p to her current assignment. Have each pilot point
to her most-preferred, achievable navigator. Note that a pilot always has
a navigator to point to as her current assignment is achievable. Have each
navigator point to their current assignment. There must exist a cycle since
there are only a finite number of agents and each agent is pointing to someone.
If the cycle is trivial (the pilot is pointing to the navigator she is currently
assigned to), then neither the pilot nor the navigator can be involved in a
Pareto improvement and we can remove them from consideration. If the
cycle is non-trivial, then it represents a strict Pareto improvement for all
agents in the cycle. Future drafts of this paper will contain a more detailed
discussion of two-sided matches with a physical constraint.

When students have preferences over both their roommate and the room
they are assigned, there still exists an efficient assignment. However, the
Roommate Swap does not readily generalize to this case. The notion of a
“swap” completely characterizes a Pareto improvement when only one other
factor is involved in a pairing; however, with multiple dimensions a Pareto
improvement can be much more complicated.

However, there is one very specific but important case where the Roommate
Swap can be readily generalized. If students have lexicographical prefer-
ences over their roommate and room, then we will be able to find a Pareto
improvement for any inefficient assignment. If the students care about the
room first and the roommate second, then we can run the Top Trading Cy-
cles algorithm to find a Pareto improvement when one exists. If a student
cares about her roommate first and her room second, then we can first run
the Roommate Swap and next run the Top Trading Cycles algorithm. There

12See Shapley and Scarf, 1974.
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are a variety of ways we can aggregate individual preferences over rooms to a
single roommate-pairing preference over rooms that will result in an efficient
allocation. Thus, starting with an arbitrary assignment and lexicographical
preferences over roommates and rooms, we can determine if an assignment
is efficient, and if not, Pareto improve it to an efficient one.

5.2 Alternative Equilibrium Concepts

This paper has focused on pairing two agents as this is the classic framing
of the roommates problem. While I believe efficiency, not stability, is the
correct equilibrium concept for this classic problem, the more agents that
are assigned to be together, the less compelling efficiency becomes as an
equilibrium. If six people are assigned to an office, it is likely that a person
can switch desks with a student in another office without requiring unanimous
approval from her current officemates.

We can formulate an alternative equilibrium that has more appeal in this
case. Instead of assigning six people to be officemates, we make six keys
to each office and give each person a key to one office. Since the rooms
are homogeneous, this is just an indirect way of assigning officemates. If
we allow students to trade keys, then an assignment is an equilibrium if no
two students wish to trade offices. Note that we are honoring the physical
constraint; no student is being evicted. Moreover, this does not allow a
student to block another student from switching her assignment.

Similar to stability, there need not exist an equilibrium if students can trade
rooms. Suppose there are four students, a, b, c, and d, with preferences as
follows:

a : b is most preferred

b : c is most preferred

c : d is most preferred

d : a � c � b
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If a is assigned to b and c is assigned to d, then b and d will trade places. If a
is assigned to d and b is assigned to c, then a and c will trade places. Finally,
if a is assigned to c and b is assigned to d, then a and d will trade places.
Since these are the only possible assignments, there is no equilibrium.

In general, an argument can be made for either equilibrium. the new equi-
librium might be a reasonable model for condominiums or rooms in a group
house. If a person decides to sell her condominium, she does not need the
approval of the other condominium owners in the building. Note however
that there also exists building cooperatives. Here a sale does require the
approval of the board, so in this context, Pareto optimality is a more natural
equilibrium concept. Similarly, depending on the lease a person signs, sub-
letting a room in an apartment or group house may or may not require the
approval of the landlord or other tenants. Therefore, whether or not Pareto
optimality is the best equilibrium concept depends on the particular lease
signed.

6 Conclusion

The roommates problem is one of three assignment problems introduced by
Gale and Shapley in their classic 1962 paper College Admissions and the
Stability of Marriage. This is the paper that created the field of matching
theory, and the reason why the roommates problem was included is that it is
such a natural assignment problem. While their other two assignment prob-
lems, the marriage problem and the college admission problem, have been
studied extensively, little progress has been made on the roommates prob-
lem. This paper hopes to make several contributions to the matching theory
literature on the roommates problem. First, identifying Pareto optimality
instead of stability as the proper equilibrium makes the roommates problem
economically more meaningful. With this improved equilibrium concept, I
have shown that an equilibrium always exists. Most importantly, I demon-
strate how to improve an inefficient assignment to an efficient one if we are
not in equilibrium. For such a natural assignment problem as the roommates
problem, this is likely to have real world applications. Therefore, this pa-
per reframes a classic matching problem, which previously had no general
solution, in a way that is both solvable and economically more meaningful.

21



7 Appendix

Lemma 4. There are (2N)!
2N (N !)

= (2N − 1)(2N − 3)(2N − 5) · · · (3)(1) many
ways to assign 2N students to be roommates.

Proof. The proof is by induction. When N = 1, the result is trivial as there
is only one way to assign two students to be roommates. Assume N > 1 and
by induction there are (2N−3)(2N−5) · · · (3)(1) many ways to assign 2(N-1)
many students to be roommates. Select a student s. There are 2N-1 possible
roommates for s, and by assumption, for any roommate we pick, there are
(2N − 3)(2N − 5) · · · (3)(1) many ways to assign the remaining 2N-2 many
students. Therefore, there is a total of [2N−1]× [(2N−3)(2N−5) · · · (3)(1)]
many ways of assigning roommates.

Lemma 3 There does not exist a strategy-proof mechanism for selecting a
Pareto improvement of an inefficient assignment.

Proof. Suppose there are four students, a, b, c, and d, and an initial assign-
ment, µ1 pairing a with b and c with d. Moreover, suppose the student’s
preferences are as follows.

a : c � d � b
b : c � d � a
c : b � a � d
d : b � a � c

With four students, there are three possible assignment. Note that an assign-
ment is completely determined by who a (or any other student) is assigned
to. Let µ2 denote the assignment where a is paired with c and µ3 denote the
assignment where a is paired with d. In our original assignment µ1, each per-
son is paired with their least preferred roommate, so µ1 is Pareto dominated
by both of the other assignments. Suppose for contradiction that their exists
a strategy-proof mechanism M for selecting an efficient, Pareto improving
assignment. Note that if a submits the preferences c � b � d and all other
students submit true preferences, then µ2 is the only assignment that Pareto
improves µ1 (relative to the submitted preferences). In such a case, M must
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select µ2. Similarly, if b submits the preferences c � a � d and all other
students submit true preferences, then M must select µ3 as it is now the only
Pareto improving assignment. When all students submit true preferences, M
must select either µ2 or µ3. If M selects µ2, then b can do better by deviating
and submitting the preferences c � a � d. If M selects µ3, then a can do
better by submitting preferences c � b � d. Either way, M is not strategy
proof which is a contradiction.

7.1 Computational Complexity

The purpose of this section is to demonstrate that the Roommate Swap is a
polynomial time algorithm and therefore implementable. I demonstrate that
it is at worst an O(N3) algorithm where N is the number of students.

Each iteration of the algorithm involves the following steps, performed in
sequence:

1. Induce the graph. This is at worst O(N2) as a graph is defined by its

edges and there are at most N(N−1)
2

many edges.

2. Iteratively prune the graph until all blocks are closed under room-
mates. West (2001), pg. 157, details an O(N) algorithm for deter-
mining blocks. We need to iterate at most N times as each iteration
eliminates at least one student from each block or stops looking at a
block if it is already closed under roommates. Therefore iteratively
pruning the graph is at worst O(N2).

3. Find an alternating-cycle. This process is O(N). At each step we
either travel to a previously unvisited vertex, which we can do at most
N times, or contract a minimum of two vertices, which we can do at
most N

2
times. So the algorithm must conclude in at most N+ N

2
steps.

As it takes at most N steps to expand a cycle containing super-vertices
to a proper cycle, finding an alternating-cycle concludes in O(N) time.

Therefore each iteration is O(N2).
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Observation 2. In each iteration of the Roommate Swap, at least one stu-
dent is reassigned her top achievable student.

Proof. The search process ends with an alternating-cycle that may or may
not contain super-vertices. Dashed edges from standard vertices are chosen
to be the vertex’s most preferred student among those who prefer her to
their current assignment. Therefore, if the alternating cycle contains no
super-vertices, then half the students receive their top achievable match. A
grey edge from a super-vertex is not necessarily the student’s most preferred
achievable student. However, if the alternating-cycle contains a super-vertex
and we need to expand our contractions, then there must be a last odd-cycle
that needs to be expanded.

Figure 6: An odd cycle.

si−2 si−1 si

si+1 si+2 si+3

si+6 si+5 si+4

Figure 6 shows a last cycle with six vertices, but the analysis is the same
for fewer or greater vertices. Our alternating path must go through si and
either si+1 or si+6. None of these edges involve super-vertices (this is our
last expansion) so by construction, si+1 is si’s top achievable student and si
is si+6’s top achievable choice. Either way, at least one student receives her
top achievable choice.

The significance of this is that once a student has been assigned her top
achievable choice, neither she nor her roommate can ever be involved in
another Pareto improvement. Therefore we can eliminate them both from
consideration. Since we eliminate at least two students after every iteration,
there can be at most N

2
iterations.
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The algorithm performs O(N) many iterations of an O(N2) process. There-
fore it is, at worst, O(N3).
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