LOUIS NARENS

A THEORY OF BELIEF FOR SCIENTIFIC REFUTATIONS

ABSTRACT. A probability function P on an algebra of events is assumed. Some of the
events are scientific refutations in the sense that the assumption of their occurrence leads
to a contradiction. It is shown that the scientific refutations form a a boolean sublattice
in terms of the subset ordering. In general, the restriction of P to the sublattice is not a
probability function on the sublattice. It does, however, have many interesting properties.
In particular, (i) it captures probabilistic ideas inherent in some legal procedures; and (i) it
is used to argue against the commonly held view that behavioral violations of certain basic
conditions for qualitative probability are indicative of irrationality. Also discussed are (iif)
the relationship between the formal development of scientific refutations presented here
and intuitionistic logic, and (iv) an interpretation of a belief function used in the behavioral
sciences to explain empirical results about subjective, probabilistic estimation, including
the Ellsberg paradox.

1. INTRODUCTION

Since the 1930s, the probability calculus of Kolmogorov (1933) has be-
come the standard theory of probability for mathematics and physics. This
article proposes an alternative calculus for empirical science. The alterna-
tive is consistent with the standard in the sense that it assigns the same
probabilities to scientific events as a probability function from the Kol-
mogorov theory. It, however, has a different event space and employs a
different logic to relate events. The difference results from platonic nature
of the event space and logic of the standard, which fails account for charac-
terizing features of scientific events, like their verifiability and refutability.
Such features are accounted for in the alternative, which is based on a
non-classical logic of events that intrinsically models key properties of
verifiability and refutability.

An analogous situation occurred in mathematics. Once, euclidean
geometry was completely dominate. Manifolds were described and worked
out in an euclidean framework. Later, it was found to be far more insight-
ful and productive to work completely “inside” the manifold, exploiting
its intrinsic characteristics. Thus, for example, it became more produc-
tive for mathematicians to describe the geometry of a torus (the surface
of a doughnut shaped object) intrinsically in terms of its 2-dimensional
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geometrical properties than extrinsically as a 2-dimensional surface in a 3-
dimensional euclidean space. In the present case, the Kolmogorov theory
is dominate. The scientific events, i.e., events of the form, “A occurs and is
(scientifically) verifiable,” or of the form, “A occurs and is (scientifically)
refutable,” of a targeted fragment of science can be viewed as a portion of
a larger set of platonic events. They only form a portion, because the com-
plement (or negation) of a scientific event need not be a scientific event;
that is, the complement of a verifiable event need be neither verifiable
nor refutable, and similarly, the complement of a disjunction of refutable
events need be neither verifiable nor refutable. In short, the complementa-
tion operator of a boolean algebra of events does not in general preserve
scientific events. In this sense, the Kolmogorov theory adds extrinsic struc-
ture to the scientific events through its use of (boolean) complementation.
This article shows that the scientific events themselves have considerable
structure. This intrinsic structure forms the basis of an alternative proba-
bilistic theory that is applied to various examples, including American law
and issues involving the behavioral characterization of rational behavior.

1.1. Probability Functions

Since the 1930s, probability has been defined in accordance of Kol-
mogorov (1933) as a finite or o-additive measure on a boolean algebra
of sets. Although o -additivity adds important mathematical structure, the
generalizations of probability theory discussed in this article do not em-
ploy the additional structure, and thus only finitely additive versions are
presented. Also, to simplify notation and definitions, nonempty sets of
measure 0 are excluded. If needed, the development could be extended
to include the o -additive case and nonempty sets of measure 0.

One productive way for understanding the relationship of standard
probability theory to its generalizations and extensions is through lattice
theory. Boolean algebras of sets form a special kind of lattice, called
boolean lattices. The concepts of lattice and boolean lattice are defined
as follows:

DEFINITION 1. < is said to be partial ordering on A if and only if A is
a nonempty set and the following three conditions hold for each a, b, and
cin A:

() a=a

(i1) ifa < band b < a,thena = b; and
@iii) ifa < band b < c,thena <c¢. O

DEFINITION 2. (A, <, u, z) is said to be a lattice (with unit element u
and zero element z) if and only if
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(i) < is a partial ordering on A;

(ii) for each @ and b in A, there exists a unique c in A, called the join of a
and b and denoted by a LI b, such thata < a U b, b < a U b, and for all
din A,

ifa<dandb <d, thenalb <d,

(iii) for each a and b in A, there exists a unique element c¢ in A, called the
meet of a and b and denoted by a M b, suchthatanb <a,amnb < b,
and for all d in A,

ifd <aandd <b, thend <anb;

and
@iv) forallain A,z <aanda <u. U

Let (A, <, u, z) be a lattice. Then it easily follows that LI and M are
commutative and associative operations on A.

CONVENTION 1. A lattice (A, <, u, z) is often written as

<A3 5’ |_|’ H,u,z>' |:|

DEFINITION 3. Let = (A, <, U, M, u, z) be a lattice.
2l is said to be distributive if and only if for all a, b, and c in A,

an(buc)=(@nb)u(anc).

2 is said to be complemented if and only if for each a in A, there exists
an element b in A, called a complement of a (in 21), such thata U b = u
andanb =z.

2 is said to be boolean if and only if it is complemented and
distributive.

Suppose 2 is boolean. Then it is easy to show that the complement
of each element of A is unique. Thus for each a in A, let —a denote the
complement of a (in ). Then it follows that — is a well-defined operation
on A.

2 is said to be a lattice of sets (or a lattice of events) if and only if < is
C, Uis U, mis N, u is a nonempty set, z is &, and each element of A is a
subset of u. [J

CONVENTION 2. A boolean lattice %l = (A, <, U, M, u,z) is often
written as

<A7 ﬁ) |—|, |_|’ —, U, Z))

where — is the complement operator of 2.
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Often when describing two or more boolean lattices, the same sym-
bol, — is used to denote the two (and, in general, different) complement
operations of the two lattices. [J

It is easy to verify that boolean algebras of events are examples of a
boolean lattice. The following is another well-known example.

EXAMPLE 1 (Boolean Lattice of Propositions). The propositional cal-
culus from logic is an important example of a boolean lattice. Let —, <,
V, A, and neg stand for, respectively, the logical connectives of implication
(“if ... then”), logical equivalence, (“if and only if”’), disjunction (“or”
conjunction, (“and”), and negation (“not”). Consider two propositions a
and S to be equivalent if and only if & < £ is a tautology. Equivalent
propositions partition the the set of propositions into equivalence classes.
Let A be the set of equivalence classes. The equivalence class containing
a tautology is denoted by u, and the equivalence class containing a contra-
diction is denoted by z. By definition, equivalence class ¢ < equivalence
class b if and only if for some elements o ina and fin b, a — fisa
tautology. It is easy to check that < is a partial ordering on A.

Let a and b be arbitrary elements of A, a and S be respectively arbi-
trary elements of a and b, j, be the equivalence class of a Vv 8, m be the
equivalence class of a A S, and n be the equivalence class of neg o.. Then
it is easy to check that j is the join of a and b, m is the meet of a and b, n
is the complement of a, and

2[=<A555|—,5|_|:_5M5Z>7

is a boolean lattice. [

Although the assignments of probabilities to propositions are often the
items of interest, they are usually modeled as assignments of probabilities
to events. This is partially justified by the following theorem of Stone
(1936).

THEOREM 1 (Stone’s Representation Theorem). Let
Ql = (A7 57 U’ I_la T uaZ)
be a boolean lattice. Then there exists a boolean algebra of events B =

(B,<S,U,N, —, X, &) and an isomorphism ¢ of the lattice 2 onto B such
that p(u) = X and ¢ (z) = @. 0O



A THEORY OF BELIEF FOR SCIENTIFIC REFUTATIONS 401

Probability functions have the formal properties of a finitely additive
measure. The finite additivity comes form the condition,

(1) Forallaandbin A, if a b = z, then P(a U b) = P(a) + P(b).
For boolean lattices, Equation (1) is equivalent to
2) For all ¢ and b in A, P(a) + P(b) = P(a U b) + P(a N b).

Obviously Equation (2) implies Equation (1). The equivalence of Equa-
tions (1) and (2) uses the existence of complements. Both Equations (1)
and (2) can be used for formulating generalizations of probability func-
tions that apply to lattices more general than the boolean ones. Because
Equation (2) retains more structure of probability functions, it is used in
the generalizations presented in this article.

It is well-known that lattices that have probability functions that satisfy
Equation (2) must satisfy the following condition:

Modularity: for all a, b, and ¢ in A, if a < b, thenan (b Uc) =
(@anb)u(anc).

Modularity is a generalization of distributivity. Birkhoff and von Neumann
(1936) use non-distributive modular lattices to describe the propositional
logic of quantum mechanics. This article considers only the impact
of Equation (2) style probability functions on distributive lattices that
generalizes boolean lattices in a particular way.

Textbook probability theory defines a and b to be independent, a L b,
if and only if

(3)  Planb) =P@)P®).

This definition of “independence” strikes me and others as rather odd: (1)
In practical applications one usually knows and uses certain events as being
“independent” as part of the process of establishing probabilities. In fact,
frequency theories of probability (e.g., von Mises 1936) employ a non-
numerical concept of independence at the foundational level to guarantee
that the relative frequencies have the desired properties. (2) There are many
situations in which there is not enough information to uniquely deter-
mine a probability function, that is, there are situations in which different
probability functions describe the known facts and hypotheses. In such
situations, Equation (3) is of little use for deciding independence. And (3),
in situations where there is unique probability function, events a and b may
be “independent” for only the accidental reason that Equation (3) holds,
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rather than for some principled reason involving that natures of @ and b. In
this article, we will assume, as is customary in some foundational theories
of probability, that L is taken as a primitive concept and require,

ifa L b, then P(a)P(b).

Some of the above considerations about probability functions are
summarized in the following definition.

DEFINITION 4. P is said to be a probability function on the distributive
lattice (A, <, U, M, u, z) with independence relation L if and only if the
following five conditions hold for all @ and b in A:

1. P is a function from A into the closed interval of the reals [0, 1].
2. P(u) =1and P(z) = 0.

3. If a C b, then P(a) < P(b).

4. P(a) + P(b) = P(a U b) + P(a N b).

5.Ifa L b, then P(a mb) = P(a)P(h). O

1.2. Belief Functions

Many researchers consider traditional probability theory to be the only
rational approach to uncertainty; and many others disagree, with some
proposing alternative theories that they consider to be rational. The alter-
native theories, leaving aside the issue of whether they are truly “rational,”
generally suffer the deficiency of lacking the mathematical power of prob-
ability theory. Narens (2003a), however, provides a theory that generalizes
probability theory and has mathematical and calculative power at the same
level of finitely additive probability theory. He arrives at this theory by
first providing a qualitative axiomatization of a version of conditional
probability. This is done in such a way that one of the axioms captures
consequences of conditional probability that some theorists believe to
be invalid for a general, rational theory of belief. This axiom is then
eliminated and the most general quantitative model corresponding to the
remaining axioms is found. The result is a belief function B(A|B) having
the form,

(4)  B(A|B) =P(A|B)v(A),

where PP is a uniquely determined conditional probability function and v is
a function into R that is unique up to multiplication by a positive real. He
then uses this result to give alternative accounts of various findings about
psychological judgments of probability.
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The axiom of qualitative conditional probability that Narens (2003a)
eliminates is called Binary Symmetry. It is formulated as follows, where
“~” stands for “has the same degree of belief” and “(E|F)” for the condi-
tional event of “E occurring given F has occurred:” Suppose A, B, C, and
D are mutually disjoint, nonempty events and

5) (AJAUB) ~ (BJAUB)and (C|CU D) ~ (D|CUD).
Then

(6) (AJAUB) ~ (C|CU D)
and

7 (AJAUC) ~ (B|BU D).

Note that if degrees of belief are measured by a probability function
P and Equation (5) holds, then P(A) = P(B) and P(C) = P(D), from
which Equations (6) and (7) follow.

Narens (2003(a)) gives the following rationale for the desirability of
eliminating the axiom of Binary Symmetry:

In the context of the other axioms for conditional probability, Binary Symmetry asserts
that if A and B have equal likelihood of occurring and C and D have equal likelihood of
occurring, then the conditional probabilities of (A|A U B) and (C|C U D) are %, and the
conditional probabilities of (A|A U C) and (B|B U D) are the same.

Suppose Equation (5) and the judgment of equal likelihood of the occurrences of A
and B, given either A or B occurs, is based on much information about A and B and a
good understanding of the nature of the uncertainty involved, and the judgment of equal
likelihood of the occurrences of C and D, given either C or D occurs, is due to the lack
of knowledge of C and D, for example, due to complete ignorance of C and D. Then,
because of the differences in the understanding of the nature of the probabilities involve, a
lower degree of belief may be assigned to (C|C U D) than to (A|A U B), thus invalidating
Equation (6).

Suppose Equation (5) and the judgments of the likelihoods of the occurrences of A and
C, given either A or C occurs, are based on much information about A and C and the
nature of the uncertainty involved, and the judgment the likelihoods of the occurrences of
B and D given either B or D occurs is due to the lack of knowledge of B and D. This may
result in different degrees of belief being assigned to (A|A U C) and (B|B U D), and such
an assignment would invalidate Equation (7).

For events A and B, let A > B stand for “A is more likely than B.” The
relation > can be observed in several ways, for example by asking subject
directly, “Is A more likely than B,” or by asking the subject, “Would you
prefer the gamble of receiving $100 if A occurs and receiving $0 if A does
not occur to the gamble of receiving $100 if B occurs and receiving $0 if
B does not occur?”’ The following has been consistently assumed to be a
basic rule of rational probabilistic behavior:
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DEFINITION 5 (de Finetti’s Axiom). If A > BandCNA =CNB =,
then AUC -~ BUC.

Note that de Finetti’s axiom is the qualitative version of,

if P(A) > P(B)andCNA=CNB =g,
then P(AUC) > P(BUC).

Ellsberg (1961) presented the following example of human behavior
that contradicts de Finetti’s Axiom:

EXAMPLE 2 (Ellsberg’s Paradox). Suppose an urn has 90 balls that have
been throughly mixed. Each ball is of one of the three colors, red, blue, or
yellow. There are thirty red balls, but the number of blue balls and the
number or yellow balls are unknown except that together they total 60. A
ball is to be randomly chosen from the urn, and the subject will earn $100
if he or she correctly guesses the color of the ball. Let R be the event that
a red ball is chosen, B the event a blue ball is chosen, and Y the event a
yellow ball is chosen. Let U = R U B U Y. Typically, subjects’ behavior
indicate,

B(R|U) > B(B|U) and B(RUY|U) < B(BUY)|U),

violating de Finetti’s Axiom. The usual reason given for this result is that
subjects perceive B as more “ambiguous” than R and R U Y as more
“ambiguous” than B U Y and ambiguity is perceived to to increase of the
riskiness of the choice. [

Ellsberg’s Paradox is consistent with the belief function B above by the
assignments to Equation (4),

P(RIU) = P(B|U), v(R) > v(B),
P(RUY|U)=P(BUY), and o(RUY) <0(BUY).

Ellsberg and others have argued that probability theory is too narrow for a
general theory of rational belief, with Ellsberg’s Paradox being a demon-
stration of its limitation. If one assumes this, then the belief function B in
Equation (4) has a normative interpretation. However, Ellsberg’s Paradox
is very controversial as an example of rational behavior.

One of goals of this article is to provide a non-controversial interpreta-
tion of B as a rational assignment of degrees of belief. This will be done
by considering a lattice of events where each event can either be verified
scientifically or refuted scientifically. Such a lattice will be shown to be dis-
tributive. The scientific refutations will be shown to be a boolean sublattice
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of it. A rational assignment of degrees of belief is given by a probability
function IP on the scientific events. When P is restricted to the sublattice of
scientific refutations, it can be reinterpreted as a belief function B on the
scientific refutations that satisfies Equation (4). Because IP was chosen as a
rational assignment of degrees of belief, it then follows that its restriction
to the sublattice of scientific refutations, reinterpreted as B, must also be a
rational assignment.

Other issues of rationally are also considered in the article, including
what sorts of behavior may be appropriately labeled “irrational.”

2. LATTICES OF SCIENTIFIC EVENTS

2.1. Basic Concepts

In this section we start with a lattice of events & = (8, C, U, N, —, U, D).
In the intended interpretation, 4 is a set of events about a phenomenon
under investigation. Other events are generated from 4. Some of these are
through a new unary operation, —. — applies to events to produce events.
It may produce new events; that is, when applied to events in 4, it may
produce an event not in 4. It also may apply to events not in 4, for example,
if O isin 4 and — Q is not in 4, then — may be applied to = Q to
produce — (— Q). In the intended interpretation, some of the new events
may be interpretable about the phenomenon under consideration, i.e., as
subsets of U that are not in 4, while others may be about the science of the
phenomenon under consideration, and and as such cannot be interpreted as
subsets of U. The new operation is called refutation.

DEFINITION 6. Let Q be an event. Then the following definition holds:
— Q is the event that the assumption of the occurrence of the event Q leads
to a contradiction. “— Q” is read as, “The event that the event Q has been
refuted.” [

Obviously Definition 6 is incomplete, because “leads to a contradic-
tion” has not been specified. More about this will be said later.

CONVENTION 3. As usual, = — A stands for = (= A), = A U B for
(— A)U B, etcetera. [

— should not confused with the boolean operation of complementation
—. In particular, the Law of the Excluded Middle holds for —,i.e., AU—-A
is always the sure event; however, A U — A need not be the sure event. In
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this respect, — behaves like negation in classical logic, whereas — behaves
like negation in intuitionistic logic (see Section 2.2).

Methods that produce scientific contradictions are many and varied. For
example, an event Q may be refuted through verification of an event T
such that 0 N T = @. Or the assumption of the occurrence of Q may
contradict a fundamental principle of the portion of science under consid-
eration, e.g., in a portion of classical physics where the assumption of the
occurrence of Q implies the existence of perpetual motion. For most rich
fragments of science, we do not have complete descriptions of the methods
of scientific inference. I consider it likely that such complete descriptions
are incapable of formal description. Fortunately, for the kinds of issues
dealt with in this article, a complete description of scientific refutation
is not needed; only a few basic properties of — are needed. These are
contained in Axioms 1 to 3 of the following definition.

DEFINITION 7. Let & = (§,U,N, —, U, &) be alattice of events. Then
¢=(&,C,U,N X, )

is said to be the lattice of scientific events (generated by &) if and only if
the following condition about & and the following three axioms about —
hold:

& is the smallest set of events such that

(i) § C6&;
(il)) @ and X are in &;
(ii1) if Aisin &, then A C X; and
(iv) if Aand B arein §,then AU B, AN B,and — A are in &.

AXIOM1. = X =@ and—~ @ = X.
AXIOM 2. ForallAand Bin &, if ANB = &, then B C — A.
AXIOM 3. Forall Ain&, AN—-A=0.

Note that X is the sure event of & (i.e., is the largest event in §).
DEFINITION 8. Let &€ = (&, C,U, N, —, X, &) be a lattice of scientific
events generated by 4. Then 4 is called the set of initial scientific events
(of €) and & is called the set of scientific events (of €). Events of & of the
form — A are called refutations.

§ is said to be an lattice of scientific events if and only if for some 7, §
is the lattice of scientific events generated by 7. [J
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Although refutations are important in carrying out empirical science,
they also have significant roles in other kinds of situations. Because De-
finitions 7 and 8 contain only very general properties of contradictions,
refutations are also applicable to situations outside of the foundations
of empirical science. The following are two very different examples of
involving refutations.

EXAMPLE 3 (Proof Theory). Let I' be formal theory of arithmetic used
by Godel (1931) in his famous incompleteness theorem, and let I' - a
stand for the first-order sentence o is a formal consequence of I'. Let
= be the equivalence relation defined on the set of first-order arithmetic
sentences, F, such that for all ¢ and w in F, ¢ = w if and only if
(I' H ¢ < w). Let & be the set of =-equivalence classes. Define <, Vv,
A, u, and z as follows: For all A and B in 4,

(i) A < Bifandonlyifforsomea in Aand fin B,if ' - a,thenI" I 3,
(ii)) Au Bifand only if forsomea in Aand fin B, Faor' - f,
(iii) A n B if and only if forsome e in Aand fin B, Faand I I §,
(iv) u is the set of @ in F such that " - «.
(v) z is the set of o in F such that I' - neg a, where neg is the negation
operator of the language of I

Then (&, <, U, M, u, z) is a distributive lattice. For A in 4, let = A stand
for, “For some a in A, I' F o leads to a contradiction.” Let y be the critical
sentence (“I am not a theorem”) that Godel used to establish his incom-
pleteness theorem, and let G be the element of 4 to which y belongs. Godel
showed that the assumption of I' I y contradicted a fundamental principle
of the metatheory of arithmetic, w-consistency, which in the current setup
yields — G.

Note the following analogies between refutation in science and refu-
tation in this mathematical example: (1) Verifiability is analogous to
provability from I'. (2) Refuting A by verifying a B suchthat AN B = &
is analogous to assuming I" U {0} and showing I' U {0} F x, where x
is a contradiction of F, to conclude — D, where D is the element of 4
to which ¢ belongs. And (3), assuming the occurrence of A to contradict
a fundamental principle of the portion of science under consideration is
analogous to assuming I F 8 and showing that a fundamental principle of
the metatheory of arithmetic is contradicted. [J

EXAMPLE 4 (Psychology of Judgment). In the psychology of subjec-
tive judgments of probability, Narens (2003b) presents a model in which
cognitive representations of linguistic descriptions of events are given a
topological structure. It is assumed that when a subject is asked to judge
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the conditional probability of A|B, P(A|B), the subject does this by first
forming cognitive representations A for A and B for B. The subject then
uses cognitive heuristics to determine the support for A, ST(A) (modeled
as a non-negative real number), and the support against A, S~(A) (mod-
eled a non-negative real number), and produces a probability judgment
consistent with the formula,

5*(A)

TS s @

S7(A) is determined as follows: The subject constructs a cognitive com-
plement of A, = A (taking B to be the universe in which the comple-
mentation takes place), uses cognitive heuristics to find the support for
= A, ST (= A), and takes S~ (A) to be ST(— A). Narens assumes that the
cognitive representations B, A, and — A are open sets in a topology with B
as the universal set in the topology. The presentation of A|B triggers cog-
nitively clear and ambiguous instances for judgment. The clear instances
triggered by A form A. The ambiguous instances triggered by A form the
(topological) boundary of A. Similarly the cognitive construction of — A
leads to clear and ambiguous instances, with the clear ones forming — A
and the ambiguous ones the boundary of — A. Thus in computing S*(A)
and ST (— A), the triggered boundaries are ignored. This leads to a failure
of the Law of the Excluded Middle, that is, A U — A is a proper subset of
B. Narens assumes that for open sets O, — Q is the interior of the closure
of B — Q,i.e., — Q is the largest open set in B such that 0 N (— Q) = &.
With this definition,

<£3§3U303_|,BB®>’

where 8B is the set of open subsets of B, is formally a lattice of scien-
tific events. Narens (2003b) shows that this topological model accounts
for many puzzling empirical findings in the extensive literature of human
probability judgments. [

Other examples of lattices of scientific events can be constructed from
applications of intuitionistic logic for reasons discussed next.

2.2. Relationship to Intuitionistic Logic

Intuitionism was introduced by the mathematician L. L. J. Brouwer as an
alternative form of mathematics. It followed from Brouwer’s philosophy
of mathematics that the methods of derivation used in intuitionistic math-
ematical theorems could not be formalized. However, the intuitionistic,
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mathematical theorems that Brouwer produced displayed sufficient regu-
larity in their proofs that an axiomatic approach to his methods of proof
appeared feasible. Such an axiomatization was accomplished by Heyt-
ing (1930). Today logics that are equivalent to Heyting’s axiomatization
are called intuitionistic logic. Although Heyting designed his logic for
intuitionistic mathematics, it was shown to have other applications. For
example, Kolmogorov (1932) showed that Heyting’s logic had the correct
formal properties to provide a theory for mathematical constructions; and
Godel (1933) showed that it can be interpreted as a foundational logic
for concepts that naturally arise in proof theory of mathematical logic.
Kolmogorov and Godel achieved their results by giving interpretations to
the logical primitives that were different from Heyting’s.

In classical propositional logic, the operation of “if and only if” yields
an equivalence relation on propositions, and the induced algebra on the re-
sulting equivalence classes is a boolean lattice (see Example 1). In a similar
manner, in intuitionistic propositional logic, the intuitionistic “if and only
if” operation, yields an equivalence relation on intuitionistic propositions,
and the induced algebra on its equivalence classes also produces a lat-
tice, called a pseudo boolean algebra. Like boolean lattices, each pseudo
boolean algebra is isomorphic to a lattice of subsets of the form,

m:<j),g’u,m,x,®>,

(Stone 1937; McKinsey and Tarski 1946).! Such lattices of subsets are
called “pseudo boolean algebras of subsets,” and are defined formally as
follows:

DEFINITION 9. P = (£, <, U, N, =, X, J), where = is a binary op-
eration on J, is said to be a pseudo boolean algebra of subsets if and only
if the following three conditions hold for all A and B in &:

(1) P=(P,S,U,N, X, @) is a lattice of subsets.
2) AN(A= B) CB.
(3) Forall Cin ,if ANC C Bthen C C (A = B).

= is called the operation of relative pseudo complementation. [

= is the pseudo boolean algebra of subsets version of the implication
operation of intuitionistic logic.

LetB = (8B, C,U,N, —, X, &) be a boolean algebra of subsets. Then
it is not difficult to show that

($,§,U,ﬂ,—>,X,@)
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is pseudo boolean algebra of subsets, where for all A and B in 8,
A— B = —-AUB,

i.e., —> 1is the boolean algebra of subsets version of the implication op-
eration of classical logic. Thus each boolean algebra of subsets is a pseudo
boolean algebra with —~ AU B = — = =.

The following theorem show the relationship between the refutation
operator — of an empirical algebra of events and the relative pseudo
complementation operator = of a pseudo boolean algebras of subsets.

c,U,N, =, X, @) is a pseudo boolean

THEOREM 2. Suppose P = (P, C,
algebra of subsets. For each A in &, let

—A=A=0.

Then (P, C, U, N, =, X, &) is an lattice of scientific events.
Proof. Axioms 1 to 3 are immediate consequences of Definition 9. [J

In intuitionistic logic, — in Theorem 2 is called intuitionistic negation.

Lattices of scientific events are lattices of subsets with a weakened form
of complementation that has the fundamental properties of intuitionistic
negation. They differ from pseudo boolean algebras in that the operation
of relative pseudo complementation, =, is not used. While in some appli-
cations of lattices of scientific events = has cogent interpretations, this is
not always the case. For all the applications of Intuitionistic logic of which
I am aware, — has cogent interpretations.

2.3. Properties of Lattices of Scientific Events

THEOREM 3. Let ¢ = (€,C,U,N, —, X, &) be a lattice of scientific
events and A and B be arbitrary events in &. Then the following five
statements are true:

1. If BC A,then— A C — B.
2. AC—-—- A

3.0 A=——=—-A.

4 = (AUB)=—A N = B.
5. AU—-BC - (ANB).

Proof. 1. Suppose B € A. By Axiom3, AN— A =@.Thus BN— A =
. Therefore, by Axiom 2, - A € — B.

2.By Axiom 3, -~ ANA = &. Thus by Axiom 2, A € — — A, showing
Statement 2.
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3. By Statement 2, A € — — A. Thus by Statement 1,
== AC—-A.
However, by Statement 2,
—“AC——=(mA)=—--A,

Therefore, = A = — — — A.
4. By Axiom 3, (i) =~ A € — A and (if) — B € — B. Thus

—AN—=B<C -AN-B=-(AUB).
Therefore (AU B) N (— AN — B) = &, and thus by Axiom 2,
8) —AN—=BC—-(AUB).
Because A € AU B and B € A U B, it follows from Statement 1 that
- (AUB)C—=A and = (AUB)C - B.
Therefore
) - (AUB)C—=AN-B.
Equations (8) and (9) show that
- (AUB)=—A N = B.
5. From
ANBCA and ANB C B,
it follows from Statement 1 that
—AC—-(ANB) and = B < — (AN B),
and thus
—AU-BC—-=(ANB). O

2.4. Boolean Lattice of Refutations

DEFINITION 10. Let€& = (€, C,U, N, —, X, &) be alattice of scientific
events. By definition, let

R ={— B|B € &} = {A]A is arefutation in &§}.

By definition, for each A and B in R, let
AUB=--(AUB).

Then fR is said to be the boolean lattice of refutations (of €) if and only if
R=(R,C,U,N,—-, X, ). O
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Let € be a lattice of scientific events and R be the boolean lattice of
refutations in €. The following lemmas and theorem establish facts about
‘R, including that R is a boolean lattice.

Hypotheses for Lemmas 1 to 6: Let ¢ = (§,C,U, N, —, X, ) be a
lattice of scientific events and R = (R, C, U, N, —, X, &) be the boolean
lattice of refutations of €. Let A, B, and C be arbitrary elements of R,
and A’ and B’ be elements of & such that A = — A’ and B = — B'.

LEMMA1l. A=—-—- A
Proof. Because A = — A/, it follows from Statement 3 of Theorem 3
that

—|—|A=—|—|—|A/=—|A/:A_|:|

LEMMA 2. AN B isin’A.
Proof. By Statement 4 of Theorem 3,

ANB=—-A' N=-B =-(AUB). O

LEMMA 3. If B C A, then —— B C A.
Proof. By Lemmal,B=—-—-B. U

LEMMA 4. £ = (R, <, X, &) is a lattice with A N B as the meet of A
and B, and A U B as the join of A and B.

Proof. By Lemma 2, A N B is in R. Because A N B is the meet in &
and R C &, it follows that A N B is the meet in £.

Let D in R be such that

AC Dand B C D.

(Such a D exists, because the above expression holds for D = X.) Then
AU B C D. By two applications of Statement 1 of Theorem 3,

—~—(AUB)C ——D.

By Statement 2 of Theorem 3, AU B € — = (A U B), and by Lemma 1,
— = D = D. Thus,

AUBC—-—-(AUB)=AUBCD.
Therefore,

ACAUBCD and BCAUBCD.
Thus A U B is the join of A and B in £. [J
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LEMMAS. (ANB)U(ANC)=AN(BUC(C).
Proof.

(ANBYUANC) = [(ANB)U(ANCQC)]
= [AN(BUCQC)]
—[mAU-(BUCQ)]
(Statement 5 of Theorem 3)
[F—=AN—==(BUCQC)]
(Statement 4 of Theorem 3)
= ["=ANBUQC)]

= AN(BWYWC(C)] (Lemma 1),

U

that is,
1) ANB)UMANC)DAN(BUC).

Because,

(ANB)U(ANC) = AN(BUC)

C AN==-(BUCQC)
(Statement 2 of Theorem 3)
AN(BUCQC),

it follows that
(ANB)U(ANC)C AN(BUC().
Then
ANBCAN(BUYUC) and ANCCAN(BYC(C).

Thus, because by Lemma 4 (A N B) W (A N C) is the C-smallest element
in R such that

ANBCAN(BWYWC) and ANCCAN(BUYUCQO),
it then follows that
(11) (ANB)U(ANC) < AN(BUC).
Equations (10) and (11) show
ANBYUANC)=ANnBUC). O
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LEMMA 6. AU— A =X.
Proof.

AU—=A = == (AU—- A)

— (= AN—=—A) (Statement 4 of Theorem 3)
—(—wANA) (Lemmal)

— & (Axiom 3)

= X. (Axiom 1) O

THEOREM 4. R = (R, C, U, N, -, X, @) is a boolean lattice.

Proof. C partially orders R, and X and & are respectively the maximal
and minimal elements of &R with respect to €. By Lemma 4, N and U are
respectively the meet and join operations of R. By Lemma 5, N distributes
over U, and by Lemma 6 and Axiom 3, — is the complement operator on
R. Thus %A is a boolean lattice. [J

3. PROBABILITY THEORY FOR SCIENTIFIC EVENTS

One way to produce probability functions on an lattice of scientific events
¢ is to find a probability function P on a boolean lattice of events that
contains & and restrict IP to the domain of €.

DEFINITION 11. Let € = (€, <, U, N, —, X, &) be an lattice of scien-
tific events. Let 8B be the smallest set such that (i) § C B, and (ii) for all
Aand Bin §, AU B, AN B, and — A are in 8. Then

% = ("(B, §9U9m9 _7X5®>
is called the outer boolean lattice generated by €. [

Let € be an lattice of scientific events and 8 be the outer boolean lattice
generated by €. Then under usual assumptions about rationality and prob-
ability, subjective probabilities can be assigned to the events in B through
a probability function PP. Then the restriction of [P to the domain of €, Pg
is a probability function (in the sense of Definition 4) on the lattice €.

Let R = (R, C,u,N, 1, X, J) be the boolean lattice of refutations of
¢ (Definition 10). Let B be the restriction of P¢ to 2. Then B is, in general,
not a probability function of R. In fact, B is superadditive; that is, for all
Aand Bin R suchthat AN B = &,

B(A) + B(B) < B(AU B),
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and there may be elements C and D in &R such that C N D = & and
B(C)+B(D) < B(CU D).

The supperadditivity of B results from the fact that R may have elements
A and B such that AN B = @ and A U B is not a refutation, and therefore,

AUB=—--(AUB)D AUB.

Let £ = (A, <,U, M, u, z) be a lattice and < be a binary relation on
A. The intended interpretation of “a < b” is “the degree of belief for a is
less than or equal to the degree of belief for b.” For boolean lattices, the
following condition has been considered as necessary for rationality:

DEFINITION 12. Let £ and < be as above. Then < is said to be quali-
tatively additive if and only if < is a total ordering on A and de Finetti’s
Axiom (Definition 5) holds, that is, for all @, b, and cin A, ifanc = 2
and b M c = z, then

a<b iff auc<buce. O

Suppose £ is boolean. In the behavioral sciences, particularly in eco-
nomics and experimental psychology, it is often considered appropriate
to formulate “rationality” in terms of an individual’s behavior rather than
in terms of the individual’s interpretation of what is giving rise to his or
her behavior. Thus it is said that a person’s behavior is consistent with
rationality if it satisfies certain rationality conditions. It is recognized that
a person can display rational behavior by employing nonrational subjective
methods of evaluation. This is part of the reason of why the word “consis-
tent” is used in the phrase “consistent with rationality.” In the literature,
the qualitative additivity of < has been repeatedly taken as a condition
used in showing behavior is consistent with rationality. However, as dis-
cussed below, I find it problematic to assert that the failure of qualitative
additivity is sufficient to establish that a person’s behavior is inconsistent
with rationality.

Consider the case where PP is a probability function on the outer boolean
lattice B of an scientific lattice of events, &. Let

R = <‘{/?9 g’@9m9_17X7®>

be the boolean lattice of refutations of &, and let B be the restriction of P
to R. Define < on R as follows: For all S and T in R,

S < T iff B(S) < B(T).
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Because there may exist A, B, and C in R suchthat ANC = BNC = g,
B < A, and

AUC=AUC and BUC=—-—=(BUC) D BUC,

it may be the case that
P(AUuC) < P(BUY(C),

and thus, because P(AU C) = B(AU C) and P(BU C) = B(B U C),
AUC < BUC,

i.e., de Finetti’s Axiom, and therefore qualitative additivity, may fail in fR.
Such a failure should not be considered to be inconsistent with rationality,
for if the probability assignments via IP to the events in the outer boolean
lattice B of & are to be considered to be “consistent with rationality,” then
so should assignments via [P with respect to the boolean lattice 2R (which
is a substructure of B).

Let B, €&, ‘R, P, and B be as above. As discussed previously, it is often
the case that a person believes in the independence of two events A and B
without recourse to checking whether P(A N B) = P(A)P(B).Let A L B
stand for A and B exhibiting such “belief independence.” I will assume—
although many would insist that rationality demands—that if A and B are
elements of R and when considered as elements of B, A L B, then when
considered as elements of R, it is also the case that A 1. B. Thatis, A L B
does not depend on the boolean lattice to which they belong. Consistency
between | and PP requires that for all elements C and D of ‘B such that
C 1L D,P(C N D) = P(C)P(D). The following condition, stated for
B and called union independence, is often taken as a rational qualitative
axiom about probability with an independence relation _L: For all A, B,
and Cin B,if A L B,A 1L C,and BNC = @,then A L (BUZC(C).
Union independence does not hold for R, because it may be the case that
for some A, B, and C in R,

A1lB, ALC, BNC=9@, BUC=-—-(BUC)DBUC,
andnot A L BUC.

DEFINITION 13. LetR = (R, S, U, N, —, X, &) be the boolean lattice
of refutations of an lattice of scientific events.

B’ is said to be a belief function on R if and only if B’ is a function from
R into the closed interval of reals [0, 1] such that B'(@) = 0, B'(X) = 1,
and forall Ain R,if A # @ and A # X, then 0 < B'(A) < 1. Similar
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definitions hold for belief function on lattices of scientific events and on
boolean lattices of events.

Suppose B’ is a belief function on fR. Then (i) B’ is said to be monotonic
if and only if for all A and B in R,

if AC B then B'(A) < B'(B),

and (ii) B’ is said to be superadditive if and only if for all C and D in R
suchthat CN D = &,

B'(C) + B/ (D) < B(Cu D). O

Let R = (R, C,u,N, ~, X, J) be the boolean lattice of refutations of
an lattice of scientific events &, and let B be the outer boolean lattice of €.
Then not every monotonic, superadditive belief function B’ on fR can be
extended to a probability function on B. A necessary condition for such
extensions is that for all A, B, C, and D in R, if

AUBCCUD,
then
B'(A)+B'(B)—B(ANB) <B'(C)+B(D)-B(CND).

This condition is behaviorally testable in probability estimation experi-
ments. It appears to me to be sensible to test this and related conditions on
superadditive belief functions before asserting such functions exhibit “ir-
rational behavior,” even for researchers committed to textbook probability
theory as a criterion for rationality.

4. CONDITIONAL EVENTS

LetB = (B,<,U,N, —, X, @) be a boolean algebra of events, B be a
belief function on ‘B, and [P be any probability function on ‘B. For each
nonempty A in B, let

B(A)
A)= ——.
v(A) P(A)
Then B(A) = P(A)v(A). Thus a belief function having the form
“P(A)v(A),” puts no restriction on the belief function; that is, given a
probability function P on ‘B, each belief function is obtainable through
an appropriate choice of ». However, such is not the case for conditional
belief representations of the form,
P(C)v(C)

B(C|B) = B E)

= P(C|B)v(C),
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where C and B are arbitrary events in B such that C € B and B # @.
This is because v (C) does not vary with the conditioning event B in such
representations—a powerful restriction. In this section v (C) is viewed as
a factor that describes the amount the probability IP(C) is distorted. Note
that this way of viewing v requires that the distortion of P(C) be the same
as the distortion of P(C|B), for all B such that C C B.

Let € = (€, C,U,N, , X, &) be a lattice of scientific events,

R=(R,C.U,N,—, X, I)

be the boolean lattice of refutations of &, and P be a probability function
on &. For each nonempty A in &, let

P(—-—-A
oy = A,
P(A)
and for each B and C in € such that B is nonempty and C C B, let
P(C)o(C)
B(C|B) = ——— =P(C|B)v(C).
(€1B) = —5 i~ =PCIBR(O)

The above equation may be interpreted as an individual’s belief in C is
his or her subjective probability that given an scientific demonstration of
the event B, a scientific refutation can be given to the claim that C is sci-
entifically refutable. Although complicated, such conditional beliefs and
their associate degrees of belief make sense. They are especially useful in
situations where the demonstration of the double refutation of an event A
(i.e., — — A) is sufficient to take the same action, or have the same effect,
as the event A.

EXAMPLE 5 (American Law). In American law there is a presumption
of innocence; that is, in a criminal proceeding, a lawyer needs only to
accomplish the double refutation demonstrating innocence in order to free
his or her client; that is, the lawyer needs only to refute the claim that it
can be demonstrated that the innocence of the client is refutable. For legal
purposes, this has the same effect as the demonstration of innocence. Let
p; be the probability of demonstrating innocence, I, and p the probability
of demonstrating the double refutation of innocence, — — I. Then p; < p,
because I € — — [. For various legal decisions and actions, for example,
plea bargaining, it is p rather than p; thatis used. [J
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5. DISCUSSION

Narens (2003a) produced a qualitative axiomatization of conditional prob-
ability in which one axiom — Binary Symmetry — contains principles that
have been challenged in the literature (e.g., Ellsberg 1961) as necessary
for the rational measurement of uncertainty. He explored the mathemati-
cal consequences of deleting this axiom and found that the most general
representation of the remaining axioms measured uncertainty in terms of a
conditional belief function B of the form,

B(A[B) = P(A|B)v(A),

where P is a uniquely determined conditional probability function and v is
a function that is unique determined up to multiplication by positive reals.

Narens (2003a) investigates the applicability of the conditional belief
representation as a descriptive theory for various empirical results in the
literature involving subjective probability. Except for the Ellsberg Para-
dox, these empirical results are about “irrational” probabilistic phenomena.
And the Ellsberg Paradox is highly controversial as a proper application of
rationality. Thus Narens (2003a) does not provide an example where the
conditional belief function has a clear, rational application. Such exam-
ples are provided here by considering the restriction of rational probability
assignments to boolean lattices of refutations.

The approach to rationality in this article is a limited one: Only observ-
able rational behavior is considered. Such an approach deliberately ignores
the motivations and internal decision processes resulting in behavior. In
experimental psychology and economics this version of rationality has
proven to be very productive.

CONVENTION 4. Throughout the rest of this section let
E=(&,C,U,N, X, Q)

be a lattice of scientific events,
B=(B,S,U,N, -, X, )

the outer boolean algebra of &, and
R=(R,S,U,N,—, X, D)

the boolean lattice of refutations of &. Also let [P be a probability function
on B, and P4 be the belief function that is the restriction of P to R. [
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EXAMPLE 6 (Behavioral Irrationality/Rationality). Suppose that P is a
person P’s subjective probability function on *B. In Section 3, it was shown
that P fails both standard quantitative and qualitative properties generally
attributed to rational belief. In particular, Pg is superadditive and fails
qualitative additivity. It was argued that the assignments of degrees of
belief to elements of R by P are consistent with rationality, because the
assignments of probabilities to elements of 8 by P are consistent with
rationality. Note that in this situation, we have a complete view of the
relationship of fR to 9B without entering into P’s mind. Because of this, it
might well be argued that an eccentric interpretation is being given to the
join operator W in $R—that is, for P, U is not the set-theoretic correlate of
“or,” (the latter being, of course, U). However, other examples can be given
where this latter argument does not hold without entering into a person’s
mind.?

Consider the case where the Experimenter E presents events to per-
son Q for evaluation of subjective probability. E can check behaviorally
that Q is treating the events as if they were events from a boolean alge-
bra of events. For example, E can give (from E’s perspective) the events
AN(BUC) and (ANB)U(ANC) and ask Q if they are “identical.” Suppose
Q passes this test by treating the events “rationally;” that is, treating them
from the Experimenter’s perspective like they were from a boolean algebra
of events. Of course Q could have an idiosyncratic perspective about the
events. For example, through odd socialization Q may be what E would
consider to be a rabid empiricist who interprets the stimuli different than
E: Whereas E considers events to be platonic — either they occur or they
do not occur, Q interprets them as empirical and identifies an occurrence
of each event A with its double empirical refutation, = — A. Suppose for
each event A given by E to Q for “probabilistic evaluation,” Pz (— — A)
is Q’s response. Based on this behavior, should Q’s behavior be consid-
ered as “inconsistent with rationality,” because P is superadditive on R
and violates qualitative additivity? I think not. I believe a different ver-
sion of “consistent with rationality” is called for: Q’s behavior should be
considered as consistent with rationality as long as we can conceive of
an isomorphic situation of events in which, under isomorphism, another
person could give the same probability estimates to event stimuli as Q
and still be considered “rational.” Under this version, the demonstration of
the non-rationality of Q’s behavior would consist of showing that no such
isomorphism exists. [

For all A and B in & suchthat A C B and B # &, let
P(A)

P(AIB) = P(B)’
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and
_ P(=— A)
D(A) - W’
and
P(= —
B(—— A|B) = (}P(—B)A) =P(A|B)v(A).

Let 4§ be the set of initial events that generates & (Definitions 8 and 7).

EXAMPLE 7 (Updating Due to New Evidence). In the following, ele-
ments of 4 are considered as possible new pieces of evidence (e.g., the
outcome of a particular and ongoing DNA test; a new, and very reliable,
witness is discovered who provides testimony asserting the proposition ®;
et cetera). Suppose, like in law, the success (= the occurrence) a double
refutation depends on evidence. For the sake of argument, assume that (i)
the evidence are indisputable facts, (if) only elements of 4 can be presented
as additional evidence, and (iif) the success of a double refutation depends
only on the evidence presented. Suppose P is P’s probability function
on ‘B. P describes P’s current degree of beliefs of events in R. As new
evidence comes in, P will update his or her event space and probability
function. Because the success of a double refutation depends only on evi-
dence, P’s probability function will only be updated when new evidence E
in 4 is presented and the updating of an event D in & will be of the form

P(E N D)
P(E)

Suppose — — A and — — B are in R and

P(D|E) =

g Cc-—-AC—-—-BCX,

where X is the sure event.
Given the above, When is

P(==-4)

P(=— B)
a proper updating of P? The answer is “rarely.” The reason is that for
— — B to occur, new evidence needs to be presented, and by hypothesis,
this evidence, E, is in 4. Because, by assumption, the occurrence of = — B
completely depends on the occurrence of E, E € — — B. The probability
theory updating of IP for — — A in this circumstance is given by

P(EN—-—=A)

P(E) =P(EN—-—=A)E),
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and only rarely is this same as
P(= = A)
P(—— B)’

However, E N = — A need not be in R, and, as discussed in Section 4,
it is double refutations that are relevant. Therefore, unlike in traditional
probability theory, the double refutation event space &R cannot in general
be properly updated to a different double refutation event space, because
from the point of view of B, R should be updated to {E N F|F € R},
which generally contains non-refutations. I do not see this presenting seri-
ous difficulties, because for taking actions only updated degrees of belief
are needed, and these can always be computed for events in the event space
‘R, conditionalized on conjunctions of events from §. [

The last two examples establish that conditional belief representations
of the form

B(A|B) = P(A|B)v(A)

are in some circumstances a basis for a rational assignment of degrees
of belief. The argument for rationality rests on conceiving a circumstance
where for all relevant events A and B, the conditional degrees of belief
B(A|B) agree with the rational assignments of conditional probabilities in
a structurally isomorphic belief situation. The argument for the existence
of appropriate applications of such belief representations rests on the ef-
fectiveness and correctness of such representations for boolean lattices of
refutations of lattices of scientific events.

NOTES

1 See Rasiowa and Sikorski 1968 for a complete development of intuitionistic logics and
pseudo boolean algebras.

2 Of course, a person can enter his own mind and provide an explanation of his behavior.
However, experimental psychologists have found that such verbal reports of subjects to
be highly suspect and often unreliable as veridical accounts of how the behaviors were
produced — see, for example, Nisbet and Wilson (1977). For this and related reasons,
behavioral scientists choose to model directly the behavior of subjects rather than their

verbal reports of it or a combination of the two.
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