What Next? Or Things I wish I knew that Mathematical Economics can maybe provide answers to?

Introduction

- An applied problem Combinatoric Auctions
 - Allocate K heterogeneous items to N bidders
 - Utility depends on subsets: v(S, e) p(S)
 - What is the "best" auction design?
- Theory (of mechanism design)
 - Form a prior on e's,
 - Apply the revelation principle
 - Choose a direct mechanism to maximize expected revenue subject to IC and VP

Problems

- Problems:
 - What is the right equilibrium concept?
 - Computational constraints invalidate the revelation principle - what is the space of designs?
 - Multi-dimensional type space -an unsolved problem
- What next?
 - Go to lab and try things using what principles?
 - If items are substitutes, general equilibrium theory is a good predictor of outcomes in ascending bid auctions
 - If items are complements, there is little theory to help.

Thoughts

- Why do we know it is substitutes vs complements that is important?
 - Not through a collection of examples but ...
 - Convexity is the principle discovered with Mathematical Economics
- What happens if we use markets in non-convex situations?
 - Theory is silent. (Maybe next?)
 - Conjecture: dynamics matter

Dynamics

- Early General Equilibrium dynamics have been well studied, but ...
- What is the "right" model?
- Laboratory data are now available

– Replicable, known fundamentals,...

• Time to revisit competitive market dynamics

Equilibrium

- Environment
 - Endowment wⁱ, trade dⁱ, consumption $x^i = w^i + d^i$, $x^i \ge 0$
 - Utility: $u^i (x^i, \theta^i)$, q.c., $du^i/dx^i_n >> 0$, $\nabla^2 u^i$ cnts.
- Excess demands

 eⁱ (p, wⁱ, θⁱ) = argmax uⁱ (wⁱ+dⁱ, θⁱ) subject to pdⁱ=0
 E(p,w, θ) = Σeⁱ (p, wⁱ, θ)
- Equilibrium: (p*, d*) such that
 E(p*,w, θ) = 0
 d^{i*} = eⁱ (p*, wⁱ, θⁱ)

Finding Equilibrium -Theory of price formation

- Walras, Arrow, Hurwicz,...
- Tatonnement Dynamics are:

 $dp/dt = E(p,w,\theta)$

No trade unless $E(p^*) = 0$.

- Fact: $dp/dt \rightarrow p^*$ sometimes
 - Gross substitutes,
 - Scarf, Gale examples
- Observations:
 - Really only a theory about prices: d follows p

Finding Equilibrium -Theory of trading

- Marshall, Hahn, Negishi, Smale, Uzawa, ...
- Non-Tatonnement Dynamics are: $\frac{dd^{i}}{dt} = g^{i}(p, w^{i} + d^{i}, e^{i}(p, w^{i} + d^{i}, \theta^{i}))$ $\frac{dp}{dt} = E(p, w, \theta) \text{ when } x = x^{*}.$
- Under "no-speculation" hypothesis that $(\nabla u^i)(dd^i/dt) > 0$ when $\nabla u^i \neq p$
- $d \rightarrow$ Pareto-optimal allocation d^*
- Observation:

– Really only a theory about trading: p follows d

Finding Equilibrium -Experiments with "markets"

- Each "day" begins with allocation of endowments.
 - Traders submit bids (offers) = (P, Q) at each commodity "post"
 - Price feedback, new bids
 - The Continuous Double Auction
 - Trades occur along path (non-tatonnement)
 - The Call Market
 - Trades occurs only after price adjustment (tatonnement)
- The "day" ends and utility is paid.
- Usually repeated across "days"

Specific Situation

- Three markets (short sales allowed in the one risk free asset)
- Three equally likely states with payout

Security	State X	State Y	State Z
Α	170	370	150
В	160	190	250
NOTES	100	100	100

Specific Situation

- Endowment of risky assets and cash refreshed each period
 - E.g., 5 of A, 4 of B, and 400 cash
 - May vary across subject
 - Loan repayment of, say, 1900 at end of each period -(provides leverage!)
- Let them trade, then draw state, then pay \$, then restart
- Subjects did not know market portfolio. So can't use CAPM to predict prices.

Experiment "Factoids"

Plott et. al.

- Scarf environments, CDA
- For inter-day trading,
 - it appears that $\Delta p = aE(p,w,\theta)$ fits the data
 - where p = average price in a day.
- For intra-day trading,
 - neither $\Delta p = aE(p,w,\theta)$ nor $\Delta p = aE(p,w+d,\theta)$ seem to fit the data.

Experiment "Factoids" Bossaerts et. al.

- CAPM environment, CDA and CM
- $x = (r,s), u^{i}(x^{i}, \theta^{i}) = \mu r^{i} (a^{i}/2)r^{i}\Omega r^{i} s^{i},$
- For intra-day trading, with p = (q,1), $dq/dt = b\Omega E(q,w+d,\theta)$ fits the data and $dr^{i}/dt = k^{i} [\nabla u^{i} - \sum k^{j} \nabla u^{j}]$ fits the data
- where $\nabla u^i = \nabla u^i (w^i + d^i, \theta^i)$ and $\sum k^j = 1$.
- Can we explain these?

Search for principles: "Local" Equilibrium Theory

- Local demand, at x given p: Max duⁱ(xⁱ+dⁱ, θⁱ)/dt] = [duⁱ(xⁱ+dⁱ, θⁱ)/ddⁱ](ddⁱ/dt) Subject to p(ddⁱ/dt) = 0 and (ddⁱ/dt) ∈ F.
- Local equilibrium is p(x) such that $\sum dd^i/dt = 0$.
 - If F is open around 0, then $du^{i}/dt = \nabla u^{i}(x^{i}, \theta^{i})(dd^{i}/dt) > 0$ unless $\nabla u^{i} = kp$ and so $d(t) \rightarrow$ Pareto- optimal allocation.
- Example: Champsaur and Cornet (1990):
 - $F \text{ is } dd^i/dt \geq -\delta.$
 - Size of trade is independent of $\nabla u^i(x^i, \theta^i)$

Another Example Ledyard (1975)

- Assume there is a numeraire: d_n
- Let $\nabla u^i(x^i, \theta^i)/(du^i/dx^i_n) = (p^i, 1)$
- Let d = (r, s), p = (q, 1)
- And let F be $\|dr/dt\| \le 1$.
 - No constraint on dsⁱ/dt so no "income effects"
- Then $dr^i/dt = c^i(p^i q)$ and $ds^i/dt = -q(dr^i/dt)$.
- Note: $du/dt = c^i(p^i q)(p^i q) > 0$ if $p^i \neq q$.

Alternative Explanation

- i sends bids (asks) per local willingness to pay.
- Each i communicates m_j^i to the market post j. $m^i = c^i p^i + (1 - c^i) q$ where $0 \le c^i \le 1$
 - "demand reduction" or "risk aversion,"

 $dr^i/dt = m^i - q = c^i(p^i - q), \quad ds^i/dt = - qdr/^idt$

- Trade is responsive to larger bids and lower asks
- Equilibrium analysis If $q = (1/I)\sum m^i$, then $\sum dr^i/dt = 0$. So q is a local equilibrium price. And $q = \sum v^i p^i$, where $v^i = c^i / \sum c^j$.

Price Dynamics: For the CAPM world

- In the CAPM world, the local equilibrium is $q = \mu - \sum v^i a^i \Omega r^i$
 - If $c^i = (1/a^i)$, then $q = \mu$ $(1/b)\Omega w$, the global equilibrium price.
- Dynamics: $dq/dt = (1/I) \sum dm^{i}/dt$

 $dq/dt = -\Omega^2 \sum h^i e^i(q, x^i, \theta^I)$

- <u>Strange</u>: "Excess demand" => price decrease,
- But $x \rightarrow$ Pareto- optimal allocation.
- <u>Explanation</u>: transactions change gradients proportionally to Ω , the Hessian of u, which pulls prices
- This is not consistent with observations.

A Delayed Local Process Friedman (1979), Bossaerts (2003)

- Prices respond to local excess demands $dq/dt = \rho \Sigma m^{i}$
- In the CAPM world, this means $dq/dt = \rho \Omega \sum (c^{i}a^{i})e^{i}(q, x^{i}, \theta^{i})$
- We also want $dr^{i}/dt = k^{i}(p^{i}-q)$ so $du^{i}/dt > 0$.
- But then $\sum dr^{i}/dt \neq 0$

unless q is a local equilibrium

Trading Dynamics in CAPM

- Suppose, as suggested by the data, that drⁱ/dt = cⁱ[pⁱ - ∑(c^k/∑c^j)p^k] = cⁱ[pⁱ - p']
 Note: p' = q*, the local equilibrium price.
- Now $\sum dr^i/dt = 0$ but $du^i/dt = (p^i - q)c^i[p^i - p^*]$ may not be > 0 when $(p^i - q) \neq 0$.
- But if ||q p'|| is small, then $du^i/dt > 0$.

We Need Different Time Scales

- Remember $dq/dt = \rho \sum m^i = -\rho(\sum c^i)(q q^*)$
- So $q(t) = q^* + (q(0) q^*) \exp[-\rho(\sum c^i)t]$ and $||q=p'|| = ||q(0) - p'|| \exp[-\rho(\sum c^i)t]$
- If prices adjust first and "fast enough" relative to trading then this all hangs together.
- Open: The speed of price adjustment is increasing in N (for a fixed ρ). What are the implications for "thin" markets?

Summary of Model

- Local Demand or willingness to pay (linear) is $r^{i} = c^{i} (p^{i} - q)$
- Prices adjust per Walras locally $dq/dt = \rho \sum m^{i}$
- Trading adjusts per Marshall locally $dr^{i}/dt = c^{i}(p^{i} - p^{i}), \text{ where } p^{i} = (1/\sum c^{i})\sum c^{i}p^{i}$
- Prices adjust fast relative to trading adjustments.
- Result: In the CAPM world,

 $x(t) \rightarrow$ Pareto- optimal allocation.

Summary

- Without income effects, there is a consistent model that "fits the facts"
 - Local Walrasian price adjustment
 - Local Marshallian quantity adjustment
 - Requires different time scales
 - Prices move faster
- To do
 - income effects