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Abstract

A new foundation is presented for the theory of subjective judgments of prob-
ability known in the psychological literature as “Support Theory.” It is based
on new complementation operations that, unlike those of classical probability
theory (set-theoretic complementation) and classical logic (negation), need not
satisfy the principles of the Law Of The Excluded Middle and the Law of Double
Complementation. Interrelationships between the new complementation oper-
ations and the Kahneman and Tversky judgmental heuristic of availability are
described.

1 Introduction

Subjective evaluations of degrees of belief are essential in human decision
making. Numerous experimental studies have been conducted eliciting numer-
ical judgments of probability, and many interesting phenomena have been un-
covered. Amos Tversky and colleagues proposed a cognitive theory to explain
some of the more prominent regularities revealed in these studies. This theory,
known today as Support Theory, has a foundational base in the articles of Tver-
sky and Koehler (1994) and Rottenstreich and Tversky (1997), and incorporates
features of cognitive processing, particularly Kahneman’s and Tversky’s sem-
inal research on judgmental heuristics (as, for example, described in Tversky
and Kahneman, 1974). Tversky and Koehler (1994) write,

The support associated with a given [description] is interpreted as
a measure of the strength of evidence in favor of this [description]
to the judge. The support may be based on objective data (e.g.,
frequency of homicide in the relevant data) or on a subjective im-
pression mediated by judgmental heuristics, such as representative-
ness, availability, or anchoring and adjustment (Kahneman, Slovic,
and Tversky, 1982). For example, the hypothesis “Bill is an accoun-
tant” may be evaluated by the degree to which Bill’s personality
matches the stereotype of an accountant, and the prediction “An oil
spill along the eastern coast before the end of next year” be assessed
by the ease with which similar accidents come to mind. Support
may also reflect reasons or arguments recruited by the judge in fa-
vor of the hypothesis in question (e.g., if the defendant were guilty,
he would not have reported the crime). (pg. 549)

How particular heuristically based processes differentially affect probability
judgments is the focus of much recent research. This article focuses on a par-
ticular heuristic of Kahneman and Tversky, the availability heuristic. Tversky
and Kahneman (1974) describe it as follows:

The are situations in which people assess the frequency of a class
or the probability of an event by the ease with which instances or
occurrences can be brought to mind. For example, one may assess
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the risk of heart attack among middle-aged people by recalling oc-
currences among one’s acquaintances. Similarly, one may evaluate
the probability that a given business venture will fail by imagining
various difficulties it could encounter. This judgmental heuristic is
called availability. Availability is a useful clue for assessing frequency
or probability, because instances of large classes are usually recalled
better and faster than instances of less frequent classes. However,
availability is affected by factors other than frequency and probabil-
ity. (pg. 1127)

Support Theory has an empirical base of results showing that different de-
scriptions of the same event often produce different subjective probability esti-
mates. It explains this in terms of subjective evaluations of supporting evidence.
It assumes that events are evaluated in terms of subjective evidence invoked by
their descriptions, and that the observed numerical probability judgments are
the result of the combining of such evaluations of support in a manner that is
consistent with a particular equation (Equation 1 described later). The pro-
cesses of evaluation are assumed to employ heuristics like those described in
various seminal articles by Kahneman and Tversky, and because of this, are
subject to the kinds of biases introduced by such heuristics.

This article focuses on support theory phenomena involving the availability
heuristic. This focus is formulated in terms of concepts different from those
commonly employed by support theorists. In particular, (i) it makes a sharp
distinction between semantic interpretations of descriptions as part of natural
language processing and cognitive interpretations of descriptions as part of a
probabilistic judgment, and (ii) in modeling judgments of probability it employs
two kinds of complementation operations that do not have counterparts in the
natural language semantics.

One of the the two complementation operations mentioned in (ii) is used to
construct cognitive events that are employed in the computation of the estimated
probability. The other is used to formulate a structural difference between recall
and recognition memory. Both operations have structural (= algebraic) features
that differ significantly from the kind of complementation operations considered
by cognitive psychologists and support theorists, that is, both have structural
features different from the complementation operation of the algebra of events
(set theoretic complementation) or of classical logic (negation). In particular,
neither need to satisfy the Law of the Excluded Middle1 and neither need to
satisfy the Law of Double Complementation 2

One of the complementation operations has the formal properties of the
negation operation employed in a non-classical logic called the Intuitionistic
Propositional Calculus. This logic was invented by the mathematician Brouwer
for his alternative foundation of mathematics, in which mathematical objects

1For event spaces, the Law of the Excluded Middle states that the union of an event and
its complement must be the sure event.

2For event spaces, the Law of Double Complementation states that the complement of the
complement of an event is identical to the event.
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are taken to be constructions of the human mind. Heyting (1930) formalized
it, and since 1930 it has been a much studied subject by logicians. It has a
variety of applications, including ones in artificial intelligence. Its relationship
to the notion of “mathematical construction” (Kolmogorov, 1932) makes it a
natural candidate for describing structural properties of “mental processing.”
This article uses it to model the differing roles of recall and recognition in
judgments of probability involving the availability heuristic.

The article proceeds as follows: Section 2 presents a summary of the basic
concepts of traditional support theory. Section 3 presents a new foundation
for support theory phenomena where events are modeled by open sets from
a topological space, instead of by sets from a boolean algebra. This shift in
modeling allows for the introduction of new mathematical concepts that are
useful for modeling the structure of the presumed mental processing used in
making probability judgments. Section 4 is a brief discussion of the foundation
presented in Section 3, and Section 5 provides a more detailed discussion of
mathematical properties of the topological event space used in the foundation.
Section 6 explains in terms of the algebraic concepts developed in Section 5 the
intuition for various ideas and assumptions employed in the foundation. And
Section 7 briefly summarizes what has been accomplished.

2 Traditional Support Theory

Tversky and Koehler (1994) and Rottenstreich and Tversky (1997) presented
an empirically based theory of human probability judgments that form the foun-
dation for current support theory. Narens (2007) presented a radically different
approach based on an event space of open sets. This article follows and extends
part of Narens’ approach to make explicit the role of a new kind of event comple-
mentation operator in judgments of probability using the availability heuristic.

Support theory tries to explain a variety of empirical phenomena. One of
the most prominent is where the subjective probability of an event dramatically
increases when it is divided into mutually disjoint subevents and the subjective
probabilities of the subevents are added together. The following example of Fox
and Birke (2002) illustrates this.

Example: Jones vs. Clinton 200 practicing attorneys were recruited (me-
dian reported experience: 17 years) at a national meeting of the American Bar
Association (in November 1997). 98% of them reported that they knew at least
“a little” about the sexual harassment allegation made by Paula Jones against
President Clinton. At the time that the survey, the case could have been dis-
posed of by either

(A) judicial verdict or

(B) an outcome other than a judicial verdict.

Furthermore, outcomes other than a judicial verdict (B) included
(B1) settlement;

(B2) dismissal as a result of judicial action;

4



(A) judicial verdict .20
(B) not verdict .75

Binary partition total .95

(A) judicial verdict .20
(B1) settlement .85
(B2) dismissal .25
(B3) immunity .00
(B4) withdrawal .19

Five fold partition total 1.49

Table 1: Median Judged Probabilities for All Events in Study

(B3) legislative grant of immunity to Clinton; and

(B4) withdrawal of the claim by Jones.

Each attorney was randomly assigned to judge the probability of one of these
six events. The results are given in Table 1. Note that the binary partition is
logically equivalent to the five fold partition and that the five fold partition
yields a substantial increase in probability over the binary partition.

As in the Jones versus Clinton example, several support theory experiments
provided professionals with decisions similar to those they routinely make as
part of their professional activities. Those experiments also revealed partici-
pants making dramatic overestimations. For example, Fox, Rogers, and Tver-
sky (1996) had professional option traders judge the probability that the closing
price of Microsoft stock would fall within a particular interval on a specific fu-
ture date. They found that when four disjoint intervals that spanned the set of
possible prices were presented for separate evaluations, the sums of the assigned
probabilities were typically about 1.50. However, when binary partitions were
presented, the sums of the assigned probabilities were about .98. Redelmeier,
Koehler, Liberman, and Tversky (1995) presented a scenario involving a diag-
nosis, a physical examination, and a medical history to a group of 52 expert
physicians a Tel Aviv University. Each physician was asked to evaluate one of
the following four outcomes: (1) dying during this admission, (2) surviving this
admission but dying within one year, (3) living for more than one year but less
than ten years, and (4) surviving for more than ten years. The average judg-
ments added to 164% (95% confidence interval: 134% to 194%). Several other
examples presented to various kinds of professionals yielded similar results of
overestimation. Numerous studies involving college students also yielded similar
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results.
The experimental methodology of a typical support theory experiment is

based on presenting different descriptions of the same event and obtaining
probability judgments for each description. Some experiments are between-
participant experiments, where each participant judges only one of the two
descriptions, and others are within-participant experiments, where each partic-
ipant judges both descriptions with intervening judgments occurring between
them. The theoretical part of support theory consists of accounting for ob-
served deviations of the probability estimates from what would be expected
from a normative model based on classical probability theory. It assumes par-
ticipants make their judgments based on cognitive heuristics, for example, those
described in Tversky & Kahneman (1974), and that the appropriate varyings
of descriptions of the same event can manipulate the heuristics employed by
participants.

The basic units in support theory are descriptions of events (called “hy-
potheses” by support theorists). In experimental paradigms, descriptions are
presented to participants for probabilistic evaluation. It is assume that par-
ticipants evaluate the descriptions in terms of a “support function,” s, which
is a ratio scale into the positive reals. Support theory assumes that the value
of s(α) for a description α generally involves the use of judgmental heuristics.
Most experiments are designed to elicit a judged (conditional) probability of de-
scriptions of the form, “α occurring rather than γ occurring.” Support theory
articles generally write this probability as P (α, γ), with the assumption that
the participant understands that the logical conjunction of α and γ describes
and impossibility. The theory assumes P (α, γ) is determined by the equation,

P (α, γ) =
s(α)

s(α) + s(γ)
. (1)

(A notable exception to this is the extension of support theory by Idson, Krantz,
Osherson, and Bonini, 2001, which uses a different equation.)

Support theory makes a distinction between “implicit” and “explicit” dis-
junctions. A description is said to be null if and only if it describes the null
event, ∅. Descriptions of the form “α or γ,” where α and γ are nonnull and the
description “α and γ” is null, are called explicit disjunctions. Throughout this
article, ∨ stands for the word “or.” Thus the explicit disjunction α or γ will
often written as α ∨ γ. A description is called implicit (or an implicit disjunc-
tion) if and only if it is nonnull and is not an explicit disjunction. An explicit
disjunction δ and an implicit disjunction γ may describe the same event—that
is, in the terminology of Tversky and Koehler, have the same extension, in sym-
bols, δ′ = γ′—but have different support assign to them. Tversky and Koehler
(1994) provides the following illustration:

For example, suppose A is “Ann majors in a natural science,” B
is “Ann majors in biological science,” and C is “Ann majors in a
physical science.” The explicit disjunction, B ∨ C (“Ann majors in
in either a biological or physical science”), has the same extension as
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A (i.e., A′ = (B ∨C)′ = (B′ ∪C ′)), but A is an implicit disjunction
because it is not an explicit disjunction. ( pg. 548)

In their generalization of the support theory of Tversky and Koehler (1994),
Rottenstreich and Tversky (1997) distinguishes two ways in which support and
explicit disjunction relate. Suppose α is implicit, δ ∨ γ is explicit, and α and
δ ∨ γ describe the same event. Rottenstreich and Tversky assume the following
two conditions linking support to implicit descriptions and explicit disjunctions:

(1) implicit subadditivity: s(α) ≤ s(δ ∨ γ) .

(2) explicit subadditivity: s(δ ∨ γ) ≤ s(δ) + s(γ) .

A direct consequence of (1) and (2) is

(3) s(α) ≤ s(δ) + s(γ) .

Instead of (2), Tversky and Koehler assumed additivity, s(δ ∨ γ) = s(δ) + s(γ),
which along with (1) yields (3). Rottenstreich and Tversky presented examples
where additivity failed but explicit subadditivity (2) held.

There is much empirical evidence in the literature that show (2) and (3)
with strict inequality < instead of ≤ to be a sizable and robust phenomena.
However, the empirical evidence for (1) with strict inequality is much weaker.
(See Sloman, Rottenstreich, Wisniewski, Hadjichristidis, and Fox, 2003, for a
discussion of the issue.)

In support theory an explicit disjunction that has the same extension as
an implicit disjunction α is called an unpacking of α. Of course, an implicit
disjunction may have many unpackings. The following empirical finding has
been much observed in the support theory literature:

Subadditive unpacking: A partition P1 = (κ1, . . . , α, . . . , κn) with n ≥ 2
elements is judged to have probability p1, and when α is replaced by an unpack-
ing δ ∨ γ of it to yield the partition P2 = (κ1, . . . , δ ∨ γ, . . . , κn) and a judged
probability p2 for P2, then p1 < p2.

Tversky’s and Koehler’s theory implies subadditive unpacking is due to
implicit subadditivity, because it assumes additivity. In Rottenstreich’s and
Koehler’s theory, subadditive unpacking can be due to either implicit or ex-
plicit subadditivity.

In support theory, participants are presented with a description β that es-
tablishes the context for the probabilistic judgment of the description α. In
such a situation, α is called the focal description. Support theory studies are
almost always designed so that the context β contains a description γ, called
the alternative description, such that it is clear to the participant that β implies
that the intersection of the extensions of α and γ is null and that either α or γ
must occur. In other words, a binary partition (α, γ) of β is presented to the
participant who is asked to judge the probability of α given β, α |β. Through-
out this article, such a situation is described as, the participant is asked to judge
α|β, “the probability of α given β.” In addition, in within-participant designs
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the participant is asked to judge γ|β, and in between-participants designs, γ|β
is judged only by other participants.

For a binary partition (α, γ) of β, both α|β and γ|β are presented. For
a ternary partition (θ, σ, τ) of β, all three of θ|β, σ|β, and τ |β are presented,
where, of course,

(the extension of θ, the extension of σ, the extension of τ)

is a partition of the extension of β. (Similarly for n-ary partitions for n > 3).

3 A Foundation for Support Theory

This section presents a modified and simplified account of the theoretical
foundation of support theory presented in Chapter 10 of Narens (2007). The
simplification involves only considering judgments based on frequency and the
availability heuristic. The modification involves a more detailed account of the
role of event complementation operators. The account differs in a number of
ways from the traditional support theory formulations. For the purposes of this
article, the two most important differences are: (i) the account’s use of separate
representations for linguistic and cognitive descriptions, and (ii) its use of event
spaces consisting of open sets for cognitively representing descriptions.

3.1 Semantic and cognitive representations

In the foundation for support theory presented here, there are two kinds of
representations: semantic and cognitive. It is assumed that the descriptions
to be presented to a participant for probabilistic evaluation are propositions
(sentences) in English. It is further assumed that the set P of descriptions
is closed under the logical operations of disjunction, denoted by “or” or ∨,
conjunction, denoted by “and” or ∧, and negation, denoted by “not” or ¬. P is
assumed to have a natural semantics, which is idealized as a function sem from
P into a boolean algebra of events 〈S,∪,∩, – 〉 such that for all α and β in P,

sem(α) = sem(β) iff α and β are logically equivalent in the natural semantics,

and

sem(α ∨ β) = sem(α) ∪ sem(β) ,
sem(α ∧ β) = sem(α) ∩ sem(β) ,

and sem(¬ α) = – sem(α) .

In other words, in the natural semantics P is interpreted as a boolean algebra
of events, with ∨ interpreted as union, ∧ as intersection, and ¬ as complemen-
tation. The natural semantics, as presented here, is not designed to capture
the ideas presented by individual descriptions. Instead, they describe the logi-
cal relationships among the ideas presented by descriptions—what is sometimes
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called the “logical form” of the descriptions. For the purposes of this article,
this is all that is necessary to assume about the natural semantics.3

sem(α) is often called one of the following: (i) the semantic interpretation
of α, (ii) the semantic representation of α, or (iii) the semantic extension of
α.

Convention 1 Throughout this section, let P be, as in the notation just above,
a set of descriptions and sem be the natural semantics for P.

An important concept in support theory is “unpacking.” It is defined through
the use of the natural semantics as follows:

Definition 1 Let α, δ, γ, and θ be propositional descriptions in P. Then the
following definitions hold:

• α and δ are said to be semantically disjoint if and only if sem(α) ∩
sem(δ) = ∅.

• α is said to be (semantically) null if and only if sem(α) = ∅.

• γ = α ∨ δ is said to be an explicit disjunction if and only if α and δ are
semantically disjoint and nonnull.

• α ∨ δ is said to be an unpacking of θ if and only if α ∨ δ is an explicit
disjunction and sem(α ∨ δ) = sem(θ).

In making a probability judgment about a propositional description α, it
is assumed that the participant creates a representation of α as part of the
probability estimation process. This representation, which is called the cognitive
representation of α, is different from the participant’s semantic representation of
α. Cognitive representations are also called cognitive interpretations or cognitive
extensions. The foundation models them as open sets from a topology. This
form of modeling is possible, because only simple kinds of relationships among
cognitive representations are needed, and these are isomorphic to elementary
topological relationships among open sets within a topology.

A principal empirical result of support theory is that an unpacking of a
proposition usually has a higher judged probability than the proposition. In
terms of the foundation’s concepts, part of the reason for this is that while the
semantic representation of a proposition is the same as semantic representation
of its unpacking (because a proposition and its unpacking are logically equivalent
in the natural language semantics), the cognitive representation of a proposition
usually differs from the cognitive representation of its unpacking.

Convention 2 Throughout this article, c(α) stands for the cognitive represen-
tation of the description α. Also throughout this article it is assumed that U is
a topology with universal set Ω.

3The logical form of descriptions and propositional logical relationships among them, for
example, logical equivalence, are determined by additional features of the natural language
semantics. Because these features play no other role in this article, only their existence needs
to be assumed.
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The relationships between the semantic and cognitive representations de-
pend in part on the heuristics employed in making the probability judgment.
Differing heuristics will usually require differing relationships. The foundation
assumes that only the empty set is common to the semantic and cognitive rep-
resentations, that is, for all α in P,

c(α) = sem(α) iff sem(α) = ∅ .

In some support theory situations c and sem are so unrelated that there are
descriptions α and γ such that

sem(α) ⊂ sem(γ) and c(γ) ⊂ c(α) .

In other situations, the ranges of c and sem display greater similarity in terms
of set-theoretic relationships.

3.2 Clear instances

It is assumed that participants are asked to make conditional probability
estimates. These estimates are for conditional descriptions of the form α |β (“α
is true given β is true”), where

sem(α) ⊂ sem(β) .

Most of the support theory literature concerns probability estimations of con-
ditional descriptions of the form α |α∨ δ, where α∨ δ is an explicit disjunction.

In the notation α |β, α is called the focal description and β the conditioning
description.

Convention 3 Throughout this article, P(α |β) stands for the participant’s
probability estimation of the conditional description α |β. The situation under
consideration involves participants making a few probability judgments with
varying focal descriptions and a common conditioning description, β.

Throughout this section it is assumed that Ω—the universal set of the topol-
ogy U—is the set of clear instances of β; that is, it is assumed that Ω is the
set of all instances i such that if the item “i is a clear instance of β,” were pre-
sented to the participant for judgment on a Yes-No recognition test, then the
participant would respond, “Yes.” The concept of “clear instance” is discussed
in more detail later.

3.3 Recall complement

The foundation models c(α) as an open set from U that is a proper subset
of Ω—in mathematical notation,

c(α) ∈ U and c(α) ⊂ Ω = c(β) .

In making P(α |β), it is assumed that participants use of information pre-
sented to them, or their own knowledge, to create the recall complement of c(α)
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with respect Ω. The recall complement of c(α) with respect Ω is denoted by
–̇ c(α). It is assumed that

–̇ c(α) ∈ U and –̇ c(α) ∩ c(α) = ∅ .

It is not assumed that –̇ is the set-theoretic complement with respect to Ω, that is,
it not assumed that –̇ c(α) ∪ c(α) = Ω. The operation –̇ is called the operation
of recall complementation.

It should be noted that in many cases the recall complement of c(α) does
not correspond to a description in P. In particular, it is not assumed that c(¬α)
is the recall complement of c(α).

3.4 Support functions

It is assumed that making the judgment P(α |β) the participant measures
the support for α given β, S+(α), measures the support against α given β,
S−(α), and estimates P(α |β) in a manner consistent with the formula,

P(α |β) =
S+(α)

S+(α) + S−(α)
.

Throughout this article it is assumed that S+(α) is completely determined
by c(α), and that S−(α) is completely determined by –̇ c(α). Because c(α) and
–̇ c(α) are disjoint, this is equivalent to the existence of a function S+, called
the cognitive support function (for evaluating P(α |β)), such that

S+(c(α)) = S+(α) and S+(–̇ c(α)) = S−(α) .

Any natural language semantic information involved in the judging of P(α |β)
is assumed to be incorporated into the cognitive support function S+ and the
cognitive representations c(α) and –̇ c(α). Thus,

P(α |β) =
S+(c(α))

S+(c(α)) + S+(–̇ c(α))
.

3.5 Unpacking

Most support theory experimental paradigms involve unpacking. Let α and
β be such that sem(α) ⊂ sem(β) and γ∨ δ is an unpacking of α. The following
two patterns of results are observed across most studies.

(1) Implicit subadditivity: P(α |β) ≤ P(γ ∨ δ |β), and sometimes P(α |β) <
P(γ ∨ δ |β).

(2) Explicit subadditivity: P(γ ∨ δ |β) ≤ P(γ |β) + P(δ |β), and often P(γ ∨
δ |β) < P(γ |β) + P(δ |β).
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A consequence of (1) and (2) is subadditivity, P(α |β) ≤ P(γ |β) + P(δ |β).
Subadditivity comes in two forms: additivity, P(α |β) = P(γ |β) + P(δ |β), and
strict subadditivity, P(α |β) < P(γ |β) + P(δ |β).

Note that in paradigms designed to test implicit additivity, the partici-
pant judges both the propositional description and its unpacking; whereas, in
paradigms designed to test for additivity and strict subadditivity, the partici-
pant judges the propositional description α but does not judge its unpacking
γ ∨ δ. In the latter, the participant instead makes separate probability judg-
ments of γ and δ. When separate probability judgments are made for γ and δ,
subadditivity results by the experimenter adding the participant’s judgments of
γ and δ. In such situations, the sum P(γ |β) + P(δ |β) does not correspond to
a judgment of a propositional description made by the participant.

3.6 An example involving causes of death

Rottenstreich and Tversky (1997) conducted the following experiment in-
volving availability and implicit and explicit subadditivity. 165 Standford un-
dergraduate economic students were given questionnaires. Each student was
presented with two cases for evaluation, with Case 2 being presented a few
weeks after Case 1. In both cases, each student was informed of the following:

Each year in the United States, approximately 2 million people (or
1% of the population) die from a variety of causes. In this question-
naire you will be asked to estimate the probability that a randomly
selected death is due to one cause rather than another. Obviously,
you are not expected to know the exact figures, but everyone has
some idea about the prevalence of various causes of death. To give
you a feel for the numbers involved, note that 1.5% of deaths each
year are attributable to suicide.

Let

β = death, α = homicide,

αs = homicide by a stranger, αa = homicide by an acquaintance,

αd = daytime homicide, αn = nighttime homicide,

αs ∨ αa = homicide by a stranger or homicide by an acquaintance,

αd∨αn = homicide during the daytime or homicide during the nighttime.

For both Case 1 and Case 2, the participants were randomly divided into
three groups of approximately equal size. Each group made the following judg-
ments:

Case 1

• judge α |β
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• judge (αs ∨ αa) |β
• judge both αs |β and αa |β

Case 2

• judge α |β
• judge (αd ∨ αn) |β
• judge both αd |β and αn |β

Rottenstreich and Tversky predicted that αs ∨αa was “more likely to bring
to mind additional possibilities than αd ∨ αn.” They reasoned,

Homicide by an acquaintance suggests domestic violence or a part-
ner’s quarrel, whereas homicide by a stranger suggests armed rob-
bery or drive-by shooting. In contrast, daytime homicide and night-
time homicide are less likely to bring to mind disparate acts and
hence are more readily repacked as [“homicide”]. Consequently, we
expect more implicit subadditivity in Case 1,

i.e., P(αs ∨ αa |β)− P(α |β) > P(αd ∨ αn |β)− P(α |β) ,

due to enhanced availability, and more explicit subadditivity in Case 2,

i.e., P(αd |β) + P(αn |β)− P(αd ∨ αn |β) >

P(αs |β) + P(αa |β)− P(αs ∨ αa |β) ,

due to repacking of the explicit disjunction.

They found that their predictions held: With P standing for the median
probability judgment, they found:

Case 1: P(α |β) = .20 P(αs ∨ αa) = .25 P(αs) = .15 P(αa) = .15
Case 2: P(α |β) = .20 P(αd ∨ αn) = .20 P(αd) = .10 P(αn) = .21 .

3.7 Simplified account involving availability

The following is a simplified account of probability judgments based on avail-
ability and frequency. It is designed to illustrate one of the several uses of mod-
eling cognitive representations as open sets and how the availability heuristic fits
into a framework involving event spaces consisting of open sets. It is a variant
and a specialization of an account in Chapter 10 of Narens (2007) with some
additional and some changed concepts.

3.7.1 Some definitions, conventions, and assumptions

Convention 4 Throughout this section the following is assumed, unless explic-
itly stated otherwise:

1. β is a description,
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2. Ω is the universe of the topology U ,

3. Ω is the set of all instances i that a participant would respond “Yes” to
in a separate experiment if asked, “Is i a clear instance of β?”

4. θ is an arbitrary description such that

∅ ⊂ sem(θ) ⊂ sem(β) and ∅ ⊂ c(θ) ⊂ Ω = c(β) .

5. The participant measures the support for a description in terms of the
clear instances of the description that comes to mind, and measures the
support against the description in terms of the clear instances that come
to mind that violate it.

The set of clear instances of θ are divided into two kinds. The first is c(θ)
= the set of clear instances of θ that come to mind of the participant in making
the probability judgment P(θ |β). The second—called the recognition extension
of θ—consists of all instances i in c(β) that a participant would respond “Yes”
to in a separate experiment if asked, “Is i a clear instance of θ?” In other words,
the first kind consists of instances that are recalled by the participant in judging
P(θ |β), and the second kind consists of clear instances of β that the participant
would judge to be clear instances of θ in a Yes-No recognition experiment.

Clear instances of θ—that is, the elements of c(θ)—are called realized clear
instances of θ. Another kind of clear instance i of θ is where i is a clear instance
of θ that is not recalled in the probabilistic judging of θ. Such i are called
unrealized clear instances of θ. The idea behind this terminology is that the
cognitive representation of an unpacking γ ∨ δ of α will often produce clear
instances of α in either the judging of P(γ |β) or the judging of P(δ |β) that
were not realized in the judging of P(α |β).

The recall complement of θ, –̇ c(θ), need not correspond to a description
in P. This because it is a mental construction use to evaluate the support
against θ, S−(θ), in the production of P(θ |β) and is not necessarily a cognitive
representation of a description. Clear instances of Ω that clearly do not belong to
θ also divide into two kinds. The first is the recall complement of θ and consists
of those that are in –̇ c(θ). The second, called the recognition complement of θ,
consists of those that the participant would judge to be clear instances of ¬ θ
in a Yes-No recognition experiment. It is assumed for a “Yes” response in such
an experiment that the instance under consideration is a clear instance of ¬ θ,
and for a “No” response that it is not a clear instance of ¬ θ. It is assumed that
the recognition complement of θ is an open set in U .

It should be stressed again that it is not assumed that –̇ c(θ) is c(¬ θ). In
fact, it is expected that in many cases that –̇ c(θ) 6= c(¬ θ).

3.7.2 Simplifying assumptions

The support theory literature employs various kinds of cognitive heuristics
and stimulus items that have cognitive characteristics that influence the judgings
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of probabilities. The formalizations of these often require additional cognitive
and topological assumptions about cognitive representations and complementa-
tion operations that are particular to heuristics and stimulus items employed.
For the portion of literature that is the focus of this article, the following sim-
plifying assumptions are made:

• (The recognition extension of θ) ∩ (the recognition complement of θ) =
∅ .

• c(θ) ⊆ the recognition extension of θ .

• –̇ c(θ) ⊆ the recognition complement of θ .

The above simplifying assumptions imply that

c(θ) ∩ –̇ c(θ) = ∅ . (2)

Equation 2 is a reasonable extrapolation for most support theory experiments
that rely on the traditional use of the availability heuristic. However, for some
experiments relying on other heuristics, one would expect many examples of
instances i, where i clearly belongs to c(θ), when judging S+(θ), and clearly
belongs to –̇ c(θ), when judging S+(–̇ c(θ)).

The following additional simplifying assumptions are made, where γ ∨ δ is
an unpacking of α. The first is that

c(α) ⊆ c(γ ∨ δ) ⊆ c(γ) ∪ c(δ) . (3)

The intuition for Equation 3 is that the unpacking of α into γ ∨ δ makes more
clear instances of α available to the participant in a probability judging task,
and the separate judgings of γ and δ, even makes more clear instances of α
available to the participant. This naturally leads to the simplifying assumption,

S+(c(α)) ≤ S+(c(γ ∨ δ)) ≤ S+(c(γ)) + S+(c(δ)) . (4)

Support theory experiments are usually designed with the intent of showing
judgments that violate presumed normative rules of probability by selecting α,
γ, δ, and β in manners so that

strict subadditivity: P(α |β) < P(γ |β) + P(δ |β) ,

is observed.4 There are a number of factors that can contribute to the produc-
tion of strict subadditivity. The ones most cited in the literature are Equation 4
and that in the computation of

P(θ |β) =
S+(c(θ))

S+(c(θ)) + S+(–̇ c(θ))

for θ = γ, δ, more attention is used in the mental formation and analysis of
c(θ) than in –̇ c(θ), yielding a bias that tends to raise of S+(c(θ)) relative to
–̇ S+(c(θ)), which, through a simple mathematical calculation, produces a bias
towards an increase in P(θ |β) (e.g., see Brenner and Rottenstreich, 1999).

4For examples designed to violate P(α |β) ≤ P(γ |β) + P(δ |β) see Sloman, Rottenstreich,
Wisniewski, Hadjichristidis, & Fox (2004).
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4 Discussion of the Foundation

One of the key features of the foundation presented in this article is the sharp
distinction between the semantic processing employed in the use of language and
cognitive processing employed specifically for probability judgments. The lack
of such a distinction has, in my view, generated some misunderstanding and
controversies in the literature.

In the simplified form of the semantics presented here, the logical connectives
“and”, “or”, and “not,” which act on propositional descriptions to produce other
propositional descriptions, are in the natural language semantics interpreted as,
respectively, ∩, ∪ and – , which are operations on on sets. The foundation
has not provided for how these logical connectives are to be interpreted in the
cognitive representations used in making probability judgments. Obviously, the
foundation would be greatly enhanced with the addition of such interpretations.
But first a great deal of empirical research is needed to establish basic facts about
them and their relationship to the recall complementation operator –̇ .

The foundation presented here was designed for the kinds of studies generally
conducted by support theorists. Some probabilistic estimation tasks do not fall
into this paradigm. For example, presenting a partition and asking the partici-
pant “to assign probabilities to each of the alternatives so that the probabilities
add to 1.” A central feature of the foundation is that the participant creates a
complement –̇A of a cognitive event A and assigns probabilities through some
comparison between A and –̇A. What distinguishes the foundation from other
approaches to support theory is that the support functions are not on events
from a boolean algebra of events.

Others in the literature have generalized support theory’s foundation by
providing alternatives to the formula,

P (α, γ) =
s(α)

s(α) + s(γ)
,

where P (α, γ) is the subjective probability of α rather than γ occurring for
disjoint propositions α and γ. For example, Idson, Krantz, Osherson, & Bonini.
(2001) use the formula,

P (α, γ) = λ
s(α)

s(α) + s(γ)
+ (1− λ)

s(α)
s(α) +K

,

where λ and K are positive constants that depend on the participant and the
method of evaluation he or she employs. Like support theory, this generalization
assumes an underlying boolean structure—the same kind of structure demanded
by rationality and logic for ordinary propositions. To my knowledge, scientif-
ically or philosophically based justifications for this assumption for situations
involving the psychological processing of information have not been attempted
in the literature. This article’s approach is to retain boolean logic for natural
language semantics and the support theory’s principle that

P(α|β) =
the support for α|β

the support for α|β + the support against α|β
,
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but to allow the mental interpretations on which the support function acts to be
part of a logical structure that naturally arises out of the judgmental heuristics
employed. This allows for different kinds of heuristics to give rise to different
kinds of logical structures.

The basic concepts used in the foundation and simplifying assumptions have
a logical structure that is best explicated through topological concepts. This
is done in detail in Section 6. The basic idea is that the use of open sets can
capture the structural properties of the various complementations used in the
foundation and the simplifying assumptions. Because algebras based on open
sets from a topology are richer in structure than boolean algebras of sets, they
provide a richer set of concepts for use in modeling than boolean algebras of
sets. For example, Narens (2007) uses features of the boundary of open sets to
model various kinds ambiguity that can be associated with events. This article’s
foundation uses the boundary of open sets to explicate the role of unrealized
elements in describing the effect of unpacking on probability judgments. Differ-
ent heuristics or even different kinds of uses of the same heuristic may require
topologies with properties that are peculiar to them. For example, this arti-
cle’s use of the availability heuristic makes special assumptions about recall and
recognition memory by assuming a generation-recognition model of recall.5 It
also does not allow for “ambiguous recall,” that is, does not allow for some de-
scription α that c(α)∩(–̇ c(α)) 6= ∅. Other heuristics or experimental situations
may require more complicated models of memory and ambiguous recall, which
in turn may require different topological assumptions to account for observed
phenomena.

5 Event Spaces Based on Open Sets

5.1 Algebraic properties

The difference between boolean algebras of sets and event spaces based on
open sets is due to the kind of complementation operation assumed: a boolean
algebra of sets assumes set-theoretic complementation, denoted by – , whereas
an event space based on open sets assume an operation called “pseudo comple-
mentation,” denoted by � and defined in Definition 3 below.

The following definitions and theorems provide the algebraic concepts and
properties of event spaces based on open sets and pseudo complementation.

Definition 2 A collection V is said to be a topology with universe X if and
only if X is a nonempty set, X ∈ V, ∅ ∈ V, for all A and B in V, A ∩ B is in
V, and for all nonempty W such that W ⊆ V,⋃

W is in V . (5)

5The generation-recognition model of memory states that recall is a two stage process: In
the first stage, the participant generates alternatives to a recall probe; in the second, he or she
selects (i.e., recognizes) the alternative(s) satisfying the recall probe. This model was designed
to explain the important and often observed fact that for most kinds of items, recognition is
easier than recall.
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Note that it is immediate from Equation 5 that for all A and B in V, A ∪B is
in V.

Let E be an arbitrary subset of X and V be a topology with universe X.
Then the following definitions hold:

• E is said to open (in the topology V) if and only if E ∈ V.

• E is said to be closed (in the topology V) if and only if the set-theoretic
complement of E with respect to X, – E, is open.

It immediately follows that X and ∅ are closed as well as open. In some cases
V may have X and ∅ as the only elements that are both open and closed, while
in other cases V may have additional elements that are both open and closed.
The following definitions hold for all E ⊆ X:

• The closure of E, cl(E), is, the smallest closed set C such that E ⊆ C;
that is,

cl(E) =
⋂
{B|B is closed and E ⊆ B} .

• The boundary of E, bd(E), consists of those elements of cl(E) that are not
in E.

• The interior of E, int(E), is the largest open set D such that D ⊆ E; that
is,

int(E) =
⋃
{F |F is open and F ⊆ E} .

It easily follows that the definition of “topology” implies the existence of the
closure, interior, and boundary of E for all E ⊆ X.

Definition 3 X = 〈X ,∪,∩,�, X,∅〉 is said to be a pseudo complemented open
set algebra of V if and only V is a topology, X ⊆ V, and with respect to V,

� A = int(cl( – A)) ,

for all A in X . � is called the pseudo complementation operator of X.
X = 〈X ,∪,∩,�, X,∅〉 is said to be a pseudo complemented open set algebra

if and only if for some V, X is a pseudo complemented open set algebra of V.

Pseudo complemented open set algebras obviously exist, because

V = 〈V,∪,∩,�, X,∅〉

is a pseudo complemented open set algebra, where V is a topology with universe
X. In particular, if V is a topology where each open set is closed, then � = – ,
and thus V is a boolean algebra.

Theorem 1 Suppose X = 〈X ,∪,∩,�, X,∅〉 is a pseudo complemented open set
algebra. Then the following eight statements are true for all A and B in X :
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1. � X = ∅ and � ∅ = X .

2. If A ∩B = ∅, then B ⊆� A .

3. A ∩ � A = ∅.

4. If B ⊆ A, then � A ⊆� B .

5. A ⊆ �� A .

6. � A = ��� A .

7. � (A ∪B) = � A ∩ � B .

8. � A ∪ � B ⊆ � (A ∩B) .

Proof. See Narens (2003) or Narens (2007).

The following theorem gives some fundamental properties of boolean alge-
bras of sets that fail for some pseudo complemented open set algebras.

Theorem 2 There exists a pseudo complemented open set algebra X = 〈X ,∪,∩,�
, X,∅〉 such that the following three statements are true about X.

1. For some A in X , A∪ � A 6= X.

2. For some A in X , �� A 6= A.

3. For some A and B in X , � (A ∩B) 6= � A ∪ � B.

Proof. Let X be the set of real numbers, X be the be usual topology on X
determined by the usual ordering on X, C be the infinite open interval (0,∞),
and D be the infinite open interval (−∞, 0). Then the reader can verify that
Statement 1 follows by letting A = C, Statement 2 by letting A = C ∪D, and
Statement 3 by letting A = C and B = D.

The � operator has the properties of the negation connective of intuitionistic
logic. This logic was formalized in Heyting (1930) as a description of the logical
principles the mathematician L. L. J. Brouwer used in his alternative form of
mathematics. (For a complete, formal account of intuitionistic logic see Rasiowa
and Sikorski, 1968.) Although Heyting designed his logic for Brouwer’s math-
ematics, it was shown to have other applications. For example, Kolmogorov
(1932) showed that it had the correct formal properties of a theory of mathe-
matical constructions. Kolmogorov achieved this result by giving interpretations
to the logical primitives that were different from Heyting’s. Similarly, this arti-
cle provides a new interpretation for the negation operator of intuitionistic logic
as the operation of recall complementation.

Pseudo complemented event algebras share many features of intuitionistic
logic. The principle difference is that intuitionistic logic is based primarily on an
implication connective that is not part of pseudo complemented event algebra.
Logical implications do not play a role in theory of probabilistic judgments pre-
sented here, because probabilities are computed directly in terms of the supports
for a cognitive event and its recall complement.
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6 Open set modeling

As previously discussed, event spaces that are pseudo complemented algebras
of open sets provide a richer set of modeling concepts than are available for event
spaces that are boolean algebras sets. The important topological modeling idea
used in this article is that different roles can be given to the elements of an
open set and its boundary. A related distinction cannot be made for boolean
algebras, because notions that functions like “boundary” in the just-mentioned
topological modeling are not formulable using only boolean concepts.

In the foundation presented in this article, the elements of an open set and
its boundary are interpreted as memory instances of a description. The open
set is interpreted as the set of recalled clear instances of the description. Its
boundary is interpreted as either unrealized clear instances or various kinds of
poor, vague, or ambiguous instances. A separation of boundary points into
various topological kinds, allows for subtle distinctions to be made ambiguity,
vagueness, and poorness of recalled and recognition instances of descriptions.
For the simplified account presented in this article, only the distinction between
realized and unrealized instances was needed.

In judging the probability of α |β, the foundation assumes the existence of
cognitive representations c(α) and –̇ c(α) that are open sets from a topology U
with universe Ω. c(α) and –̇ c(α) are subjective, and, according to the foun-
dation, are realized and judged by the participant in a way that matches the
equation for P(α |β) given in Equation 1. Ω, which is the recall extension of
β, is, in general, not realized by the participant. Similarly, it follows from as-
sumptions of the foundation that the recognition complement of α is the pseudo
complement of c(α) in the topology U , that is, is the open set � c(α) in U that
is the interior of the set-theoretic complement (with respect to Ω) of c(α).

For the simplified situation considered in this article involving the availability
heuristic and judgments based on frequency, the boundary of c(α) is modeled
so that it consists only of unrealized clear instances. It also follows from the
simplified assumptions that

(the recall extension of α) ∩ (the recognition complement of α) = ∅

and

(the recall extension of α) ∪ (the recognition complement of α) = Ω .

From these assumptions, the foundation, and the definition of pseudo comple-
mentation, it then follows that

recall extension of α = �� c(α) , (6)
(� c(α)) ∪ (�� c(α)) = Ω , (7)

and ��� c(α) = � c(α) . (8)

Note that Equation 8 is a pseudo complementation law (Statement 6 of
Theorem 1) applied to c(α). A similar law, – – – c(α) = – c(α) also holds
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for set-theoretic complementation. Equation 7 is a special case of a pseudo
complementation law (Statement 3 of Theorem 2 and Statement 5 of Theorem 1)
which has the form of the Law of the Excluded Middle for pseudo complemented
events. For most support theory applications, c(α) 6= �� c(α), which violates
the form of the set-theoretic Law of Double Complementation, c(α) = – – c(α).
Equations 6 and 7 follow from availability and the simplifying assumptions. In
other support theory phenomena which employ other heuristics or simplifying
assumptions, Equations 6 and 7 may fail.

The foundation is based on the premise that a pseudo complemented event
algebra better models the structure of mental phenomena and behavior associ-
ated with subjective estimations of probabilities than boolean algebras of sets.
From one point of view, this is hardly surprising: Pseudo complemented event
algebras correspond to a major part of intuitionistic logic, a subject matter
originally designed for a foundation of mathematics in which mathematical ob-
jects were construed to be mental constructions, whereas, boolean algebras of
sets correspond to classical propositional logic, a subject matter designed for
platonic objects. From another point of view it is obvious: Because pseudo
complemented event algebras are more general than boolean algebras of sets,
they allow for a richer base of modeling concepts. However, for the purposes of
this article the reason may be put as follows: Pseudo complementation can be
used to derive basic memory relationships (as described by, say, the generation-
recognition model of memory) that are used in judgments involving the avail-
ability heuristic. More generally, one can view a heuristic as having a “logic”
associated with it, with different heuristics generally having different logics.
The logic associated with the availability heuristic is much more like a pseudo
complemented event algebra than a boolean algebra of sets.

7 Conclusions

Typically, boolean algebras of sets have been used for the psychological mod-
eling of event algebras involving subjective probability. There are other event
algebras that have been studied for some time in mathematics and logic that
may be more appropriate for this. In my view, the most appropriate are open
sets from a topology (corresponding to intuitionistic logic) and closed subspaces
of a hilbert space (quantum logic). To my knowledge, although quantum logic
has been used in the modeling of psychological decision making, it not been
used to model support theory phenomena. This article suggests that open sets
from a topology provide a richer set of useful concepts for the understanding
and modeling support theory phenomena than boolean algebras of sets.
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