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Evolutionary models of color categorization based on discrimination
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Abstract

Specifying the factors that contribute to the universality of color categorization across individuals and cultures is a longstanding and
still controversial issue in psychology, linguistics, and anthropology. This article approaches this issue through the simulated evolution of
color lexicons. It is shown that the combination of a minimal perceptual psychology of discrimination, simple pragmatic constraints
involving communication, and simple learning rules is enough to evolve color-naming systems. Implications of this result for
psychological theories of color categorization and the evolution of color-naming systems in human societies are discussed.
r 2007 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Psychological models of color categorization

An ongoing debate in the psychological study of human
color categorization and naming is whether universal
tendencies exist in the ways different linguistic societies
categorize and name perceptual color experiences. The
most popular view in the empirical literature on color
categorization and naming is that the commonalities of
color categorization across individuals and cultures are
largely explained by two factors: (i) physiological features
of human perceptual color processing, and (ii) universal
features of individual psychological processing believed to
underlie color experience. The established position in the
area is a strong form of this universalist view that asserts
that the pan-human uniformity in human visual processing
gives rise to a regular, if not uniform, pan-human
phenomenological color experience, and that this regularity
is the basis for the empirically observed regularity in color
categorization across cultures (see Kay, 2005; Kay &
Regier, 2003; Regier, Kay, & Cook, 2005; and the
references therein).

A very different alternative view is a relativist one
asserting that very little in the way of ‘‘universal
tendencies’’ exist, and that most of the ‘‘universalist’’
findings in the literature are more attributable to con-
straints imposed by the empirical assessment of the
phenomena than they are to actual features of color
categorization phenomena (Saunders & van Brakel, 1997).
In addition to these ‘‘established’’ and ‘‘alternative’’

views, a range of perspectives exist that blend the
universalist and relativist approaches to varying degrees,
with the aim of providing a comprehensive understanding
to the ways different linguistic groups categorize and name
their color experience. (For a representative survey of the
range of existing perspectives see the edited volumes of
Cross-Cultural Research, 2005a, 2005b; Hardin, 1988;
Hardin & Maffi, 1997; Journal of Cognition & Culture,
2005.)
Although a considerable amount of detailed empirical

and theoretical research has examined a range of factors
influencing the phenomena of color naming, formal models
have not emphasized the pragmatic and communication
conditions that may be needed for the development and
maintenance of a color categorization system shared among
humans. In this article, we consider both intra-individual
discrimination and inter-individual communication to be
essential for establishing, sharing, and maintaining of a
color communication code. We show through mathematical

ARTICLE IN PRESS

www.elsevier.com/locate/jmp

0022-2496/$ - see front matter r 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmp.2007.06.001

!Corresponding authors.
E-mail addresses: komarova@math.uci.edu (N.L. Komarova),

kjameson@uci.edu (K.A. Jameson).

http://www.elsevier.com/locate/jmp
http://dx.doi.org/10.1016/j.jmp.2007.06.001
mailto:komarova@math.uci.edu
mailto:kjameson@uci.edu


analyses and simulations that the simplest forms of
discrimination and communications are sufficient for the
evolution of color-naming systems using simple learning
algorithms. Although here we focus on the learning and
evolution of color categories among artificial agents—and
do not investigate human categorization phenomena—the
implications of our results on human cross-cultural color-
naming research are discussed.

1.2. The signaling environment

Color naming is an example of a signaling system, with a
color name signaling a color appearance. The assignment
of meaning to signals in simple signaling situations has
been studied using evolutionary game theory and evolu-
tionary algorithms. It is an important issue in biology (e.g.,
Fitch, 2000; Hauser, 1996; Smith & Harper, 2003), artificial
intelligence (e.g., Niyogi & Berwick, 1996; Steels & Vogt,
1997), and social evolutionary theory (e.g., Skyrms, 1996).
With a few exceptions, the evolutionary algorithms have
been applied to situations in which a similarity structure on
the meanings of the signals was neither needed nor used.
However, for some signaling systems to be effective, a
similarity structure on the things to be named is required.
Color naming requires such a similarity structure.

Perceptually, colors vary continuously, and the percep-
tual space of colors is representable as a topology. Human
color naming reflects the perceptual topology in various
ways. For example, in human color naming, each name
describes a portion of color space where each color in the
portion can be connected to each other color in the portion
via a continuous curve that is completely contained in the
portion. As a consequence, in almost all empirical cases,
the meaning of a color name will never be a set of colors
which can be partitioned into disconnected parts. Colors
that are perceptually very similar—that is, colors that are
very ‘‘close’’ to one another in the topology—will almost
always be described by the same name, while different
names will generally denote dissimilar colors. Also, the
cognitive organization of the color names will inherit a
similar topological organization from the perceptual
topology of colors; that is, a cognitive organization of
names will emerge that will have a global structure similar
to the global structure of the color topology. One goal of
this article is to understand from an evolutionary
perspective the emergence and stability of such character-
istics of color-naming systems. This is done here by
investigating two of the simplest yet interesting topologies
of colors from the mathematical and naming points of
views: colors organized on a line and colors organized
on a circle.

From the point of view of human and primate color
theory, colors organized on a line and those organized on a
circle are natural subspaces to consider for several reasons:
First, as a rule, the standard scientific paradigm is to
initially model the simplest case from the domain
investigated. The color circle continuum together with the

continuous line segments of lightness (or brightness) and
saturation represent three dimensions widely considered
essential for the understanding of perceptual color
experience. One widely used representation of human color
experience is the Munsell color order system (e.g., Newhall,
Nickerson, & Judd, 1943). Fig. 1 depicts the Munsell color
solid arrangement from this system. The system aims to
model perceptually uniform color differences along the
three dimensions illustrated.
In this article, we examine the evolution of color naming

for a circular dimension and separately for a linear
dimension. The circular dimension is like the hue dimen-
sion shown in Fig. 1, and the linear dimension is like the
chroma and value dimensions shown in that figure. We
base our algorithms on just-noticeable-differences (or jnds
for short) in color. We identify perceptual colors with
physical stimuli, which we call ‘‘chips,’’ and we consider
them to produce perceptual properties that are structurally
similar to those produced by the chips making up the
Munsell solid. We consider the separate modeling of these
dimensions to be a natural, first step towards modeling
the full color solid. As discussed later, extensions of the
present modeling methods to the full solid appear to be
straightforward.
By basing our investigations on discrimination along

linear and circular arrangements of chips, we allow for
comparisons with many empirically based human and non-
human primate color categorization articles which often
use stimuli selected from a portion of the Munsell color
solid (e.g., the World Color Survey database; see Matsuno,
Kawai, & Matsuzawa, 2006; Matsuzawa, 1985; Regier
et al., 2005), and with the closed hue circle continuum
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Fig. 1. Munsell book of color system. Dimensions of the Munsell three-
dimensional solid consist of color samples (or chips) arranged by
approximately uniform color differences along each of the three
dimensions, (i) a circular dimension of hue for representing non-
achromatic colors, (ii) a linear dimension of value (lightness, or bright-
ness), and (iii) a linear dimension of chroma (saturation). Image credit
Bruce MacEvoy r 2006. Retrieved 03/15/06 from www.handprint.com.
Reproduced with permission.
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found in the Farnsworth-Munsell 100-Hue test, which is
derived from Munsell book of color stimuli.

Modeling jnds for both circular and linear arrangements
of color chips taps into the continuous nature of the
perceptual constructs of hue, saturation, and brightness.
Jnd variation across different observers naturally exists.
For example, ‘‘normal’’ hue discrimination permits per-
ceptual differentiations around the entire hue circle
continuum, whereas the hue discrimination of observers
with extreme color deficiencies reflects constrained jnd
differences on the hue circle in which some discriminations
collapse across the hue circle. The latter renders the circle
into an elliptical contour that is more closely approximated
by a line than a circle, and in the present simulations this
line model is used to initially approximate color deficient
observers. Modeling both circular and linear continua thus
permits the additional opportunity to investigate the
consequences of interactions among agents from a hetero-
geneous population composed of ‘‘normal’’ and deficient
observers. As suggested by Jameson (2005a, 2005b), the
possibility exists that in heterogeneous populations, cate-
gory distinctions may be influenced by a need to
disambiguate the communication of categories among
varying observer types.

Our general approach to learning in the evolutionary
modeling of color naming is to start with very simple
evolutionary algorithms that are incapable of achieving
good categorization, and gently increase the complexity of
the algorithm until categorization is achieved. Although
many alternatives exist for evolving color lexicons, the
simple features and the forms of evolutionary algorithms
used here are presumably much less complicated than those
found in the evolution of human color categories.

In the following sections, systems of color categorization
are evolved in color signaling games. Two classes of
learning algorithms are employed: individual and popula-
tion. Individual learning is evaluated and updated by
comparing the individual’s categorization of currently
presented stimuli with his previous categorization. In
population learning, his categorization of current stimuli
is also compared with that of another member of the
society as part of the updating. Thus population learning
may be looked at as an extension of individual learning
that includes features of the categorization behavior of
other individuals of the population. In some cases,
population learning uses an index (called ‘‘fitness’’) which
relates how good at categorizing agents are based on their
performance in previous rounds of the game.

Realistically, when a child learns a society’s naming
system for colors, she is learning an already established
system. Here agents evolve a naming system rather than
learn an existing system. When a society evolves a naming
system, there is not an established system to begin with, but
rather a series of different naming systems that reaches an
endstate (i.e., an equilibrium), where there is no or only very
minor deviations over time. Our article studies the possible
endstates of such changing or evolving systems. Because

both ‘‘learning’’ and ‘‘evolving’’ have been used in the
literature to describe the time course of strategies used by
interacting individuals in achieving their goals, a clear
distinction between the two terms cannot be made while
accounting for the literature.1

Our algorithms provide criteria to evaluate whether
some color signaling behaviors might be more successful as
categorization behaviors than others. This provides for a
selection pressure which in turn influences evolving
signaling strategies, and an agent produces a sequence of
signaling systems involving color categories and names.
One way such sequences are produced is through forms of
reinforcement learning. These forms of reinforcement have
the following property:

Each element of the sequence, except for the first, tends
to be more successful in naming than it predecessor,
except after some point in the sequence, where it tends
to be just as successful in naming as its predecessor.

Simulations provided in Sections 3 and 4 show that for
reinforcement learning, the resulting sequence of color
signaling systems reaches a limit that, for all practical
purposes, can be considered a stable categorization system
for the naming of colors.
Human languages categorize colors in a variety of ways.

This has produced a diversity of explanations from
historians, linguists, anthropologists, psychologists, and
physiologists regarding the observed regularities found in
the naming of colors from ancient languages and different
ethnolingustic populations. The dominant view in the
literature for explaining these regularities uses the six
Hering primaries—white, black, red, yellow, green, and
blue—as the foundation for explaining the commonalities
found in color naming (see discussion in Jameson, 2005c).
Many researchers have gone further and tried to explain
the observed commonalities in terms of the physiological
opponent processing of color in the peripheral visual
system. Such a view suggests that the visual processing
system assigns privileged status to the Hering primaries.
This physiological explanation has been widely employed
to provide a theoretical basis for pan–human naming
regularities based on presumed physiological color proces-
sing universals. While still prevalent in the literature, this
physiological approach to color naming has been aban-
doned by most of the major researchers in the area. For
example, Boynton (1997) wrote,

y I would argue that all eleven basic colors are
perceptual fundamentals, and that the concept of
fundamental neural responses, as defined by Kay,
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1There is also sometimes a difference in the kind of algorithms used in
learning and evolutionary studies. But this is not an important factor here,
because (i) this article’s positive results are based on dynamics produced
by reinforcement algorithms, which are used both in learning and
evolutionary studies, and (ii) mathematical results about Darwinian-like
algorithms and reinforcement learning algorithms show that they are
closely connected (e.g., Beggs, 2005; Börgers & Sarin, 1997).
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Berlin, and Merrifield (1991), should be expanded to
include all eleven. Their appeal to the early research of
DeValois and his colleagues [the suggested hardwired
neural basis of ‘red,’ ‘green,’ ‘yellow,’ and ‘blue’
experiences] is misguided, if only because sensations
surely do not arise from the lateral geniculate nucleus,
which is the site of their recordings. (p. 148)

Of course, the six Hering primaries may continue to be
considered as a universal basis for color naming for reasons
other than physiological opponent color processing, as for
example in the empirically based approach of Regier et al.
(2005). They write,

It is widely held that named color categories in the
world’s languages are organized around universal focal
colors and that these focal colors tend to be chosen as the
best examples of color terms across languages. However,
this notion has been supported primarily by data
from languages of industrialized societies. In contrast,
recent research on a language from a nonindustrialized
society has called this idea into question. We examine
color-naming data from languages of 110 nonindustria-
lized societies and show that (i) best-example choices for
color terms in these languages cluster near the prototypes
for English white, black, red, green, yellow, and blue, and
(ii) best-examples choices cluster more tightly across
languages than do the centers of category extensions,
suggesting that universal best examples (foci) may be
the source of universal tendencies in color naming.
(p. 8386)

However, more recently Regier, Kay, and Khetarpal
(2007) have adopted a different approach:

The nature of color categories in the world’s languages
is contested. One major view holds that color categories
are organized around universal focal colors, while an
opposing view holds instead that categories are defined
at their boundaries by linguistic convention. Both of
these standardly opposed views are challenged by
existing data. Here, we argue for a third view, originally
proposed by Jameson and D’Andrade: that color
naming across languages reflects optimal or near-
optimal divisions of an irregularly shaped perceptual
color space. We formalize this proposal, test it against
color naming data from a broad range of languages, and
show that it accounts for universal tendencies in color
naming, while also accommodating some observed
cross-language variation. (p. 1436)

Similar to Regier et al. (2007), the present evolutionary
approach to color naming is also based on Jameson and
D’Andrade (1997) and that view as extended by Jameson
(2005d). Jameson and D’Andrade (1997) and Jameson
(2005d) suggest that similar cross-cultural color naming
arises from widespread human tendencies to evolve color
categorization systems which aim for optimal partitions on
color differences that are non-uniformly distributed within

an irregularly shaped perceptual color space.2 Their theory
also emphasizes that the evolution of human categorization
systems is additionally constrained by information proces-
sing demands in the course of effectively capturing such
perceptual non-uniformities and irregularities. This em-
phasis differs from the strict perceptual salience emphasis
often seen in the literature (e.g., Hardin, 2005; Kay, 2005;
Kuehni, 2005). In addition to perceptual considerations,
Jameson (2005d) proposes further constraints on human
color categorization arising from cognitive emphases such
as polar opposition, symmetry preference, and connected-
set features in developing category systems (also see
Garner, 1974); as well as constraints from socially
dependent pragmatic communication features. Jameson
and D’Andrade’s interpoint distance model (IDM) thus
proposes that perceptual, cognitive and socio-cultural
features all figure prominently in human color category
system evolution (Jameson, 2005d).
At this initial juncture, the methods formulated here do

not permit examination of many of the human color-
naming principles described in Jameson (2005d), because,
for example, as a prudent first step it was necessary to
constrain our investigations to societies of homogeneous
agents and—except for one case—homogeneous features of
color space. Nevertheless, the portion of our approach
described in Section 5 validates features of the Jameson
(2005d) theory which state that in a regularized space of
uniform color differences, effective communication of
color categories should produce color categories that are
connected regions of approximately equal size. Extensions
of these results to non-homogeneous color spaces and non-
homogeneous populations of agents are discussed in
Section 5.

2. Mathematical framework for modeling categorization

2.1. Color stimulus domain and the definition of
categorization

We now describe investigations of categorization on two
sets of color stimuli, one organized along a line, and the
other along the continuum of a circle. These sets consist of
discrete arrays of color chips arranged according to
perceptually jnds; that is, arranged so that adjacent chips
are at thresholds of perceptual discriminability.
Suppose an array contains n color chips, 1; . . . ; i; . . . ; n,

such that i and i þ 1 are adjacent, no other adjacencies
occur if the chips are on a line, and n is adjacent to 1 if the
chips are on a circle. For such arrays we give the following
mathematical definition of color categorization:
As the first step, let us consider any two possible

categories, say, ‘‘light’’ and ‘‘dark.’’ A categorization is a
mapping from f1; . . . ; ng to the interval ½0; 1#, which can be
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2An approach to optimal color categorization that uses very different
assumptions and algorithms, and reaches different conclusions from this
article, is presented by Griffin (2006).
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presented as an n-tuple of numbers, F ¼ ðf 1; . . . ; f nÞ with
real numbers f i 2 ½0; 1#. If a color i is presented to a viewer,
the viewer with categorization F will assign the label
‘‘light’’ to color i with probability f i, and the label ‘‘dark’’
with probability 1' f i. F is said to be probabilistic if and
only if at least one of the entries f i is not equal to 0 or 1,
and deterministic if and only if f i 2 f0; 1g for all i, 1pipn.

Note, first, we do not specify how ‘‘light’’ and ‘‘dark’’
categories initially arise—they could arise for any number
of exogenous or endogenous reasons. Second, any other
initial categorical distinction (e.g., yellow and blue, warm
and cool) will serve equally well for describing this kind of
category learning. Our algorithms will assume for this case
that a demand exists at the level of the individual agent to
differentiate ‘‘light’’ from ‘‘dark,’’ which initiates category
learning at the individual level. Such an assumption
appears realistic—the need to specify a category system
on a domain follows from demands for domain differ-
entiation. And it is realistic in practice: for example, human
categorization systems that exhibit only 2 color categories
are known to exist. In addition, the existence of a universal
human tendency to cognitively organize stimulus domains
using polar opposition, or symmetry, could also initiate
this form of binary categorization (Garner, 1974; Jameson,
2005d, 2005e; Smith & Sera, 1992). Alternatively, prag-
matic needs—such as the need to specify the color of a
valued food source as differing from other resources—may
also serve as pressure to initiate categorization. At this
point we only need to accept that some unspecified pressure
to make a categorical distinction presents itself to the
individual agent.

Next, we extend this notion to multiple color categories.
Suppose we have m categories. We denote the m categories
by 1; . . . ;m. (When it is not clear by context when a
number i denotes a color chip or a category, it will be made
explicit by saying, for example, ‘‘the color i,’’ or ‘‘the
category i.’’) A categorization is a vector function from
f1; . . . ; ng to ½0; 1#m. We can represent it as an n-tuple of
vectors, f1; . . . ; fn, where f i are m-dimensional vectors
whose non-negative entries sum up to 1 (i.e., they belong
to an m-simplex). The notation ½f i#k is to be interpreted in
the following manner:

½f i#k ¼ Probðthe agent assigns the category

k to the color chip iÞ. ð1Þ

A deterministic categorization is an n-tuple of integers,
ðF1; . . . ;FnÞ, where Fi is in f1; . . . ;mg; that is, a determi-
nistic categorization assigns to each color chip exactly one
of the categories, 1; . . . ;m.

2.2. The range of similarity

Our categorizing algorithms are based on the following
idea: Colors that are highly similar perceptually to one
another are highly likely to belong to the same category.
More specifically it is based on the following three

principles: (i) categorization is important; (ii) to be useful,
categorization should attempt to minimize ambiguity, and
(iii) when color is a salient or meaningful cue for
categorization, two randomly chosen objects that have
similar color appearances are more likely to be categorized
together than are two objects that have dissimilar colors.
These three principles are summarized in the concept of a
similarity range, denoted ksim.
By definition, ksim is the minimum difference between the

color chips for which it becomes important to treat them for
pragmatic purposes (and not for perceptual purposes) as
different color categories. The parameter ksim is defined to
be a fixed integer, 0pksimpn' 1, where n is the number of
color chips. Pragmatically speaking (see principle (i) above),
it pays off to assign colors outside the ksim-range to different
color categories (principle (ii)), and colors within the ksim-
range to the same color category (principle (iii)).
ksim is interpreted as being related to the utility of color

categorization and is defined by the environment and the
lifestyle of the individual agents. It is used to reflect the
notion of the pragmatic color similarity of the chips. For
instance, suppose one individual shows another a fruit and
asks him/her to bring another fruit ‘‘of the same color.’’ It
is a nearly impossible task to bring a fruit of a color
perceptually identical to the first, because different lighting,
different color background and slight differences in fruit’s
ripeness contribute to its perceived color. Therefore, to
satisfy ‘‘of the same color’’ of a fruit’s ripeness in practical
terms, the individual must be able to ignore such
unimportant perceptual differences and bring a fruit that
is ‘‘of the same color’’ practically.3 It may also be just as
important to be able to distinguish ripe, edible, ‘‘red’’ fruit
from the unripe, ‘‘green’’ ones. The parameter ksim is
intended to set a scale at which color differences become
important in the everyday world. It tells us that most of the
time, certain objects with colors within the ksim range will
have similar pragmatic properties which they will not have
with larger color differences.
It is important to emphasize that the range ksim is not

another perceptual version of ‘‘just noticeable difference.’’
Colors that differ by a perceptual jnd are well within the
similarity range, as are adjacent chips in the Munsell color
system described earlier. In general, some colors within the
ksim range are easily distinguished perceptually by any
agents. The notion of ksim intends to capture the
importance of categorizing two chips as being ‘‘different’’
rather than ‘‘the same.’’
We will shortly present a simple model which expresses

the evolutionary importance of color categorization with
ksim being a constant number. The next level of complexity
considered in this article introduces a non-homogeneous
kðiÞsim, that is, it includes the ability to make different fine-
color distinctions in naming in different portions of the
color stimulus domain. Both these are special cases of a
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again in Section 5.1.2.
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general notion of similarity probability, in which there is an
expected likelihood, Pij ¼ Pji, that objects of colors j and i
have similar properties, pragmatically speaking. In other
words, instead of a scalar quantity ksim, in a more general
case we could talk about a similarity matrix. The special
case of the homogeneous ksim then follows if we set Pij ¼ 1
for ji ' jjpksim and Pij ¼ 0 otherwise.

Note that mathematically speaking, it is possible to
perform a limiting transition to a continuous description of
the stimulus domain. To do this, we need to relax the
assumption that the distance between two neighboring
chips is a jnd, and instead to tend this distance to zero. As a
result, the number of color chips will tend to infinity,
n ! 1. The similarity range, ksim, will change proportion-
ally. The number n (the perceptual resolution of the color
chips) can be arbitrarily high, and no results presented in
this article depend on the actual number n. What is
important is the relative (to n) size of the similarity range,
which is basically how many intervals of length ksim span
the investigated color stimulus domain.

We now consider the evolution of categories for an
individual agent based only on his personal color
experience.

2.3. Two types of discrimination games and their success
rates

The discrimination game is defined as follows: Two color
chips i and j are chosen from a distribution and presented
to a simulated agent, or viewer. The viewer classifies them
according to F, that is, he assigns labels vi and vj,
respectively, to i and j, where vi and vj are in f1; . . . ;mg.
The discrimination game is said to be solved successfully if
and only if for ji ' jj4ksim, the viewer chooses viavj. In
other words, if the color chips i and j are sufficiently
different (i.e., ji ' jj4ksim), then the viewer assigns them to
different categories. The discrimination game is said to fail
if and only if for ji ' jj4ksim, the viewer chooses vi ¼ vj ;
that is, if the color chips are sufficiently different, then the
viewer assigns them to the same category. If the chips i and
j are within their similarity range (i.e., ji ' jjpksim), they
are discarded and the game is not played.

The discrimination–similarity game includes the data
about chips that are within of ksim of each other. We say
that two chips i and j are k-similar if the inequality ji '
jjpk holds. The discrimination–similarity game is defined
as follows: If the two selected chips are further apart than
ksim, then the game is a success if the viewer puts them into
different categories. For two chips within distance ksim, the
game is a success if the viewer assigns them to the same
category.

The success rate for games is defined as follows: For a
fixed distribution, pairs of color chips are given to a viewer
playing either the discrimination game, or the discrimina-
tion–similarity game. After M rounds of the game, the
fraction of successful games is denoted as SM . The success
rate S is then given by the equation S ¼ limM!1 SM . This

quantity is equivalent to the probability of having a
successful round of the game.
Finally, we define an optimal categorization for a specific

game as a categorization that maximizes the success rate
for this game.

2.4. Optimal categorizations for discrimination games

Let us suppose the following:

( m ¼ 2 (2 color categories),
( n is even,
( 0oksimon=2,
( the color chips are chosen from a uniform distribution, and

a number of rounds of discrimination game are played.

Statement 1. Suppose the four assumptions above hold. If
the chips have a linear arrangement, then the following two
categorizations maximize the success rate:

(1) Fi ¼ 2 for ipn=2 and Fi ¼ 1 for i4n=2, and
(2) Fi ¼ 1 for ipn=2 and Fi ¼ 2 for i4n=2.

If the chips have a circular arrangement, then the following
categorization maximizes the success rate:

Fi ¼ 2 for ipn=2 and Fi ¼ 1 for i4n=2.

Also, any shift of the categorization pattern along the circle
will also maximize the success rate. There are no other
categorizations with success rates equal to or larger than
those achieved by the above categorizations.

Proof. Let us denote the quantity ki ' jk ) dij , the
distance between chips i and j. Note that in the case of a
circular arrangement we take the shortest distance along
the circle.
In general, the probability of success (the success rate) of

a discrimination game is given by the following:

S ¼ W'1
Xn

j¼1

X

kl'jk4ksim

njnlð1' dFj ;Fl Þ,

where nj is the probability to draw the color chip j, and the
categorization is defined by Fj 2 f1; 2g. We also used the
notations:

W ¼
Xn

j¼1

X

kl'jk4ksim

njnl and dxy ¼
1; x ¼ y;

0 otherwise;

(

where dxy is the Kronecker symbol. Setting nj ¼ 1=n, we
obtain

W ¼ 1'
2ksim þ 1

n

in the circular geometry and

W ¼ 1'
ksim
n

! "
1'

ksim þ 1

n

! "
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in the linear geometry. In both cases, to maximize the
success rate, it is enough to maximize the quantity

S̄ ¼
Xn

j¼1

X

kl'jk4ksim

ð1' dFj ;Fl Þ.

This is reminiscent of the Hamiltonian in a one-dimen-
sional Ising model with non-local interactions.4

Let us consider all categorizations where the number of
chips with Fj ¼ 1 is A and the number of chips with Fj ¼ 2
is n' A (here A is some integer, and without loss of
generality we can assume that 0pApn=2). Now, the
quantity S̄ can be rewritten as

S̄ ¼
Xn

j¼1

Xn

l¼1

ð1' dFj ;Fl Þ '
Xn

j¼1

X

kl'jkpksim

ð1' dFj ;Fl Þ

¼ 2Aðn' AÞ '
Xn

j¼1

X

kl'jkpksim

ð1' dFj ;Fl Þ. ð2Þ

The first term in this expression does not depend on the
particular configuration but only on the number of chips of
each color (that is, on A). The second term has to be
minimized over all configurations. This term contains
‘‘interactions’’ of a chip j with all chips l such that dljpksim.
The meaning of this term is penalizing color differences:
every time the two chips in a ksim-neighborhood
are categorized differently, S̄ acquires a negative contribu-
tion. Minimizing this ‘‘penalty’’ term is equivalent to
maximizing

U ¼
Xn

j¼1

X

kl'jkpksim

dFj ;Fl , (3)

that is, maximizing the number of chips of the same color
category within neighborhoods of size ksim. The configura-
tion which corresponds to the maximal number of chips of
the same category in ksim-neighborhoods is the one with the
minimum number of boundaries, or transitions from one
category to the other. To see this, let us rewrite expression
(3) as a sum of two terms:

U ¼
X

Fj¼1

X

kl'jkpksim

dFj ;Fl þ
X

Fj¼2

X

kl'jkpksim

dFj ;Fl . (4)

The first term on the right-hand side corresponds to
summing over all chips categorized as color 1, and the
second term—to that with all chips categorized as color 2.
It is easy to see that the first term is maximized if all the
chips with Fj ¼ 1 form a patch, such that they are all
adjacent to each other (and to one of the boundaries, in the
case of a linear geometry). Such a configuration happens to
maximize the second term on the right-hand side of Eq. (4).
Therefore, the best possible categorization will consist

of only two ‘‘patches’’: a patch of color 1 and a patch of
color 2.5

Next, we need to consider all categorizations with the
‘‘2-patch’’ structure, characterized by the parameter A.
We will show that among such categorizations, the
one with A ¼ n=2 corresponds to the maximum success
rate. Let us evaluate the quantity S̄. We will use a circular
geometry. This reasoning can also be extended to a
linear geometry. It is possible to show that for 0okpA
we have

Xn

j¼1

X

kl'jk¼k

dFj ;Fl ¼ 2n' 4k,

for n=24k4A we have

Xn

j¼1

X

kl'jk¼k

dFj ;Fl ¼ 2ðn' 2AÞ,

and for k ¼ 0 we have

Xn

j¼1

X

kl'jk¼0

dFj ;Fl ¼ n.

Therefore, for AXksim we have

S̄ ¼ C þ 2Aðn' AÞ þ nþ
Xksim

k¼1

ð2n' 4kÞ

¼ C þ 2Aðn' AÞ þD,

where C ¼ '
Pn

j¼1

P
kl'jkpksim

1 and D ¼ nð1þ 2ksimÞ '
2ksimðksim þ 1Þ do not depend on A. In this case the
function S̄A is maximized by the value A ¼ n=2.
For Aoksim we obtain

S̄A ¼ C þ 2Aðn' AÞ þ
XA

k¼1

ð2n' 4kÞ þ
Xksim

k¼Aþ1

2ðn' 2AÞ

¼ C þ 2ksimnþ nþ 2Aðn' 2ksim ' 1Þ. ð5Þ

Now, we have dS̄A=dA ¼ 2ðn' 2ksim ' 1Þ40 (because
ksimpn=2' 1). Therefore, the optimal A is given by its
maximal admissible value, ksim ' 1. A direct comparison
of the two cases shows that for all ksimpn=2' 1,
the success rate is maximized by the case A4ksim, and
thus the optimal categorization structure is given by
A ¼ n=2.
This means that in order to achieve an optimal

categorization, the number of chips of colors 1 and 2 must
be equal. This completes the proof of Statement 1. &

Let us calculate the success rate of the optimal
categorization for the uniform sampling of color chips.
Assume that chips are arranged in a circle. If the
probability to draw any given chip is 1=n, then the
probability to draw a pair of chips with distance d between
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4Indeed, if the spin values sj 2 f'1;þ1g, then we have

S̄ ¼
Xn

j¼1

X

kl'jk4ksim

1' sjsl
2

! "
¼ const' 1=2

Xn

j¼1

X

kl'jk4ksim

sjsl .

5To be precise, if Aoksim, then there is a whole class of optimal
categorizations which includes all configuration where the largest distance
between any two chips with Fj ¼ 1 is no more than ksim; the two-patch
categorization described here belongs to this class.

N.L. Komarova et al. / Journal of Mathematical Psychology 51 (2007) 359–382 365



them, nd , is given by

nd ¼
1

n=2' ksim ' 1=2
) ~n; ksimodon=2; nn=2 ¼ ~n=2.

For all pairs of distance d, the probability to belong to two
different categories is 2d=n. The success rate is given by

2
Xn=2

d¼ksimþ1

nd
d

n
.

Therefore, the optimal success rate for the discrimination
game is

S ¼
ðn=2Þ2 ' ksimðksim þ 1Þ
nðn=2' ksim ' 1=2Þ

.

In particular, if ksim ¼ 0, then we have S ¼ n
2ðn'1Þ: the value

of S increases monotonically with ksim, reaching S ¼ 1 for
ksim ¼ n=2' 1.

Next, let us extend our consideration to the case of
several color categories. We suppose that

( mX2;
( n is divisible by m;
( 0oksimon=m,
( the color chips are chosen from a uniform distribution,

and rounds of discrimination game are played.

Statement 10. Suppose the four assumptions above hold. If
the chips are points on an interval, then the following
categorization maximizes the success rate: chips

ði ' 1Þn
m

þ 1;
ði ' 1Þn

m
þ 2; . . . ;

in

m

belong to color category vi, where 1pipm and for all iaj,
viavj, see Fig. 2(a). If the chips are arranged on a circle,
then the following categorization maximizes the success
rate: the circle is divided into regions

1;
n

m

h i
;

n

m
þ 1;

2n

m

# $
; . . . ;

ðm' 1Þn
m

þ 1; n

# $
.

All the vectors f i with i inside the same region are identical
to each other and have only one non-zero component. Any
vectors f i and f j with i and j belonging to different regions
are different from each other. Also, any shift of this pattern
along the circle maximizes the success rate, see Fig. 2(b).
There is no other categorization that has the success rate
equal or bigger than those achieved by the above
categorizations.

In other words, the most successful categorization
deterministically partitions the colors into categories of
equal size such that each category is a connected set (as
suggested for perceptually uniform spaces by Jameson,
2005d, 2005e). The proof of Statement 10 is omitted here.
Statements 1 and 10 above hold if the probability

distribution to draw a chip is uniform. This is an important
assumption. In the example of Fig. 3, we can see that a
non-uniform sampling distribution can break the symmetry
(the translational invariance) of the optimal categoriza-
tions in a circular geometry. Indeed, let us suppose that
each of the chips marked by ‘‘X’’ in the figure is sampled
with probability p1, whereas the rest of the chips are all
sampled with probability p24p1 (we have 6p2 ¼ 1' 8p1).
Then, in the limit where p1 ! 0, categorization Fig. 3(a)
with ksim ¼ 2 gives the success rate of Sa ¼ 1. The
categorization of Fig. 3(b) has a smaller success rate of
Sb ¼ 5=8. For finite values of p1op2, we will still have
Sa4Sb. Thus, non-uniformities in the sampling can lock
the position of the boundaries of color categories.
In the absence of the uniform sampling distribution, one

can also come up with examples of optimal categorizations
which do not have the structure described in Statement 10.
Indeed, let us suppose that n ¼ 12, ksim ¼ 3, m ¼ 3, n5 ¼ 1
and nd ¼ 0 for da5. Then the following categorization
assures the success rate S ¼ 1: chips 1; . . . ; 12 are assigned
color categories

1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 3. (6)

Finally, we note that Statements 1 and 10 assume that the
total number of chips is divisible by m. If this is not the
case, then there still exists a family of categorizations that
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Fig. 2. Some optimal categorizations for (a) an interval and (b) a circle.
White, gray and black dots represent the m ¼ 3 color categories, and
n ¼ 21.

X

X
X

X

X
X

X

X

X

X
X

X

X
X

X

X

Fig. 3. Symmetry breaking caused by inhomogeneous sampling. Here n ¼
14 and ksim ¼ 2. Chips marked by ‘‘X’’ are chosen much less often than
the rest. Then (in the limit of zero sampling frequency of the ‘‘X’’-chips)
categorization (a) yields a success rate of 1, whereas categorization
(b) yields a success rate of 5=8.
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are optimal. They contain all (connected) partitions of the
interval (circle) into m regions of maximally equal length.

2.5. Optimal categorizations for discrimination-similarity
games

The main difference between the discrimination game
(described above) and the discrimination–similarity game is
the following: for varying m, the optimal solution of the
discrimination game is m ¼ n, where each chip has its own
category. This leads to the 100% success rate of the
discrimination game. Now, if we keep this categorization
and play the discrimination–similarity game with ksim41,
the success rate of this game will be low, because two
neighboring chips will always be assigned to different color
categories. Therefore, there must be some restriction on the
number of categories allowed as an optimal categorization.
In fact, the optimal categorization for ksim40 in the
discrimination–similarity game will include only mon
categories.

In other words, the number of categories m that are
learned by a discrimination–similarity learner is smaller
than n, the number of chips in the stimulus domain. It is
defined by the similarity range, ksim, in such a way that
each category must be wider than ksim.

Again, these statements about the optimal categorization
imply the assumption that the chips are drawn according to
the uniform distribution. For different distributions, the
results may change. For instance, if we have n ¼ 12,
ksim ¼ 3, m ¼ 3, n3 ¼ 1=2 and n5 ¼ 1=2, then the categor-
ization system shown in (6) above yields a success rate of 1.

Let us calculate the number of categories in an optimal
categorization, under the assumption of the uniform
sampling of color chips. Consider the case of a circle
of length n, with ksimon=2. Assume the categoriza-
tion splits it into m equal regions of length l (such that
n ¼ ml). Pick two chips at random and play a discrimina-
tion–similarity game. What is the chance that this game is
successful?

The quantity d ) ki ' jk, the shortest distance between
two chips along the circle, varies in the interval 1pdpn=2.
We consider two cases: (i) ksimolon=2 and (ii) 1plpksim.

(i) If n is even, we first need to consider the special case of
d ¼ n=2. There are n=2 pairs of this kind, each of them
yielding a successful game. For odd n, this case does not
enter the argument. Next, consider the case where
1pdon=2 (for any value of n, even or odd). Let us
calculate how many pairs, out of the n possible pairs of
distance d, yield successful games. If lpdpn=2, then all
such pairs belong to different categories, which means
success, yielding n successful games. If ksimodol, then
only n'mðl ' dÞ games are successful. Indeed, for each
color, we have l ' d pairs belonging to it (each of which
lead to a failure). Finally, for pairs of size d such that
1pdpksim, the number of successful games is mðl ' dÞ,
which is equal to the number of pairs of the same color. Let
us denote the frequency with which we draw a pair of size d

by nd . Then we have the total success rate,

S ¼
1

n

Xksim

d¼1

ndmðl ' dÞ þ
Xl'1

d¼ksimþ1

ndðn'mðl ' dÞÞ

8
<

:

þ
Xn=2'1

d¼l

ndn

)

þ nn=2. ð7Þ

For the uniform distribution, the probability to draw any
pair with distance don=2 is given by

nd ¼
1' nn=2
n=2' 1

) n̄,

where nn=2 ¼ 0 if n is odd and nn=2 ¼ n̄=2 if n is even. We
have for the uniform sampling,

S ¼
n̄
n

Xksim

d¼1

mðl ' dÞ þ
Xl'1

d¼ksimþ1

ðn'mðl ' dÞÞ þ
Xn=2'1

d¼l

n

8
<

:

9
=

;

þ nn=2.

Remembering that m ¼ n=l, we obtain

S ¼
n̄
2l
ð2ksimðl ' 1Þ þ lðn' l ' 1Þ ' 2k2simÞ þ nn=2.

Differentiating this with respect to l, we find that the
extremum is at the point

lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ksimðksim þ 1Þ

p
.

This is a maximum since

d2S=dl2 ¼ '
2n̄ksimðksim þ 1Þ

l3
o0.

(ii) In this case, a similar argument shows that

S ¼
1

n

Xl'1

d¼1

ndmðl ' dÞ þ
Xn=2'1

d¼ksimþ1

ndn

8
<

:

9
=

;þ nn=2.

For the uniform distribution, we get

S ¼
n̄
2
ðnþ l ' 3' 2ksimÞ þ nn=2,

which is obviously maximized by l ¼ ksim.
Let us now compare the success rates in case (i) with

l ¼ lc and in case (ii) with l ¼ ksim. We have

Sðl ¼ lcÞ ' Sðl ¼ ksimÞ ¼ n̄ 1þ
3ksim
2

'
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ksimðksim þ 1Þ

p! "

40.

Therefore, the optimal value of l is lc, and the optimum
number of color categories is given by

mc ¼ n½2ksimðksim þ 1Þ#'1=2. (8)

Note here that computer simulations show that if the value
mc is not an integer, an optimal categorization will divide
the n chips in almost equal groups of the length maximally
close to mc.
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To summarize, we have defined the number mc (Eq. (8)),
which can be used as an estimate for the actual number of
categories in an optimal categorization, given ksim and n.
Note that in the case of non-uniform sampling, we can still
calculate the optimal number of color categories (assuming
that they are of equal size, that is, have the structure
described in Statement 10). For that we need to use the
actual distribution values of the pair sizes in formula (7).

The next necessary step is the dynamics of the acquisi-
tion of color categorization systems. This is done in the
next section by investigating several different learning
algorithms. We will present numerical tests which are
consistent with the analytical result above. We will show
that the optimal number of color categories can be reached
as a result of learning dynamics. Namely, if we start with a
total number of categories bigger than mc, and apply a
learning algorithm, some of the categories will be weeded
out (or reduced to low levels) to match the number of
active categories with mc. Conversely, if we start from a
number of active categories smaller than mc and introduce
some additional categories at low levels, the additional
categories will eventually be adopted, to arrive at an
optimal categorization with mc color categories.

3. Individual learning

The present research investigated three kinds of indivi-
dual learning strategies. They were selected because they
produce color categorizations that vary in terms of stability
and other dynamical features for the games considered.
The variability is used to gauge what learning properties
and games are related to color categorization systems that
structurally resemble those found in cross-cultural studies
of human color naming.

Individual learning is concerned with one learner playing
a number of games. The learner starts with some initial
categorization function F. He is presented with a pair of
color chips, ði; jÞ, and assigns categories vi;j, respectively, to
the color chips i and j. It is assumed that after each game,
the individual receives a feedback on the result of the game
(i.e., ‘‘success’’ or ‘‘failure’’). The categorization is updated
based on this information. The learner’s task is to
maximize his success rate.

The update rule is given by an algorithm. Several such
algorithms are considered in the next subsection.

3.1. Learning algorithms

In addition to specifying categorization on a stimulus
continuum, similarity ranges, and optimal categorizations
for two types of discrimination games, we also define three
different ways agents learn to categorize color.

3.1.1. A memoryless learner
This learner only performs deterministic categorization;

that is, a categorization where the entries of the vectors f i
are zeros and ones. If the game is a success, the learner

stays with the current categorization. If the game fails, the
learner chooses a different vector f i for one or both chips
involved in the game. The choice of the non-zero entry of
the new vector(s) is random.
In other words, if the game is a success, then there is no

change, and if the game fails, the category of the chip(s)
involved is switched at random. In particular, a memory-
less learner can go back to a categorization that has already
been tried and rejected (thus the name of this strategy). We
examined this learning strategy because it has been
extensively used for modeling language learning in artificial
intelligence type problems, as well as in modeling the
evolution of language (Niyogi, 1998; Nowak, Komarova,
& Niyogi, 2002).

3.1.2. A smoothing learner
Again, this learner only performs deterministic categor-

ization. In cases where the game is a success, the learner
does not change the categorization. If the game fails, she
updates the vector f i for one or both chips involved in the
game by assigning f i ¼ f iþ1. The maximum number of
categories is m ¼ n; that is, every chip belongs to a different
category.
In other words, if the game fails, the category of the

chip(s) involved is made equal to that of its (their) neighbor
on the right. We can also use neighbors on the left or a
random neighbor.

3.1.3. Reinforcement learner I
These learners allow for stochastic categorizations. Each

color chip i is associated with a vector Xi whose m
components are integer numbers that add up to some
constant, L:

Pm
j¼1 ½Xi#j ¼ L for all 1pipn. Then the

categorization components are defined as normalized
entries of these vectors:

½f i#k ¼ ½Xi#k=L,

where the components ½f i#k are defined in Eq. (1). Let us
suppose a learner plays a game with chips i and j, and
assigns them to categories vi and vj , respectively. If the
game is a success, the following operation is performed
regarding the component i of the categorization. If
½Xi#vi ¼ L, then nothing changes. Otherwise, the learner
updates as follows:

½Xi#vi ! ½Xi#vi þ 1; ½Xi#k ! ½Xi#k ' 1,

where k is chosen randomly such that kavi and ½Xi#k40.
In case of a failure, the categorization of chip i is updated
as follows:

½Xi#vi ! ½Xi#vi ' 1; ½Xi#k ! ½Xi#k þ 1,

where k is chosen randomly such that kavi. Similar
operations are performed regarding chip j.
In other words, if a categorization fails, then the value of

the category associated with the chip decreases by 1, and
another category (chosen at random) is enhanced. In case
of a successful game, two outcomes are possible. If the
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corresponding category is already full (equal L), then there
is no change. Otherwise, the successful category is
strengthened (by adding 1); at the same time another
(randomly chosen, non-zero) category is reduced by 1.

3.1.4. Reinforcement learner II
A variant of a reinforcement learner has the following

update rules: If a categorization fails, then the value of the
category associated with the chip decreases by 1 as before,
and all other categories are enhanced by the amount
1=ðm' 1Þ. In case of a successful game, the successful
category is strengthened (unless it is full), and at the same
time all other non-zero categories are reduced. It turns out
that for our purposes, the two types of reinforcement
learners behave similarly. Most experiments have been
performed by using the first type of reinforcement learners.

Fig. 4 illustrates the concept of a reinforcement learner. In
this example, there are only m ¼ 2 color categories, such that
both variants of the reinforcement learner are the same. Each
chip is assigned two non-negative integer numbers that sum
to L ¼ 4. For instance, chip 1 in Fig. 4(a) has ½X1#1 ¼ 1 and
½X1#2 ¼ 3, and chip 2 has ½X2#1 ¼ ½X2#2 ¼ 2. If the first
number corresponds to, for example, ‘‘light’’ and the second
number to ‘‘dark,’’ then with probability ½f1#1 ¼ 1

4 the first
chip is categorized as ‘‘light’’, and with probability ½f1#2 ¼ 3

4 as
‘‘dark.’’ The second chip is categorized as ‘‘light’’ or ‘‘dark’’
with equal probability ½f2#1 ¼ ½f2#2 ¼ 1

2.
Let us suppose that in the first round of the game, chips 1

and 2 are drawn, which are within the similarity range. Let

us assume that the learner categorized chip 1 as ‘‘dark’’ and
chip 2 as ‘‘light.’’ This means that the game failed. The
learner will perform the following operations: the ‘‘light’’
stack of chip 1 will go up one reinforcement unit, and its
‘‘dark’’ stack will go down. Similarly, the ‘‘light’’ stack of
chip 2 will go down, and its ‘‘dark’’ stack will go up, see
Fig. 4(b). In the next round of the game, chips 4 and 26
were chosen; we assume that they are further than ksim
apart. The learner assigned categories ‘‘dark’’ and ‘‘light’’
to the two chips, respectively; therefore, this game is a
success. The successful update corresponds to strengthen-
ing the ‘‘dark’’ stack of chip 4 (and weakening its ‘‘light’’
stack), as well as strengthening the ‘‘light’’ stack of chip 26
(and weakening its ‘‘dark’’ stack), see Fig. 4(c).

3.2. Game dynamics and convergence

This subsection investigates the long-term behavior of
various color category learners and whether they will, in
some sense, learn an optimal system of categorization.
Conceptually, the simplest cases for acquiring such categor-
izations are ones where the color names (signals) and color
chips are given in advance and the task is to assign each chip
a name so that an effective system of categories emerge,
where a ‘‘category’’ is the set of chips signaled by a name.
There is obviously an issue as to how the named categories
initially become available. But this issue, as well as the one of
introducing new names and categories into a system of
already existing categories, requires complexities that we do
not want to engage at this stage. As mentioned earlier, at this
stage it is only necessary to presume that some exogenous or
endogenous demands dictate that one or more categories are
needed. This is in line with the objective of this article of
seeing what results we can obtain about color categorization
from considering the simplest kinds of game-theoretic,
evolutionary methods.

3.2.1. Discrimination game
Let us fix the initial number of categories, m, and start

from an arbitrary color categorization. In particular, we
use a random color categorization for deterministic
learners (i.e., for the memoryless and smoothing learners).
This means that each chip is assigned its category at
random through a uniform probability distribution. For
non-deterministic, reinforcement learners, the following
initial condition is used: each chip has an equal probability
to be categorized to each of the m categories. In other
words, we initially set for each chip i,

½Xi#k ¼ L=m where 1pkpm.

We first consider the dynamics of the categorization as the
agent plays rounds of the discrimination game. Both linear
and circular geometries were used in our computer
simulations. We observe the following:

( A memoryless learner does not tend to an optimal
categorization (see discussion below).
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Fig. 4. Two rounds of discrimination–similarity game with a reinforce-
ment learner. Each color chip has two vertical lines or ‘‘stacks’’ for
categories ‘‘light’’ and ‘‘dark’’ which successively track reinforcement
updating. The current values of the stacks are denoted by the x. See text
for the explanation of the updates performed for the learner.
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( A smoothing learner develops a categorization close to
an optimal if ksim40. For ksim ¼ 0, as time goes by, a
category may be lost, and it can never be regained.
Therefore, the only attracting state for ksim ¼ 0 is ‘‘one
category for all chips’’; in practical terms, however, for
realistic times color categorizations close to optimal
survive (that is, they comprise long-lived states). What is
interesting, in the case of a circular geometry, is the
resulting categorization is not stationary, and it keeps
shifting without changing its color order, see Fig. 5. If
the unsuccessful update involves adopting the category
from the left (right) neighbor, then the shift proceeds to
the right (left). In a randomized case a random drift is
observed.

( A reinforcement learner involves the following para-
meters: the number of chips, n, the number of color
categories, m, the similarity range, ksim, and parameter,
L, the sum of the components of the vectors, Xi.
Depending on these parameters, different convergence
behaviors are observed. For m ¼ 2, the learner always
gives rise to a steady (non-shifting) categorization close
to an optimal one. The convergence rates depend on the
parameters such that they are faster for larger ksim. For
low values of ksim, L must be large to achieve
convergence. For m42, the algorithm does not con-
verge in a reasonable time.

Note that throughout this article we will informally use
terms such as ‘‘realistic time,’’ ‘‘close to optimal,’’ etc. They
have a clear intuitive meaning but we do not attempt to
quantify them at this stage of model development.

3.2.2. Discrimination–similarity game
As shown above, the discrimination game leads to

a close-to-optimal categorization only for smoothing

learners. The resulting categorization is not stationary,
but it drifts in one or both directions. The next set of
experiments examines the dynamics of convergence for
discrimination–similarity games. Again, linear and circular
geometries were used. We observe the following behavior:

( A memoryless learner does not tend to an optimal
categorization.

( A smoothing learner develops a ‘‘drifting’’ categoriza-
tion close to an optimal, as before.

( A reinforcement learner tends to a stationary (without a
directional shift) categorization which is close to an
optimal categorization, see Fig. 6. There is no conver-
gence in the strict sense, because the dynamics does not
have any fixed points. However, the solution remains
in the vicinity of a nearly-optimal configuration for a
long time.

3.2.3. The failure of the memoryless learner
Historically, the memoryless learner algorithm has been

used as a very simple algorithm which makes minimal
demands on the learner’s ‘‘cognitive’’ apparatus but
nonetheless achieves its learning goal (converges) in many
settings. That is why we considered this algorithm as a null-
hypothesis of our argument. It was therefore somewhat of
a surprise that in this study, the memoryless learner
does not find an optimal color categorization in either of
the games.
This is different from the behavior of the memoryless

learner algorithm when it is applied to learning fixed
categories, which is the usual setting for its implementation
in artificial intelligence research (Niyogi, 1998). There, one
envisages a series of interactions between a learner and a
teacher. There is a (finite) number of concepts (rules,
grammars, etc.) and the teacher knows the ‘‘correct’’ one.
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Fig. 5. Several consecutive snapshots of the learning dynamics of a smoothing learner playing the discrimination game, starting from a random initial
condition. The horizontal axes represent chips from n ¼ 1 to 45, and the graphs show the color assigned to each chip by the current categorization
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The learner’s task is to guess the correct concept by
evaluating a string of examples (applications of the rule,
grammatically correct sentences, etc.) given by the teacher.
The learner starts from a randomly chosen first guess and
receives the first input from the teacher. If this is consistent
with the learner’s hypothesis, no action is taken. If it is
inconsistent, the learner adopts a different, randomly
chosen hypothesis. One can prove that (under some mild
conditions on the underlying set of hypotheses) as the
number of such games goes to infinity, the memoryless
learner will converge to the right answer (Komarova &
Rivin, 2003).

In order to appreciate similarities and differences in
learning between the above teacher–learner paradigm and
our memoryless learner paradigm, consider our memory-
less learner as a set of n agents, each trying to learn the
correct category for its chip. The difference is that in our
case there is no fixed ‘‘correct’’ categorization, and, as the
number of games tends to infinity, there will always be
failed games, no matter what the current categorization is.
Indeed, even for the optimal solution, some of the learners
will inevitably find themselves on the boundaries of color
domains, and for them many discrimination–similarity
games will fail, simply because the two neighboring colors
will be assigned to different categories. This situation is
reminiscent of a conventional memoryless learner trying to
learn from an inconsistent teacher, who gives contradictory

cues of what the correct answer might be. A memoryless
learner is notoriously unsuccessful in such settings (Niyogi,
2006), which is consistent with our result.

3.2.4. Gaining and losing color categories
We have observed that the estimate of Eq. (8) holds true,

and the learning dynamics of a reinforcement learner may
lead to color category emergence or color category
extinction. If we start from the number of categories,
m4mc, we observe that some categories are wiped off (or
at least are driven to very low probabilities), and the total
number of active color categories corresponds to mc. In
Fig. 6, we start from m ¼ 6 colors while mc * 4:1. We
observe that most of the time, there are only four dominant
color categories present. The other two categories exist at
low probabilities, and sometimes they come up at the color
category ‘‘junctions’’ as shown in Fig. 6. Similarly, we
could start from momc, add a small chance to use an
additional color category and observe an increase in the
number of dominant color categories, Fig. 7. Adding an
additional color category starting from m4mc does not
lead to an increase in the number of categories (not shown);
on the contrary, m decreases to reach mc.

3.2.5. A note on the speed of convergence
In this article the convergence rates for various

algorithms are not calculated, because the main goal here
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Fig. 6. Several consecutive snapshots of the learning dynamics of a reinforcement learner playing the discrimination–similarity game. The horizontal axes
represent n ¼ 20 chips, and the vertical axes are the probability for each of the color categories to be chosen for each chip. We took m ¼ 6 color categories,
L ¼ 12 and ksim ¼ 3. The initial condition is such that each of the 6 color categories has an equal probability to be chosen for each chip (not shown). The
thick, thin and dashed, both black and gray, lines correspond to the 6 color categories. There are 4000 rounds between consecutive snapshots.
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is to demonstrate that certain kinds of individual learning
algorithms produce nearly optimal solutions. However, it is
worthwhile to comment about the time it takes to weed out
extra categories as both n and the optimal number of
categories increase. Fig. 8 shows a nearly optimal
categorization reached by a reinforcement learner playing
rounds of the discrimination–similarity game, starting with
m ¼ 8 color categories. It took on the order of 106 rounds
to settle to approximately 6 categories. This should be
compared with the dynamics of Fig. 6, where the learner
went from 6 to the optimal 4 color categories after about
104 rounds.

3.3. Inhomogeneous color diet and variable color importance

So far we assumed that the color chips are drawn from a
uniform distribution. Color scientists talk about different
‘‘color stimulus diets’’ in which certain parts of the color
space are more frequent or more salient than others (e.g.,
Regan et al., 1998; Stoner, Riba-Hernández, & Lucas,
2005). Analogous to this, some of our simulations involve
non-uniform distributions of color chips. Namely, we
assumed that the color distribution included a region of
frequently observed colors, or a color ‘‘hot spot.’’ For
example, in the experiments of Fig. 9, in 50% of the cases,
a color chip was drawn from a ‘‘hot spot’’ region in the
color stimulus domain (a continuous region of 10 chips out

of the total of n ¼ 40 chips). In the remaining 50% of the
cases, a chip was drawn from a uniform distribution over
the whole color domain. In Fig. 9 we observe that the first
categories that emerge are the ones that surround the ‘‘hot
spot.’’ Eventually, m ¼ 6 color categories will clearly
develop (not shown).
The ‘‘hot spot’’ simulation just described emphasizes the

effect on categorization of visiting a portion of the color
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Fig. 7. Several consecutive snapshots of the learning dynamics of a reinforcement learner playing the discrimination–similarity game. Here, we took
L ¼ 12 and ksim ¼ 3. Initially, we have three dominant, deterministically assigned color categories, with a small perturbation introducing a small
probability of the fourth color category for the first chip. The thick black, thick gray, thin black, and dashed lines correspond to the 4 color categories.
There are 4000 rounds between consecutive snapshots.
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Fig. 8. A snapshot of the reinforcement dynamics of discrimination–si-
milarity game, with n ¼ 30 chips, L ¼ 16, ksim ¼ 3, and 8 color categories
equally distributed initially. mc ¼ 6:1 in this case. This shot corresponds to
about 106 iterations of the game.
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space more often. By comparison, the simulation described
below investigates the effect on categorization of allowing
ksim to pragmatically establish importance in a portion of
the color space.

In all the above mentioned investigations we used the
simplifying assumption that ksim is a constant for all color
chips. This has been interpreted as follows: for pragmatic
purposes, colors that are within the ksim range will most
likely have similar pragmatic importance. However, in the
primate world the importance of color similarity may be
different in different regions of the color space. For
example, it may be of practical importance to distinguish
shades of colors in the red–yellow range, and less
important to notice differences in the blue–purple region.
The reason for this could be related to the kinds of edible
fruit available. If valued edible fruit are reddish, and
almost nothing edible (or dangerous) is bluish, then the
reddish region becomes more important, and subtler
differences are adaptively acquired for that region. What-
ever the reasons, the literature contains considerable
empirical evidence to support the present suggestion
regarding non-uniform color salience in non-human
primates (Stoner et al., 2005; Regan et al., 1998) including
observed perceptual non-uniformities in human color
appearance space (e.g., Kuehni, 2004; Malkoc, Kay, &
Webster, 2005).

The next set of experiments investigates such situations.
We draw chips from a uniform distribution over n ¼ 40. If
at least one of the chips in a pair belongs to the range 1–10,
then we set the similarity range to be ksim ¼ 2. Otherwise,
ksim is taken to be 6, see Fig. 10.

The simulation starts with m ¼ 6 color categories, each
equally likely to be chosen for every color chip. After about
105 runs, the following picture starts to emerge: the region
1–11 is divided into 3 color categories, and there are also a
couple of larger color categories that correspond to the
other 29 chips. What we observe is a non-homogeneous
color categorization with finer categories in the region of
small ksim and rougher categories in the rest of the field.

This result is quite predictable. We can calculate the
optimal number of color categories for the 10 chips with
ksim ¼ 2, mc ¼ 2:9, and the optimal number of categories in
the rest of the circle, with n ¼ 30 chips and ksim ¼ 6:
mc ¼ 3:3. Thus we expect to have roughly three categories
for chips 1–10 and three categories for chips 11–40, see the
last frame in Fig. 10.
All simulations up to this point have dealt only with

individual learning, most directly capturing categorization
within a single artificial agent or some empirical situations
involving the learning of color categories without communica-
tion. To model the evolution of shared human-like categoriza-
tion systems used for pragmatic color communications, we
next consider category solutions that emerge when individual
agents in a population communicate in color category games.

4. Population learning

This section looks at the evolution of color naming in a
population of agents. The agents play versions of the
discrimination and the discrimination–similarity game
through interactions with one another. Interestingly, we
observe that learning algorithms that did not find an
optimal categorization in an individual learning task, do
not in general improve their performance in a population-
learning setting. One might conjecture that interactions
among individuals could improve convergence properties
of learning algorithms. This did not happen: for instance, a
population of memoryless learners is unsuccessful in
developing an optimal color categorization. The following
two subsections consider smoothing learners playing
rounds of discrimination game and reinforcement learners
playing rounds of discrimination–similarity game.

4.1. A population of smoothing learners playing a
discrimination game

Let us suppose we have N individuals, f1; . . . ;Ng in the
population, each having its own deterministic categoriza-
tion, F ðIÞ, 1pIpN. Time flows discretely. At each time-
step, two individuals from the population are picked at
random and presented with two color chips chosen at
random. First, each individual plays a discrimination game
using the two chips. There can be three outcomes of the
games, which define the update rule of the player:

(1) One of the individuals succeeds and the other fails. In
this case the failing individual learns the color
categories (for the two chips) from the former
individual; that is, the successful individual is taken as
the teacher and the failing one as the learner.

(2) Both individuals succeed in discriminating the two
chips. In this case one of the two individuals is picked
at random to be the teacher. The other one learns the
color categories of the two chips from the teacher.

(3) If both individuals fail, then both of them perform
the unsuccessful update from the smoothing learner
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Fig. 9. Discrimination–similarity game of a reinforcement learner with a
non-uniform color distribution. The leftmost 10 chips (the ‘‘hot spot’’) are
chosen in 50% of the cases (see text). Parameters are n ¼ 40, m ¼ 6,
L ¼ 15, ksim ¼ 4. The frame is taken after about 105 runs.
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algorithm. (As a variant of this algorithm, only one of
the failing individuals could perform the unsuccessful
update procedure.)

An example of a simulation for a population of smoothing
learners is presented in Fig. 11. There, each row of plots
corresponds to one learner. The first column represents 10
individual population solutions at the initial time, and the
second and third columns show snapshots of solutions at
two later moments of time. For each color chip i (the
horizontal axes), only a single color category is shown,
which corresponds to the maximum entry in the vector Xi.
In other words, for each player and for each chip, we show
the color category that the player is most likely to assign to
it. For instance, player 1 (shown as the first row of plots in
Fig. 11) is most likely to use color category 3 for chips 1–11
after 10,000 rounds, whereas he is most likely to use
category 2 for the same chips after 30,000 rounds (as seen
in the second and the third columns).

We can see that the smoothing learner algorithm
converges to a high-coherence population with a color
categorization close to an optimal one. By high coherence
we mean a high degree of agreement among players on
their choice of color categorization. If the smoothing
algorithm implies adopting the color category from the
neighboring chip on the right (left), then a slow synchro-
nized leftward (rightward) drift of color categorizations is
observed in the entire population.

A variant of this algorithm includes the notion of fitness.
Here, we define the fitness of individual I as

fI ¼
1

Nn

XN

J¼1

Xn

i¼1

d
F
ðI Þ
i

;F
ðJÞ
i

, (9)

where d stands for the Kronecker symbol. This definition
gives the degree to which an individual agrees with others
regarding color categorization. Note 0pfIp1. Now, each
time both players succeed in the discrimination game, the
one with the larger fitness is chosen as a teacher; if the
fitnesses are the same, then the teacher is randomly chosen.
We have run a series of experiments where we included
fitness in the dynamics. No qualitative difference in the
results has been observed.
A problem with the discrimination game is that the

population can learn an arbitrary number of categories
mpn. That is, an optimal solution can be ‘‘each chip has its
own category.’’ In fact, if we play the discrimination game
with different given numbers of categories, m, then the
success rate of the games with m ¼ n will be the highest.
This is an outcome that is not compatible with the goal of
modeling properties of human categorization behavior,
because it suggests the unrealistic outcome that different
color names for all distinguishable color chips will evolve.

4.2. A population of reinforcement learners playing a
discrimination–similarity game

Suppose there are N reinforcement learners, each
equipped with n vectors, Xi. As before, a pair of individuals
is chosen from the population. They are presented with two
chips chosen at random. There are three cases:

(i) The two chips are the same.
(ii) The two chips are different but within ksim of each

other.
(iii) The two chips are different but not within ksim of each

other.
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Fig. 10. Discrimination–similarity game of a reinforcement learner with a non-constant ksim. Parameters are n ¼ 40, m ¼ 6, L ¼ 15, ksim varies between 2
for chips 1–10 and 6 for chips 11–40. The last frame is taken after about 107 runs.
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Each player assigns categories to the two chips.
Depending on the players’ choice of categories, their game
is a success or a failure. For instance, assigning the same
category to the two chips in the case where they are within
the ksim range comprises a success; and if the chips are
further apart than ksim, it is a failure. None, one, or both
players can be successful in any given round of the game.
There are four outcomes which we denote A, B, C and D;
they are summarized in Table 1. Each of the four outcomes
has its own update rule:

(1) In the case of outcome A, player 1 learns from player 2.
This indicates that the vector of player 1 corresponding
to the first chip (chip i) changes according to this rule:

½Xi#
v
ð2Þ
1

! ½Xi#
v
ð2Þ
1

þ 1; ½Xi#
v
ð1Þ
1

! ½Xi#
v
ð1Þ
1

' 1,

where vð1Þ1 is the category chosen by player 1 for chip i
and vð2Þ1 is the category chosen by player 2 for the same
chip. In other words, player 1 (the learner) updates his
categorization for the first chip in the following way: he
adds 1 to the stack corresponding to the color category
used by player 2 (the teacher), and he subtracts 1 from
the stack corresponding to the color he previously used
for this chip.

Similarly, player 1 updates the component corre-
sponding to the second chip:

½Xj#
v
ð2Þ
2

! ½Xj#
v
ð2Þ
2

þ 1; ½Xj#
v
ð1Þ
2

! ½Xj#
v
ð1Þ
2

' 1.

(2) In the case of outcome B, the roles are reversed, and
player 2 learns from player 1.

(3) In the case of outcome C, in the simplest algorithm, the
teacher is chosen at random.

(4) In the case D, each of the players update their vectors
according to the individual reinforcement learner
algorithm.

Note that the task of learning color categories of one
player from another has to be modeled differently for
smoothing and reinforcement learners. Smoothing learners
are deterministic learners, that is, they assign a particular
color category to each chip. Therefore, the only learning
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Fig. 11. A population of smoothing learners playing the discrimination
game, with N ¼ 10 agents, n ¼ 45 color chips, m ¼ 3 and ksim ¼ 5. The
first column is the initial, random, color categorization of the 10 players.
The second column is the categorization of the players after 10,000 rounds
of the game. The last column is the categorization 30,000 rounds later. For
each chip (horizontal axes) only one color category is shown: the one that
the individual is most likely to use for this chip.

Table 1
Four possible outcomes of each round of the discrimination–similarity
game

Same chip Chips within
ksim

Chips further
than ksim

Same–same C C D
Same–different N/A B A
Different–same N/A A B
Different–different N/A D C

The left column lists the categorization choices of the two players. A
denotes that player 1 fails and player 2 is successful, B denotes that player
2 fails and player 1 is successful, C denotes that both are successful, and D
denotes that both fail.
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mechanism available for them is to switch the color
category for the given chip to that of the teacher. On the
other hand, reinforcement learners allow for a more
realistic modeling of the learning process. Unlike smooth-
ing learners, they use probabilistic categorization. As
the result of learning, the failing individual increases the
‘‘stack’’ corresponding to the color category used by
the teacher. Thus the next time this chip is chosen, this
individual will have an increased chance to assign it to the
teacher’s category.
This reinforcement learner algorithm gives rise to a

coherent population of stationary optimal categorizations,
see Fig. 12. In the figure, each row of plots corresponds to
one learner. As in Fig. 11, for each color chip i (the
horizontal axes), only the most likely color category is
shown. As column three shows, we have mc * 3 in this
case, that is, only 3 color categories survive.
Note that in the algorithm described above, we included

pairs of identical chips, see Table 1. Such pairs were always
discarded in the previous sections in which individual
learning was discussed. In an additional series of experi-
ments, we discarded pairs of identical chips in population
learning scenarios. This did not affect the results in a
qualitative way.
We have considered two other extensions of this

algorithm, both concerning outcome C, where both players
are successful in the game. First of all, each player can keep
a score, that is, count the number of times he served as a
teacher. Then, when it comes to a tie (C), the player with a
higher score (rather than a random player) is chosen as a
teacher. (If both players have the same score, then the
teacher is chosen at random.)
The other extension uses the notion of fitness of the

player. In case C, the player with a higher fitness is chosen
as a teacher. The definition of fitness for non-deterministic
agents is given as follows. We first define the quantities

F ðIÞ
i ¼ k; ½XðIÞ

i #k ¼ max
k

½XðIÞ
i #k,

that is, for each color chip i, we pick the category k 2
f1; . . . ;mg such that the component k of the vector XðIÞ

i is
the largest. In the case where several components have the
same magnitude, we could pick one at random. Then the
fitness can be defined by Eq. (9).
It turns out that these extensions of the algorithm do not

produce a qualitative difference on the outcome of the
evolutionary dynamics compared to those that do not use
fitness or a success score.

5. Discussion

5.1. Possible extensions of the evolutionary algorithms

Our approach in this article has been to consider some
very simple idealizations of situations where a signaling
system evolves for objects from a continuous domain. This
subsection discusses some of the ways the concepts and
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Fig. 12. A population of reinforcement learners playing the discrimina-
tion–similarity game, with N ¼ 10 agents, n ¼ 20 color chips, m ¼ 4, L ¼
12 and ksim ¼ 4. Each row of plots corresponds to the color categorization
of one player. For each chip (the horizontal axes) we show the category
which has the highest entry in the learner’s categorization vector. The first
column is the initial, random, color categorization solutions of the 10
players. The second column shows the categorization solutions of the
players after 10,000 rounds of the game. The last column shows the
categorizations 70,000 rounds later.
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algorithms of the previous sections can be modified so that
they apply to more complicated situations. The modifica-
tions are only briefly discussed, and details involving
exactly how the evolutionary algorithms are to be extended
are not presented. They will be developed in future
publications.

5.1.1. Extending algorithms for circle and line stimulus
domains to a three-dimensional color solid

As detailed above, the present investigations only
consider categories formed on continuous circle and line
segment gradients. It is straightforward, however, to
extend the present investigations to simulating category
evolution on a three-dimensional color solid, like the
Munsell color solid, with minor modifications of the
algorithms.

That is, chips a and b are said to be ðk; l;mÞ-similar if and
only if simultaneously, (i) in terms of the hue dimension a
and b are k-similar, (ii) in terms of the value dimension a
and b are l-similar, and (iii) in terms of the chroma
dimension a and b are m-similar. By appropriate substitu-
tions of ðk; l;mÞ-similarity for k-similarity in our algorithms
and other concepts, our evolutionary methods of analyses
extend to various two- and three-dimensional regions of
the Munsell color solid.

5.1.2. How agents can immediately achieve correct
categorization of new stimuli

It is reasonable to consider cases where the number of
stimuli is so huge and diverse with respect to the number of
signals that agents experience only a small fraction of the
possible stimuli. Our algorithms, as currently formulated,
do not apply to such cases, because they require each chip
to be updated, usually a large number of times. One
approach to extending the algorithms to cover these cases
is to evolve for each name an icon chip. Intuitively an icon
chip approximates one feature of human long-term
memory in the naming of a newly presented color chip.
Formally, any chip c occurring in a game is named as
follows:

(1) If there is no icon chip to which c is k-similar, play the
game, give c the name dictated by the result of the
game, compute the categorizing vector fc accordingly,
and make c an icon chip.

(2) If i is the only icon chip to which c is k-similar, play the
game for c with c having i’s name, recompute fi to
reflect the result of the success or failure of the game
(even though the game was played with c), remove i as
an icon chip and replace it with a new icon chip i0 that is
a chip that is nearby i in the direction of c, and set

fi0 ¼ the recomputation fi.

(3) If there are more than one icon chip to which c is
k-similar, randomly select one of those icon chips, i,
play the game for c with c having i’s name, recompute fi

to reflect the result of the success or failure of the game
(even though the game was played with c), and retain i
as an icon chip.

In this approach, chips that are judged are only given
names of icon chips, and only icon chips are updated. The
approach may be viewed as a means of incorporating a
primitive form of perceptual memory into the evolutionary
process, with the presented chips being analogous to
‘‘perceptions’’ and the icon chips to ‘‘memories.’’

5.1.3. Best exemplars
The introduction of icons as just described allows for

the possibility of evolving best exemplars for color
categories. In such a situation, an icon chip is an obvious
choice for a best exemplar. However, there are likely to
be several icon chips for a given color category. When a
color-naming system achieves a near equilibrium state in a
discrimination-similarity game using k-similarity, the icon
chips nearest a category’s boundary are at a disadvantage
for being a best exemplar for that category, because they
may sometimes name a chip that is classified as a failure in
simulated games. Exactly which of a category’s icon chips
should be selected as ‘‘best exemplar’’ would generally
depend on additional factors not emphasized in the
simulations presented in Sections 2 and 3, for example,
heterogeneity of chips, heterogeneity of agents, variable
k-similarity, etc.

5.2. Implications for color-naming theory

It is important to re-emphasize that the agent simula-
tions we present are not intended to model human color
category learning or interactions between human categor-
izers. They are instead intended to demonstrate what can
be achieved using only the most rudimentary forms of
color observation and communication together with an
elementary evolutionary dynamics. The evolutionary dy-
namics used follow the ideas that (i) color naming should
be based on pragmatic concerns, (ii) in general, percep-
tually similar colors should be given the same name, and
(iii) perceptually different colors should be given different
names. These kind of simulations may be useful for
clarifying certain contentious issues in the literature
concerning the basis for color naming. This may be done
by providing counter-examples which show that various
features of naming systems can evolve without making
additional assumptions involving physiological processing,
cognitive strategies, or socio-cultural methods of transmis-
sion. On the positive side, by having explicit evolutionary
models and algorithms we may be able to demonstrate the
feasibility of certain evolutionary theories presented in the
literature.
Another goal of the present work was to begin

investigations into some predictions made by the IDM of
color categorization (Jameson, 2005d; Jameson & D’An-
drade, 1997), and to evaluate how such predictions hold up
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under simulated situations of category evolution. We
believe that beyond the limited assessment possible using
diachronic analyses of color lexicon evolution, the
approach presented here is perhaps one of the few ways
to evaluate theories of color category evolution, since
directly observing or assessing the evolution of such
systems in the real world is not achievable via typical
psychological or cultural investigative methods. Still,
despite our admittedly indirect evaluation of the IDM,
we found several fruitful results that bear both on color-
naming psychology and extensions of some of the
information processing principles described by Garner
(1974).

First, our discrimination-similarity games with uniform
sampling and reinforcement dynamics produced equal
sized category partitions. We view this as support for the
prediction that successful color-naming systems exhibit
‘‘yan informational advantage to making the divisions so
that category foci are maximally different from each
other.’’ (Jameson & D’Andrade, 1997, p. 313). That is,
although here category partitions arose in the absence of
defined category ‘‘best-exemplars,’’ the stable relational
structures seen among our categories implies that the best-
exemplars of a given category partition are not close to
neighboring category boundaries (a feature dependent on
k-similarity). This finding is also compatible with categor-
ization dynamics described by Garner (1974).

In addition, investigations that explored the impact of
inhomogeneous color space sampling and inhomogeneous
k-similarity ranges on individual agent categorization
validated the IDM prediction that exogenous pragmatic
influences (such as hotspots) affect individual’s category
partitioning in ways that can trump other psychologically
based tendencies that shape categorization.

5.2.1. Category solutions under inhomogeneous color space
sampling and inhomogeneous agent similarity ranges

In general, under conditions of uniformly distributed
color chips we find that the convergent solutions produce
equal sized categories (where ‘‘size’’ is measured in terms of
jnds). Predictions regarding a tendency toward equal sized
category regions were presented in the IDM (Jameson,
2005d, p. 320). In addition, however, we investigated two
cases illustrating factors that influence the emergence of
category regions of equal size.

For example, Section 3.3 presents algorithmic solutions
under (i) varying distributions of color chips and (ii)
varying color similarity range parameter settings. For
situation (i) some segments of the hue continuum were
sampled more liberally than other segments when setting
up the games to be played, following the rationale that
pragmatic concerns (i.e., colors signaling ripe fruit) might
present sampling biases that could impact category
development. In situation (ii), an agent’s similarity range
parameter was inhomogeneous across the color continuum.

Two interesting results emerged from situations (i) and
(ii): First, the segments of the hue continuum in which

more games were drawn were found to form categories
earliest. Second, the number of categories found in the
region of smaller ksim was larger, allowing the agents to use
finer distinction among color shades in that region.
The first result may provide a hint regarding the

unexplained widespread occurrence of the early emergence
of reddish categories in human color categorization
systems. By analogy, if a pragmatic concern of optimizing
caloric intake is an especially important factor in a
population’s color signaling system, then the categories
most salient for this concern (e.g., colors for ripe fruit) may
emerge first and stabilize earliest.
The second result suggests that when differences in

agents’ similarity ranges exist, the convergent categoriza-
tion solution can shrink both the size and the number of
categories to a system that is near optimal.
Both these results are important for evaluating how

pragmatic constraints on color naming might influence the
evolution and maintenance of a color signaling system in
both artificial agents and humans. They also indirectly give
an impression how systematic variation in observer-type
heterogeneity could influence convergent category solu-
tions (as suggested by Jameson, 2005a)—a topic of recent
discussion in the color categorization literature (Steels &
Belpaeme, 2005). Finally, both results accord with the
organizational framework for human color categorization
described by Jameson (2005d, pp. 316–325).

5.2.2. Relevance to the color category simulation literature
The modeling methods used here resemble those found

in existing research on the evolution of general commu-
nication and signaling systems (Grice, 1957, 1989; Komar-
ova, 2004; Komarova & Niyogi, 2004; Komarova, Niyogi,
& Nowak, 2001; Lewis, 1969; Nowak, Komarova, &
Niyogi, 2001; Nowak et al., 2002; Skyrms, 1996) and from
computational modeling specific to perceptually based
color categorization (Belpaeme & Bleys, 2005; Steels &
Belpaeme, 2005; Zuidema & Westermann, 2003).
Similar to the color category simulation research

(Belpaeme & Bleys, 2005; Steels & Belpaeme, 2005), we
examine how individual agents behave in color discrimina-
tion games and how groups of agents interact in language
games under differing constraints. Our communication
games allow a shared lexicon to emerge and stabilize across
simulated communication games among a population of
agents.
In particular, Steels and Belpaeme (2005) recently

investigated the circumstances under which simulated
agents could arrive at human-like color categorization
solutions. Their goal was to explore the potential for agent
communication with humans.
They implemented algorithms that incorporated the

standardized three-dimensional model of human color
perception (i.e., CIELAB). They investigated (i) whether
these algorithms evolved category systems that were
sufficiently shared among agents to allow successful
communication in the simulated population, and (ii)
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whether the evolved category systems resembled those
systems found for humans.

By comparison, the definition of an agent in our
investigation differs from that of by Steels and Belpaeme
(2005) in that we do not incorporate a large and rich set of
human color perceptual features into our simulated agents;
instead our agents incorporate only a primitive ability to
carry out color discriminations.

Interestingly, Steels and Belpaeme (2005) conclude that
the collective choice of a shared repertoire must integrate
multiple constraints, including constraints coming from
communication. One can argue that the present simula-
tions actually make this point more forcefully, because we
found stable shared categorization systems that only
required simple, basic pragmatic assumptions about com-
munication simple, basic learning rules, and only a
rudimentary assumption concerning an agent’s discrimina-
tion abilities.

In addition, we differ from Steels and Belpaeme (2005)
regarding the specification of the stimulus set evaluated by
agents, because, unlike them, we do not use complex
information about real-world surface reflectances as the
input stimulus sets in our simulations. Instead we limit the
stimulus domain to simple stimuli organized in terms of
jnds. The present study employs only stimuli arranged in
circle and line gradients. However, as suggested previously,
we expect our methods will extend in simple ways to the
full Munsell solid. The kind of constraints we employ do
not aim to capture the considerably more complex sets of
constraints occurring in real-world color categorization
among populations of humans. This latter point does not
diminish the significance of our strategy for understanding
the real-world color naming in terms of evolutionary
models involving minimal perceptual constraints and
simple learning. The rationale behind investigating the
evolution of color categories this way is that if convergent
stable color categories are not observed under such
evolutionary processes, then we know that additional
constraints (e.g., actual distributions of environmental
colors, a simulated model of human color perception,
more realistic language learning processes, etc.) or more
complex learning algorithms are needed for determining
the conditions under which a stable, convergent system will
emerge. The outcome of our simulations, however, found
that such additional constraints were not required to
produce category learning and stable convergent categor-
ization systems.

5.3. Implications for social evolution

Signaling learning games within a population have been
used by philosophers (e.g., Lewis, 1969; Skyrms, 1996) as
devices for illustrating, arguing for, and refuting various
positions about the nature of social evolution. However, in
formulating their arguments they did not consider games
that converged to a near optimal solution. The existence of
such convergent behavior—for example, in our population

learning game involving the color circle with smoothing
learners—reveals shortcomings of some important defini-
tions employed in the literature and presents some new and
interesting avenues for modeling.
The philosopher Lewis (1969) was the first to use

signaling games to illustrate and formulate social evolu-
tionary concepts. He provided a game theoretic account for
the formation of conventions and used it as the basis for a
theory of meaning for signaling systems. Skyrms (1996)
later provided a more penetrating analysis of the evolution
of meaning within signaling systems. Both base their
theories on the game theoretic concept of ‘‘equilibrium,’’ or
more precisely, ‘‘a robust Nash equilibrium of a coordina-
tion game.’’ Lewis in his final definition of ‘‘convention’’
(he used 73 pages of text to arrive at this final definition)
allows for the equilibrium to almost hold instead of exactly
holding. In the following quotation from Lewis (1969),
P stands for a population of agents and S for a convention:

There is no harm in allowing a few abnormal instances
of S which violate some or all of the clauses [of Lewis’s
definition of convention as a Nash equilibrium of a
coordination game]. So we replace ‘‘in any instance of S
of members of P’’ by ‘‘in almost any instance of S
among members of P.’’ If we want more precision, we
can replace it by ‘‘in a fraction of at least d0 of all
instances of S among members of P’’ with d0 set slightly
below one.

Nor is there any harm in allowing some, even most,
normal instances of S to contain a few abnormal agents
who may [violate the conditions of S being a conven-
tion]. (p. 77)

Having a convention to hold almost universally rather
than universally does not necessarily lead to an ‘‘almost
equilibrium of a coordination game,’’ which in our reading
of Lewis is the intended conclusion to be drawn, but could
possibly lead to conventions that do not stay close to any
particular solution. We observed both kinds of behaviors
in our population learning simulations: For a population
of reinforcement learners playing a discrimination–similar-
ity game, we observed a solution that remains in the
vicinity of a nearly optimal configuration for a long
time; for a population of smoothing learners, we observed
a non-stationary convergence to a near optimal categoriza-
tion that slowly drifts outside of the vicinity of that
categorization and into the vicinity of another optimal
categorization.
In the population of smoothing learners, unsuccessful

updates occurred either (i) through a random choice,
producing random drifts, or (ii) choosing the left (right)
neighboring category, producing shifts to the right (left). In
an evolutionary scenario, ‘‘choosing the left (right)
neighboring category’’ may be looked at as a previously
established convention, much like the ‘‘keep to the right
side of the road except possibly for passing’’ convention
that evolved for regulating road traffic in various places
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being a basis of other conventions, e.g., skating on
sidewalks or passing people on an escalator. The adoption
of ‘‘choosing the left (right) neighboring category’’
convention in our simulations produced signaling systems
that were qualitative different in their dynamics from those
that adopted the null convention of choosing randomly.

Non-stationary conventions like those observed for the
populations of smoothing and reinforcement learners
behave locally like conventions based on almost equili-
bria—that is, behave like conventions based on almost
equilibria for appropriate intervals about times t, where t is
some time after the convention has been established—but
globally behave differently from almost equilibria in that
the conventional meaning of signals changes with time.

Not all meanings in a non-stationary signaling system
need to drift with time. Consider the case of a population
signaling game with the color terms yellow, orange, red,
purple, and green. Suppose, as in the simulated population
learning game involving smoothing learners and colors
from a hue circle, a non-stationary convergent solution is
reached where the meanings for the color terms are also
organized in the same circular order as the colors they
name, say, counterclockwisely as: yellow, orange, red,
purple, and green. Then the proposition that orange is
immediately between yellow and red conventionally holds
globally, even though the meanings of the individual color
terms change with time. This proposition can be viewed as
an example of what Lewis (1969) calls ‘‘a consequence of
the convention.’’ However, because the above convention
changes with time, it is better called a global consequence
of the convention, in order to distinguish it from
consequences that only hold locally, that is, from
consequences that only hold for specific periods of time.

Conventions are at the heart of concepts like social
contracts, norms, and conformative behavior. To our
knowledge formulations of conventions that allow for
drifting meaning have not appeared in the literature,
although such ‘‘drifting conventions’’ appear to be
important in the modeling of some forms of social and
institutional change.

6. Summary

Our intent for this article is to examine categorization
methods for color chips that continuously perceptually
vary along a circle or a line. In such situations categoriza-
tion is achieved by playing a repeated evolutionary game
involving color naming. We investigated cases where the
chips are arranged according to jnd gradients and the
game’s evolutionary dynamics employ simple learning
algorithms and simple rules for determining successes in
the games played. Two types of learners are considered:

(1) An individual learner with learning updates that
depend only on (i) the presented chips, (ii) the similarity
range (i.e., k-similarity), and (iii) his current categor-
ization strategy. This type of learner acquires a

categorization system based entirely on individual
experience.

(2) A population learner with learning updates that
depend, like an individual learner, on (i) the presented
chips, (ii) the similarity range, and (iii) his current
categorization strategy, but with updating additionally
depending on (iv) the current categorization of another
randomly chosen learner’s categorization of the pre-
sented chips and also possibly on that learner’s fitness.
A population learner acquires a categorization system
that is based on both his individual experience and the
experiences of other members of the population.

Our results show the emergence of optimal categoriza-
tion systems across a variety of games played with
homogeneous and inhomogeneous stimuli, for individual
agents and across individual agents in a population. In
these categorization systems the success rate is maximized,
and each category has a unique name. Our simulations
showed that the following generally holds:

( In both individual and population learning, learners
categorize poorly if memoryless learning algorithms are
employed.

( In both individual and population learning, learners
produce a near optimal categorization system in which
category meanings can drift if smoothing learning
algorithms are employed.

( In both individual and population learning, learners
produce a near optimal categorization system in which
category meanings do not drift if reinforcement learning
algorithms are employed.

( In population learning, learners converge to essentially
the same near optimal categorization.

( In population learning, incorporating agent ‘‘fitness’’
does not have an effect on population categorization.

( When the similarity range is constant for all chips, all
categories are of approximately the same size; when
stimuli with varying similarity ranges are considered,
categories of different sizes evolve.

( When an inhomogeneous color distribution (‘‘color
diet’’) is considered, the most frequently sampled
regions in the stimuli space develop color categories
first.

( Categories may ‘‘drop out,’’ i.e., the categorization that
emerges through evolution may develop variable sized
and fewer numbers of categories depending on the
similarity ranges of chips. Similarly, color terms that
occur very infrequently in the population at first may
become adopted by the entire population, thus increas-
ing the total number of color terms, in response to
similarity requirements.

The main conclusion of this article is that a few simple
hypotheses about color discrimination combined with
learning through a simple language game can reproduce
several general findings in the empirical literature
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concerning color naming within a population. To repro-
duce finer features such as the prevalence of many naming
systems with blue–green categories, or evolutionary split-
ting of a category, or schemes that classify known color-
naming systems, and so on, additional hypotheses about
perceptual color organization and additional algorithms
that take into account more complicated, pragmatic, social
interactions are needed. Forthcoming research investigates
whether this can be accomplished using only a simple form
of reinforcement learning.
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