
MEANINGFULNESS AND INVARIANCE

Few disavow the principle that scientific propositions should be meaning-
ful in the sense of asserting something that is verifiable or falsifiable about the
qualitative or empirical situation under discussion. What makes this principle
tricky to apply in practice is that much of what is said is formulated not as sim-
ple assertions about qualitative or empirical events – such as a certain object
sinks when placed in water – but as laws formulated in rather abstract, often
mathematical, terms. It is not always apparent exactly what class of qualitative
observations corresponds to such (often numerical) laws. Theories of meaning-
fulness are methods for investigating such matters, and invariance concepts are
their primary tools.

The problem of meaningfulness, which has been around since the inception of
mathematical science in ancient times, has proved to be difficult and subtle; even
today it has not been fully resolved. This entry surveys some of the current ideas
about it, and illustrates, through examples, some of its uses. The presentation
requires some elementary technical concepts of measurement theory (such as
representation, scale type, etc.), which are explained in Measurement, Theory
of.

1. Concepts of Meaningfulness

Some Notation and Definitions. The operation of functional composition is
denoted ∗. The Cartesian product of T1, . . . , Tn is denoted

∏n
i Ti.

A scale S is a set of functions from a qualitative domain, a set X endowed
with one or more relations, into the real numbers. Elements of S are called rep-
resentations. An example is the usual physical scale to measure length. Two of
its representations are the foot representation and the centimeter representation.
S is said to be

• a ratio scale if and only if for each φ in S,

S = {rφ | r > 0} ,

• an interval scale if and only if for each φ in S,

S = {rφ+ s | r > 0, s a real} ,

• an ordinal scale if and only if for each φ in S, the range of φ is a (possibly
infinite) interval of reals and

S = {f ∗ φ | f is a strictly monotonic function
from the range of φ onto itself} .
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Intuitive Formulation of Meaningfulness and Some Examples. The following
example, taken from Suppes and Zinnes (1963), nicely illustrates part of the
problem in a very elementary way. Which of the following four sentences are
meaningful?

(1) Stendhal weighed 150 on 2 September 1839.

(2) The ratio of Stendhal’s weight to Jane Austen’s on 3 July 1814 was 1.42.

(3) The ratio of the maximum temperature today to the maximum tempera-
ture yesterday is 1.10.

(4) The ratio of the difference between today’s and yesterday’s maximum
temperature to the difference between today’s and tomorrow’s maximum
temperature will be 0.95.

Suppose that weight is measured in terms of the ratio scale W (which in-
cludes among its representations the pound and kilogram representations and
all those obtained by just a change of unit), and that temperature is measured
by the interval scale T , which for this example includes the Fahrenheit and Cel-
sius representations.1 Then Statement (2) is meaningful, because with respect
to each representation in W it says the same thing, i.e., its truth value is the
same no matter which representation in W is used to measure weight. That is
not true for Statement (1), because (1) is true for exactly one representation in
W and false for all of the rest. Thus we say that (1) is ‘meaningless’. Similarly,
(4) is meaningful with respect to T but (3) is not.

The somewhat intuitive concept of meaningfulness suggested by these ex-
amples is usually stated as follows: Suppose a qualitative or empirical attribute
is measured by a representation from a scale of representations S. Then a
numerical statement involving values of the

representation is said to be quantitatively meaningful if and only if its truth
(or falsity) is constant no matter which representation in S is used to assign
numbers to the attribute. There are obvious formal difficulties with this defi-
nition, for example the concept of ‘numerical statement’ is not a precise one.
More seriously, it is unclear under what conditions this is the ‘right defini-
tion’ of meaningfulness, for it does not always lead to correct results in some
well-understood and non-controversial situations. (See the discussion involving
situations where the measurement scale consists of a single representation for
an example.) Nevertheless, it is the concept most frequently employed in the
literature, and invoking it often provides insight into the correct way of handling
a quantitative situation – as the following still elementary but somewhat less
obvious example shows.

Consider a situation where M persons rate N objects (e.g. M judges judging
N contestants in a sporting event). For simplicity, assume that person i rates
objects according to the ratio scale of representations Ri. The problem is to find

1The Kelvin scale for temperature, which assumes an absolute zero temperature, is different
from T .
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an ordering on the N objects that aggregates the judgements of the judges in a
reasonable way. It can be shown that their judgements cannot be coordinated in
such a way that, for Ri in Ri and Rj in Rj that for some object a, the assertion
Ri(a) = Rj(a) is justified philosophically. The difficulties underlying such a
coordination are essentially those that arise in attempting to compare individual
utility functions. The latter problem – ‘the interpersonal comparison of utilities’
– has been much discussed in the literature, including discussions by Narens and
Luce (1983) and Sen (1979). It is generally agreed that there are great, if not
insurmountable, difficulties in carrying out such comparisons. Any rule that
does not involve coordination among the raters can be formulated as follows:
First, let F be a function that assigns to an object the value F (r1, . . . , rM )
whenever person i assigns the number ri to the object. Second, assume that
object a is ranked just as high as b if and only if the value assigned by F
to a is at least as great as that assigned by F to b. In practice F is often
taken to be the arithmetic mean of the ratings r1, . . . , rM (e.g. Pickering et
al., 1973). Observe, however, that arithmetic means for this kind of rating
situation, in general, produce a non-quantatively meaningful ranking of objects,
as illustrated by the following special case: Suppose M = 2 and, for i = 1, 2, Ri

is person’s i representation that is being used for generating ratings, and

R1(a) = 2, R1(b) = 3, R2(a) = 3, and R2(b) = 1 .

Then the arithmetical mean of the ratings for a, 2.5, is greater than that for
b, 2, and thus a is ranked above b. However, meaningfulness requires the same
order if any other representations of persons 1 and 2 rating scales are used, for
example, 10R1 and 2R2. But for this choice of representations, the arithmetic
mean of a, 13, is less than that of b, 16, and thus b is ranked higher than a.

It is easy to check that the geometrical mean,

F (r1, . . . , rM )(x) = [r1 · · · rM ]
1

M ,

gives rise to a quantitatively meaningful, non-coordinated rule for ranking ob-
jects. It can be shown under plausible conditions that all other meaningful,
non-coordinated rules give rise to the same ranking as that given by the geo-
metric mean (Aczél and Roberts, 1989).

Many other applications of quantitative meaningfulness have been given by
various researchers. In particular, Roberts (1985) provides a wide range of
social science examples. In some contexts, quantitative meaningfulness presents
certain technical difficulties that require a some modification in its definition
(e.g., see Roberts and Franke, 1976; Falmagne and Narens, 1983).

Meaningfulness and Statistics. Another area of importance to social scientists
in which invariance notions are thought to be relevant is applying statistics to
numerical data. The role of measurement considerations in statistics and of in-
variance under admissible scale transformations was first emphasized by Stevens
(1946, 1951); this view quickly became popularized in numerous textbooks, and
it produced extensive debates in the literature. Continued disagreement exists,
mainly created by confusion arising from the following two simple facts:
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• Measurement scales are characterized by groups of admissible transforma-
tions of the real numbers.

• Statistical distributions exhibit certain invariances under appropriate trans-
formation groups, often the same groups (especially the affine transforma-
tions), as those that arise from measurement considerations.

Because of these facts, some scientists have concluded that the suitability of
a statistical test is determined, in part, by whether or not the measurement and
distribution groups are the same. Thus, it is said that one may be able to apply
a test, such as a t-test, that rests on the Gaussian distribution to ratio or interval
scale data, but surely not to ordinal data, because the Gaussian distribution is
invariant under the group of positive affine transformations, x→ rx+s, r, s real,
r > 0 – which arises in both the ratio and interval case, but not in the ordinal
one. Neither half of the assertion is correct: first, a significance test should be
applied only when its distributional assumptions are met, and they may very
well hold for some particular representation of ordinal data. And, second, a
specific distributional assumption may well not be met by data arising from a
particular scale of measurement. For example, reaction times, being times, are
measured on a physical ratio scale, but they are rarely well approximated by a
Gaussian distribution.

What is true, however, is that any proposition (hypothesis) that one plans to
put to statistical test or to use in estimation had better, itself, be quantitatively
meaningful with respect to the scale used for the measurements. In general,
it is not quantitatively meaningful to assert that two means are equal when
the quantities are measured by an ordinal scale, because equality of means is
not invariant under strictly increasing transformations. Thus, no matter what
distribution holds and no matter what test is performed, the result may not
be quantitatively meaningful, because the hypothesis is not. In particular, if
an hypothesis is about the measurement structure itself, for example that the
representation is additive over a concatenation operation, then it is essential
that (i) the hypothesis be invariant under the symmetries2 of the structure
and therefore invariant under the scale used to measure the structure,3 and
(ii) the hypotheses of the statistical test be met without going outside the
transformations of the measurement representation. See Luce, Krantz, Suppes,
and Tversky (1990) for a more detailed discussion of this issue.

2. Concepts of Invariance

Measurement laws are quantitative laws based primarily on interrelation-
ships of scales of measurement. They have in common with quantitative mean-
ingfulness that they are derived through considerations of admissible transfor-
mations of the measurements of relevant variables. In the view of Falmagne

2Symmetries are isomorphisms of the structure onto itself (see Qualitative Meaningfulness
below).

3Because it is assumed that scales of measurement are structure preserving functions from
a qualitative structure onto a quantitative one, (i) immediately follows.
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and Narens (1983) they arise in an empirical situation “that is governed by
an empirical law of which we know little of its mathematical form and a lit-
tle of its invariance properties, but a lot about the structure of the admissible
transformations of its variables, and use this information to greatly delimit the
possible equations that express the law.” (p. 298). They are generalizations of
the kind of laws that have a long-standing tradition in physics, where they are
known as laws derived according principles of “dimensional analysis.” These
principles involve the assertion that laws of nature are in a deep sense invariant
under changes of unit, which correspond to invariance under symmetries. Thus,
knowledge of the scale type of the relevant variables – a strong presupposition
– greatly limits the forms of laws.

Measurement Laws: Simplest Case. These principles were introduced into the
behavioral sciences by Luce (1959), which was concerned with special cases of
“possible psychophysical laws.” He abstracted features of dimensional analysis,
the latter only employing ratio scale transformations of its variables, to the
more general situation of the known the measurement scale types of the time,
but to the more specialized situation of a single function of a single variable.
Luce (1964) extended the 1959 formulation to include a few important cases of
a single function of many variables.

Luce (1959) considered the case where the independent variable x and the
dependent variable y were related by a law, y = f(x), where f was some con-
tinuous function. He assumed that this law was invariant under admissible
transformations of measurements, that is, for each admissible transformation φ
of the independent variable, there was an admissible transformation ψ of the
dependent variable such that for all x and y,

y = f(x) iff ψ(y) = f(φ(x)) . (1)

The following is an example of a use of Luce’s theory. Suppose x is an objective
variable measured by a ratio scale, e.g., a physical variable such as the intensity
of light or the weight of gold, and y is the subjective evaluation of x, e.g., the
subjective brightness of light, the subjective value of gold, and f is the law
linking x and y. Suppose x and y are both measured on ratio scales and f is
continuous. Suppose further that f satisfies Equation 1. Under these conditions,
Luce shows that there are real numbers r and a, a depending on ψ, such that

f(x) = axr . (2)

His method of proof was to show that Equation 1 implied that f satisfied the
functional equation h(s)f(t) = f(st) for some continuous function h and all
positive s and t, and that this functional equation had Equation 2 as its only
solution.

For most applications, such as the above brightness and subjective value ex-
amples, the scale for the dependent variable is known and continuity is a reason-
able idealized approximation. Sometimes theory will specify the measurement
scale for the dependent variable. However, often the scale for the dependent
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variable is unknown, and in many cases, unobservable, as, for example, when
it is subjective. In such situations, the measurement scale for the dependent
variable has to be hypothesized or derived from theory. It can be hypothesized
to be one of several theoretically reasonable types of measurement scales, and
then methods similar to the one used to derive Equation 2 can be used to arrive
at a measurement law for each type of hypothesized scale. The set of resultant
measurement laws provides a clear set of quantitative hypotheses for empirical
testing. Quite often such hypotheses turn out to be a good place to begin a
scientific investigation.

Measurement Laws: More Complex Cases. In a number of ways, Falmagne and
Narens (1983) greatly generalized Luce’s 1959 approach for deriving laws from
measurement considerations. In particular:

• Instead of one independent variable and one dependent variable, they
assumed n independent variables and one dependent variable. They for-
mulated matters for two independent variables to simplify notation, but
their approach easily extends to n independent variables.)

• They allowed for a general relationship R among the admissible trans-
formations of the independent variables to hold; i.e., for the sets Ti of
admissible transformations of the independent variables x1, . . . , xn, R can
be any nonempty subset of

∏n
i Ti.

• They allowed for more general kinds of laws by allowing for a family F
of functions to related the dependent variable with n independent vari-
ables. They interpret F as follows: Initially, representations ϕ1, . . . , ϕn

are used to measure the n independent variables, x1, . . . , xn. These mea-
surements determine a function f(ϕ1(x1), . . . , ϕn(xn)) that is the value of
the dependent variable measured on an unknown scale when x1, . . . , xn

are measured by ϕ1, . . . , ϕn. There are other equally valid ways of mea-
suring each independent variable xi. These are obtained by transforming
ϕi by the elements of Ti. However, valid measurements for the set of
independent variables may be additionally constrained by the empirical
law relating the dependent variable to the independent variables. The
additional constraint is captured by the relation R. Thus each other valid
measurement of the independent variables is given by τ1 ∗ ϕ1, . . . , τn ∗ ϕn

for some τ1, . . . , τn such that R(τ1, . . . , τn). The law giving the numerical
value of the dependent variable, when the set of independent variables
x1, . . . , xn are measured respectively by τ1 ∗ ϕ1, . . . , τn ∗ ϕn, is given by

fτ1,...,τn(τ1 ∗ ϕ1(x1), . . . , τn ∗ ϕn(xn)) .

In this way, it is the family of functions,

F = {fτ1,...,τn
(τ1 ∗ ϕ1(x1), . . . , τn ∗ ϕn(xn)) |R(τ1, . . . , τn) .}

that expresses the empirical law relating the dependent variable to the
independent variables x1, . . . , xn. Only in very restrictive cases will F
consist of an single function.
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Order Meaningfulness. In place of assuming the scale type of the dependent
variable, they assume “order meaningfulness,” that is, they assume the follow-
ing: Using the just presented notation, suppose F is a family of functions that is
a law relating the dependent variable with n independent variables and fσ1,...,σn

and fτ1,...,τn
are in F . Then for all x1, . . . , xn and u1, . . . , un,

fσ1,...,σn(σ1 ∗ϕ1(x1), . . . , σn ∗ϕn(xn)) ≤ fσ1,...,σn(σ1 ∗ϕ1(u1), . . . , σn ∗ϕn(un))

if and only if

fτ1,...,τn
(τ1 ∗ ϕ1(x1), . . . , τn ∗ ϕn(xn)) ≤ fτ1,...,τn

(τ1 ∗ ϕ1(u1), . . . , τn ∗ ϕn(un)) .

By considering families of functions rather than a single function for laws,
Falmagne and Narens generalized the notion of “dimensional constants” that
appear in many laws. Their generalization allows for the formulation of be-
havioral laws (Falmagne and Narens, 1983; Falmagne, 1985) and physical laws
(Falmagne, 2004) that cannot be obtained by considering only a single function.
Of course, Falmagne and Narens’ theory also allows for the case of a single func-
tion, by allowing the family of functions to degenerate to a set consisting of a
single function.

In many situations order meaningfulness is a testable condition, making it a
preferable assumption to assuming a scale type for a dependent variable unless,
of course, one already has a well developed theory for the dependent variable.
In the Falmagne-Narens theory, the scale type of the dependent variable is not
needed to obtain the law linking the independent and dependent variables.

For the case where the family F consists of a single function f of n-independent
variables, Aczél, Roberts, and Rosenbaum (1986) provided more general results.
Through an insightful mathematical argument, they were able to character-
ize measurement laws using only measurability assumptions from real analysis
about f instead of monotonicity or continuity assumptions. Aczél and Roberts
(1989) use the general approach of Aczél, Roberts, and Rosenbaum (1986) to
derive measurement laws of economic interest.

3. Relation Between Meaningfulness and Invariance

Quantitative meaningfulness lacks a serious account as to why it is a good
concept of meaningfulness; that is, it lacks a sound theory as to why it should
yield correct results. Formulating a serious account for it is difficult. One tack
(Krantz, Luce, Suppes, and Tversky, 1971; Luce, 1978; Narens, 1981) is to
observe that if meaningfulness expresses valid qualitative relationships, then it
must correspond to something purely qualitative, and therefore it should have a
purely qualitative description. A long tradition in mathematics for formulating
qualitative relationships that belong naturally to some structure or concept goes
back to at least nineteenth century geometry and was the center piece of the fa-
mous Erlanger Programme for geometry of Felix Klein. It was based on the idea
that associated with each geometry was a set of transformations T , and the re-
lations and concepts belonging to the geometry were exactly those that were left
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invariant by all the transformations in T . There are strong connections between
(i) geometric techniques of establishing coordinate systems and measurement
techniques for establishing scales, and (ii) the Erlanger Programme’s concept
of “geometric” and the measurement-theoretic concept “meaningfulness.” To
examine these connections, some definitions and conventions are needed.
Convention. Throughout the remainder of this entry, it is assumed that X is
a qualitative structure, which consists of a qualitative set X as its domain and
relations based on based on X (called the primitives of X ); N is a numerically
based structure, that is, N is a structure that has a subset of the real numbers
as its domain; and S is the measurement scale consisting of all isomorphisms
from X onto N . (See the entry Measurement, Theory of for a more detailed
description of this kind of measurement scale.)

Qualitative Meaningfulness. An isomorphism of X onto itself is called a sym-
metry (or automorphism) of X . It easily follows that if α is a symmetry of X
and φ and ψ are elements of S, then

• φ ∗ α is in S

• φ−1 ∗ ψ is a symmetry of X ,

• θ = φ ∗ ψ−1 is an admissible transformation of S, i.e., θ ∗ η is in S for
each η in S, and all admissible transformations can be obtained in the just
mentioned manner by appropriate selections of φ and ψ.

An n-ary relation R on X is said to be qualitatively meaningful if and only
if it is invariant under the symmetries of X , that is, if and only if for each
symmetry α of X and each x1, . . . , xn in X,

R(x1, . . . , xn) iff R(α(x1), . . . , α(xn)) .

Quantitative Meaningfulness. Although a relation T being “quantitatively mean-
ingful” was previously defined, it is defined here again here to make explicit the
role the scale S plays in qualitative meaningfulness: An n-ary relation T on
N is said to be quantitatively S-meaningful if and only if for each admissible
transformation τ of S and each r1, . . . , rn in N ,

T (r1, . . . , rn) iff T (τ(r1), . . . , τ(rn)) .

S can be used to interpret T as a relation U on X as follows: The n-ary relation
U on X is said to be the S-interpretation of T if and only if for all φ in S and
all r1, . . . , rn

T (r1, . . . , rn) iff U(φ−1(r1), . . . , φ−1(rn)) .

Basic Result. The above definitions and relationships between symmetries and
admissible transformations immediately yield the following theorem relating
qualitatively and quantitatively meaningful relations:
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Theorem: A relation T is quantitatively S-meaningful if and only if its S-
interpretation is qualitatively meaningful.

The above theorem shows that each quantitatively meaningful relation has,
through measurement, a corresponding qualitatively meaningful relation. Luce
(1978) used this idea to provide a qualitative theory for practice of dimensional
analysis in physics: Luce produced a qualitative structure X for measuring
physical attributes. He showed that under measurement, the quantitatively
meaningful relationships among the attributes were the “dimensionally invariant
functions” of dimensional analysis. It is a principle of dimensional analysis that
physical laws are such dimensionally invariant functions. Thus, by the just
mentioned theorem, it then follows from the principles of dimensional analysis
that each physical law corresponds to a qualitatively meaningful relation of X .
(Measurement-theoretic foundations for dimensional analysis can be found in
Krantz et al., 1971; Luce et al., 1990; and Narens, 2002.)

Qualitative meaningfulness is just the Erlanger concept of “geometric” ap-
plied to science. Mathematically, the two concepts are identical. The Erlanger
Programme, as formulated by Klein and as used in mathematics, lacks a serious
justification for assuming that the invariance of a relation under the symmetries
of a geometry implies that the relation belongs to the geometry.

Scientific Definability. Narens (2002, 2006) sought to find a justification for
Klein’s assumption. He thought that a reasonable concept of a relation R be-
longing to a structure X was that R should somehow be definable in terms of
the primitives of X . But the usual concepts of “definable” used in logic failed
to provide a match with the Erlanger’s concept of “geometric.” Narens devel-
oped a new definability concept to capture the Erlanger Programme’s concept
of “geometric.” He called the new concept scientific definability.

Scientific definability assumes that the quantitative world is constructed
from relationships based on real numbers and is completely separated from
the qualitative situation under investigation, X , which is conceptualized as a
qualitative structure. Unlike definability concepts from logic, scientific defin-
ability allows the free use of concepts from the quantitative world for defining
relationships based on the domain X of a qualitative structure X . Narens shows
that a relation on X is qualitatively meaningful if and only if it is scientifically
defined in terms of X .

There is one obvious case where the Erlanger Programme appears to pro-
duce a remarkably poor concept of “geometric.” This where the geometry X has
the identity function as its only symmetry, yielding that every relation on X is
“geometric,” and for measurement situations where the scale consists of a single
representation, making each relation on the domain of the numerical represent-
ing structure quantitatively meaningful, and, thus by the above theorem, each
relation on X qualitatively meaningful. There are many important examples of
this case, for example the geometry of physical universe under Einstein’s general
theory of relativity.

Narens (2002) provides generalizations of “scientific definability” that ap-
pear to yield reasonable and productive concepts of “geometric” (“qualitatively
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meaningful”) for situations where the geometry (qualitative structure) has the
identity as its only symmetry. The main idea for the generalizations is the fol-
lowing: Instead of formulating meaningfulness in terms of a single qualitative
structure, a family F of isomorphic qualitative structures is used. It is assumed
that all the structures in F have the same domain called the common domain
(of F). A relation R on the common domain is said to be F-meaningful if
and only if there exist a structure X in F , primitives Rj1 , . . . , Rjn of X , and a
formula ϕ used for scientific definitions such that

(i) R has a scientific definition in terms Rj1 , . . . , Rjn and ϕ, and

(ii) R has the same scientific definition for all X ′ = 〈X,R′
j〉j∈J in F ; that is, R

has the same scientific definition as in (i) but with Rj1 , . . . , Rjn
replaced

by R′
j1
, . . . , R′

jn
.

For the case where F consists of a single structure, F-meaningfulness coin-
cides with qualitative meaningfulness.

Louis Narens and R. Duncan Luce

See also Measurement, Theory of
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