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The Irony of Measurement by
Subjective Estimations

Louis Narens

University of California, Irvine

In 1948 S. S. Stevens, in his famous Science article, proposed a theory of
measurement that radically differed from the dominate theory of the time.
The dominate theory held that all strong forms of scientific measurement—
for example, those that yielded ratio scales—had to be based on an observ-
able ordering and an observable commutative and associative operation.
Stevens proposed different criteria and introduced his method of magnitude
estimation. Stevens as well as measurement theorists considered his method
to be radically different from those based on commutative and associative
operations. Although his method was controversial, it became a standard tool
in the behavioral sciences. This article argues that Stevens’ method, together
with implicit assumptions he made about the scales of measurement it gener-
ated, is from a mathematical perspective the same as the measurement
process based on commutative and associative operations. The article also
provides a theory of qualitative numbers and shows an interesting relation-
ship between qualitative numbers and Stevens’ method.  © 2002 Elsevier Science
(USA)

1. INTRODUCTION

In 1946, the psychologist S. S. Stevens published an article in the journal Science
that has had an enormous impact on how behavioral scientists thought about and
used measurement. The article was Stevens’ response to a widely held view of the
time that justifiable forms of measurement that were stronger than counting or
numerical ordering necessarily relied on the existence of an observable, empirical
form of addition. Because psychological phenomena generally lacked such forms of
addition, many scientists believed that psychology was not—and could never be—a
quantitative science founded on philosophically sound principles. Stevens and other
psychologists thought otherwise. This led the British Association for the Advan-
cement of Science to appoint a committee to look into the matter. Stevens (1946)
comments,
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For seven years a committee of the British Association for the Advancement of Science
debated the problem of measurement. Appointed in 1932 to represent Section A (Mathema-
tical and Physical Sciences) and Section J (Psychology), the committee was instructed to
consider and report upon the possibility of “quantitative estimates of sensory events”’—
meaning simply: Is it possible to measure human sensation? Deliberation led only to
disagreement, mainly about what is meant about the term measurement. An interim report in
1938 found one member complaining that his colleagues “‘came out by the same door as they
went in,” and in order to have another try at agreement, the committee begged to be con-
tinued for another year.

For its final report (1940) the committee chose a common bone for its contentions, direct-
ing its arguments at a concrete example of a sensory scale. This was the Sone scale of loud-
ness (S. S. Stevens and H. Davis. Hearing. New York: Wiley, 1938), which purports to
measure the subjective magnitude of an auditory sensation against a scale having the formal
properties of basic scales, such as those used to measure length and weight. Again 19
members of the committee came out by the routes they entered, and their view ranged widely
between two extremes. One member submitted “that any law purporting to express a quan-
titative relation between sensation intensity and stimulus intensity is not merely false but is in
fact meaningless unless and until a meaning can be given to the concept of addition as
applied to sensation” (Final Report, p. 245). (p. 667)

In his Science article and his much cited Handbook of Experimental Psychology
chapter (Stevens, 1951), Stevens presented a radically different theory of measure-
ment and argued for a new measuring method based on subjective estimations. He
also had a penchant for naming things and introduced much terminology.
However, by current standards Stevens was not very sophisticated mathematically
or philosophically, and much of his theory was ill-founded.

In this article I will present what I consider to be the soundest version of the
ideas inherent in the relevant parts of Steven’s theory of measurement. These ideas
will often be formulated in a manner a little different from his, including a different
terminology. This should present little problem, because the goal of the paper is not
historical, but to examine how Stevens’ method of measurement based on subjective
estimations is related to classical forms of measurement. His method was—and still
is—very controversial, and it was universally held to be a completely different form
of measurement than those based on observable additive operations. I will argue
that in principle it can be put on as a firm foundation as classical measurement, and
when thus done, it bears remarkable formal similarities to classical measurement.
Thus, when properly characterized, there is nothing inherently radical about the
most radical method Stevens introduced into science.

2. PRELIMINARIES
The following definitions and conventions are observed throughout this article:

DerFNITION 1. R denotes the set of reals, R the set of positive reals, 1 the
integers, I* the positive integers, and * the operation of function composition.

< is said to be a total ordering on X if and only if X is a nonempty set and <
is a binary relation on X that is transitive (for all x, y, and z in X, if x <Xy and
y =<z, then x < z), connected (either x < y or y < x for all x and y in X)), and anti-
symmetric (for all x and y in X, if x <X y and y < x, then x = y).
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In the measurement literature, the term scale is used to denote a specific way of
measuring, as in “the centimeter scale,” as well as a set of specific ways of measur-
ing, as in “a ratio scale for length.” Throughout this article, the latter use of scale
will be retained and the former will be replaced by other terms.

DEerFINITION 2. Let Y be a nonempty set. A scale on Y is a nonempty set of
functions from Y onto a subset of R. Let & be a scale on Y. Then the elements of
& are called measuring functions.

The following three kinds of scales are routinely applied in the behavioral
sciences.

DEerFINITION 3. & is said to be a ratio scale if and only if (1) & is a scale, and (2)
for any fin &,

F={rf|reR*}.

& is said to be an interval scale if and only if (1) & is a scale, and (2) for any f
in &,

F ={rf+s|reR*and se R}.

& is said to be an ordinal scale if and only if (1) & is a scale, and (2) for any f
in &, sinto Rt and

F = {g = f| g is a strictly increasing function from R* onto R*}.

DerINITION 4. 9 =LY, U,, U,, ... is said to be a structure (of primitives) if and
only if Y is a nonempty set, called the domain of 9, and each U, is either an element
of Y, a set of elements of Y, or a finitary relation on Y. Y, U,, U,, ... are called the
primitives of ).

DEFINITION 5. A theory of measurement consists of a precise specification of
how a scale & of functions is formed. The currently dominant approach to mea-
surement in the literature is the representational theory. For the purposes of this
article, the representational theory may be formulated as follows: Scales # on a set
Y result by providing a structure of primitives ¥ with domain Y and a numerical
structure 9t with domain a subset of R such that & is the set of isomorphisms of 9)
onto .

Let % be a scale that results by the representational theory. In the representa-
tional theory, elements of & are usually called representations. Throughout this
article elements of & will usually be referred to as measuring functions or iso-
morphisms.

Totally ordered structures that are isomorphic to an open interval of real
numbers are of considerable importance to mathematics and science. They are
called continua, and the following qualitative axiomatization in terms ordering
properties was given by Cantor (1895).
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DErFINITION 6. (X, <X ) is said to be a continuum if and only if the following
four statements are true:

1. Total ordering: < is a total ordering on X.
2. Unboundedness: (X, < ) has no greatest or least element.

3. Denumerable density. There exists a denumerable subset ¥ of X such that
for each x and z in X, if x < z then there exists y in Y such that x < y and y < z.

4. Dedekind completeness: Each <-bounded nonempty subset of X has a <-
least upper bound.

Cantor (1895) showed the following theorem:

THEOREM 1. <X, <X ) is a continuum if and only if it is isomorphic to (R*, < ).
Proof. Cantor (1895). (A proof is also given in Theorem 2.2.2 of Narens, 1985.)
The following is an immediate consequence of Theorem 1:

THEOREM 2. Let X =<X, <X ) be a continuum. Then the set of isomorphisms of X
onto {R*, < > is an ordinal scale.

DeriNiTION 7. 9 =LY, <, U,, U,, ...> is said to be a continuous structure if and
only if 9) is a structure and <Y, < ) is a continuum.

For simplicity of exposition, this article will only consider continuous structures.
However, the results and claims made in the article do not depend in an essential
way on the relevant structures being based on continua, and thus these results and
claims can be appropriately generalized.

3. CLASSICAL MEASUREMENT

The classical approaches to measurement are based on an observable, empirical
addition operation that is used to produce a ratio scale of measuring functions. It
was the form of measurement developed by Helmholtz (1887), Holder (1901), and
Campbell (1920). Closely related forms of measurement were put forward by Frege
(1903) and Whitehead and Russell (1913). In Stevens’ era, Campbell was by far the
most influential of these theorists. However, because Holder provided the most
rigorous, complete, and systematic presentation, modern measurement theory has
tended to proceed much more in Holder’s tradition.

The following axiomatization and theorem, which are essentially the theory of
Holder (1901) applied to continuous domains, capture the concept of a qualitative
addition operation.

DerFINITION 8. X=X, <, @ ) is said to be a continuous extensive structure if
and only if @ is a binary operation on X and the following seven axioms are true:
1. Total Ordering: < 1is a total ordering on X (Definition 1).
2. Density: For all x and z in X, if x < z then for some yin X, x <y < z.

3. Associativity: @ is a binary operation that is associative; that is,
x@y)@z=xd(y®2)

for all x, y, and z in X.
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4. Monotonicity: For all x, y, and z in X,

xxyiffxezxyoziffzox<zd y.

5. Solvability: For all x and y in X, if x < y, then for some zin X, y=x @ z.
6. Positivity: x<x@ yand y<x @ y for all xand y in X.

7. Dedekind Completeness: Each nonempty, =<-bounded above subset of X
has a <-least upper bound.

THEOREM 3. Suppose X =<(X, < @ ) is a continuous extensive structure. Then
the set & of isomorphisms of X onto {R*, <, +) is a ratio scale.

Theorems 2 and 3 are special cases of the representational theory. During
Campbell’s era they were essentially the only applications of the representational
theory for continuous structures. Because ordinal scales are only of very limited use
in science, Campbell believed that all strong forms of measurement were ultimately
based on the classical approach. Today we know that Campbell’s view is far too
narrow, because there is a myriad of structures for which the representational
theory yields strong forms of measurement (e.g., see Krantz, Luce, Suppes, &
Tversky, 1971; Luce, Krantz, Suppes, & Tversky, 1990; Narens, 1985). Stevens also
thought Campbell’s view was too narrow, but for different reasons.

The classical method of showing Theorem 3 was by a construction employing
standard sequences:

DerFmNITION 9. Let <X, <, @ ) be a continuous extensive structure. For each x
in X and each i in [, let

X=X and Xy =X; ®X,
and let 7, be the sequence x, ..., X;, .... Then 7, is called the standard sequence of X
based on x.
Let x be an arbitrary element of X and x, ..., x;, ... be the standard sequence of

X based on x. The construction of a measuring function ¢, on X proceeds as
follows: For each i in [* let ¢, (x;) =i. Let y be an arbitrary element of X such that
x < y. Then using the properties of a continuous extensive structure, it can be
shown that n in [* can be found such that

xn < y < xn+1 .
Then intuitively, ¢, (y) should be such that
n=g(x,) < ¢.(y) <@(x,,1) =n+1.

Thus intuitively, the value of ¢, (y) is known within an error of 1. If y, =y ® y is
doubling of y in size and m is such that

Xy V2 < Xyt
then intuitively ¢, ( y) should be such that

m+1 m 1
< —F==+z;
P.(y) < 5 >t3

ST
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i.e., the value of ¢,(y) is known within error of ;. Similar considerations of the
elements y,, y,, ... of the standard sequence of X based on y yield approximations
of ¢,(y) within errors of 3, 3, etc. ¢.(y) is then defined to be the limit of these
approximations. Properties of X are used throughout this construction to guarantee
that the limit exists and is well defined. For y < x, one finds k in I* such that
x < ky, and then define

_2:(ky)

?.(y) 2

Properties of X are also used to show that for # and v in X,

P, = 9.,(0)- @,
The above results with other properties of X establish that for all x in X,

1. ¢, is a measuring function from X onto R*;
2. forallyandzin X, y<Xziff ¢,(y) < ¢,(z); and

3. {@,|ue X} is aratio scale.

Because of these results, the above construction involving standard sequences may
be viewed as a method of measurement that yields a ratio scale of measuring func-
tions on X. According to this view, it is just a bonus that @ is represented by
numerical addition, i.e., that for all x, », and v in X,

@ (u @ v) = 0,.(1) +¢,(v);

that is, it is the (constructive) measuring of X by a ratio scale that is of primary
importance for measurement and not necessarily the representing of @ by +.

4. STEVENS’ THEORY OF MEASUREMENT

Stevens considered classical measurement and its construction of a scale through
standard sequences to be a very special form of measurement. He proposed,

measurement, in the broadest sense, is defined as the assignment of [numbers] to objects or
events according to rules. The fact that [numbers] can be assigned under different rules leads
to different kinds of scales and different kinds of measurement. The problem then becomes
that of making explicit (a) the various rules for the assignment of [numbers], (b) the math-
ematical properties (or group structure) of the resulting scales, and (c) the statistical opera-
tions applicable to measurements made with each type of scale. (Stevens, 1946, p. 667.)

This definition, which is widely cited in the social and behavioral science literature,
is scientifically inadequate, because it provides no general definition or theory of
“rules.”

It is clear that Stevens wanted his definition to generalize classical measurement.
However, he failed to understand that the mathematical complexities in rigorously
establishing scale types will in general be much more complex than in the simple
case covered by classical measurement. In the new methods of measurement he
introduced, he and his legions of followers never provided adequate, theoretical
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justification for the scale types they assigned to their measurements. However,
Stevens did correctly realize that the classical approach was too narrow and that it
could be extended by providing a general characterization of the measurement
process. For discussions of the notion of measurement process see the critical
comments of Adams (1966) and the elaborate and subtle formal development of
Niederée (1992a,b).

Stevens considered the following method to be proper for establishing part of a
measuring function from a ratio scale: In an appropriate psychophysical setting, the
experimenter presents lights to a subject and asks him or her to estimate numeri-
cally their subjective brightnesses. For each presented light x the experimenter
assigns to x the number named by the subject for the brightness of x.

This form of measurement appears to be a radical and dramatic departure from
classical measurement: There is no apparent addition operation, and except for the
trivial step of the assignment by the experimenter of numbers named by the subject
to stimuli, whatever calculations are involved are entirely buried in the unobserv-
able, mental processing of the subject. Claiming such procedures ‘‘scientific”
obviously invited controversy, and much ensued. However, it is argued in the
following sections that procedures such as this one can be placed on a philosophi-
cally sound foundation, and when so done, they closely parallel the construction by
standard sequences of classical measurement.

5. RATIO MAGNITUDE ESTIMATION

In this section an axiomatic treatment of ratio magnitude estimation is given. It is
argued that the axioms capture principles inherent in Stevens’ methods of ratio
magnitude and production estimation. Then a theorem of Narens (1996) is pre-
sented that shows if the axioms are true, then measurement through the representa-
tional theory produces the same scale of measuring functions as Stevens’ methods.

There are various methods of eliciting subjective estimates from subjects, and
Stevens distinguished them in terms of instructions to the subject. For the purposes
of this article, subtle distinctions in terms of instructions to the subject will not
matter, because they are not the driving force behind the arguments presented here;
instead it is the structure of the data set of the subject’s responses that is the impor-
tant consideration. (For additional elaborations of this point see Narens, 1996,
1997.)

Throughout this section, X will denote a nonempty set and =< will denote a
binary relation on it. The intended interpretation is that elements of X are possible
stimuli to be presented to a subject for judgment and =< is an experimenter-deter-
mined intensity ordering on X. For psychophysical situations, X may be taken as a
set of physical stimuli and =< as the natural physical ordering on X.

Throughout this section, £ will denote a coding of the ratio estimation behavior
of a subject to stimuli from X. Elements of E are ordered triples of the form
(x, p, t), where x and ¢ are elements of X and p is a positive real number. (For
technical reasons discussed below, p is placed in bold typeface when it is part of a
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triple in E.) Instructions to the subject can be formulated so that for each p of a
triple in E, p e I*. This latter form of instruction, which is described in Conven-
tion 1, is employed later in the article.

Two Principles of the Stevens’ Theory of Ratio Estimation

Consider X to be a set of stimuli that is presented to a subject. Then Stevens’
method of ratio estimation culminates in the experimenter producing a function ¢,
from X into R* with the following properties: An element t—that we will call the
modulus—is selected from X. The subject is instructed to consider the number 1 as
representing his or her subjective intensity of ¢, and keeping this consideration in
mind to give his or her numerical estimate of his or her subjective intensity of
stimuli x in X. The experimenter uses these verbal estimates of the subject to con-
struct the function ¢, by assigning the number corresponding to the subject’s
numerical estimate of x as the value of the function ¢, (x).

Stevens was vague about what underlaid and what was being accomplished by
this and related methods of subjective estimations involving ratios. I believe the
following two assumptions, which here will be referred to as Stevens’s assumptions,
are inherent in his published ideas concerning valid applications of the method of
ratio estimation:

1. The function ¢, is an element of a ratio scale ¥ that adequately measures
the subject’s subjective intensity of stimuli in X.

2. Each element x in X can be used as a modulus and the resulting represen-
tation ¢, is in the ratio scale &; i.e., there exists r (=r(x,t)) in R* such that

Py =T1Q,.

Let D={¢,|te X}. Then D is the complete data set that is generated by con-
ducting all possible magnitude estimations of stimuli in X with all possible moduli
from X. For the purposes of this discussion, D will be recoded as

E={(x,p, )| 9.(x) = p}.

In triples (x, p, t) in E, p is put in bold typeface because it represents the subject’s
expression of an estimate, which is best conceptualized as a (real) numeral rather
than a (real) number. Because numbers are highly abstract scientific objects, it
would be unwise to assume subjects understood or used them in their calculations
or responses, and similarly it would be unwise to assume that subjects had or used a
philosophically sound correspondence between (scientific) numbers and numerals.
Thus for the purposes of this article, the occurrence of the numeral p in the expres-
sion “(x, p, t)” will be interpreted as an empirical behavioral item derived by the
experimenter from the subject’s responses.

DreriniTION 10. Let X and E be as above. Then E is said to have the multipli-
cative property if and only if for all x and ¢ in X and all p, g, and r in R*, if
(x,p,0)€E, (y,q,x)€E,and (y,r,t) € E, thenr=gq-p.
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The multiplicative property obviously imposes powerful constraints on the
subject’s ratio estimation behavior.! This is reflected in the following theorem.

THEOREM 4. Let X and E be as above, and suppose Stevens’ assumptions. Then E
has the multiplicative property.

Proof. Suppose (x,p,?1)eE,(y,q,x)eE, and (y,r,t)e E. Then ¢,(x)=p,
¢.(y) =gq, and ¢,(y) = r. By Stevens’ assumptions, let # in R* be such that

Py = UP;.
Then 1 = ¢, (x) =up,(x)=u-p;ie.,
1
u=-.
p
Therefore,
1 1
4=0.(Y)=—-9(y)=—-1;
14 14
ie,r=gq-p.

Convention 1. For the purposes of this article it is preferable to have instruc-
tions so that the numerals appearing in triples of £ name positive integers. As
mentioned earlier, what drives this article’s theory of ratio estimation is the struc-
ture of the data set E and not the instructions that produce E. Thus for concrete-
ness it will be assumed throughout the remainder of the article that E arises from
the following instruction: The experimenter presents a stimulus ¢ to the subject and
asks him or her to “find a stimulus x in X that appears to be p times greater in
intensity than the stimulus ¢.”” This form of instruction guarantees that all numerals
in triples of E will name positive integers. In the following axiomatization, the
triples of E are employed indirectly through the notation a,, where «, is defined by

(x,p,t)eE iff o, () =x.
DeriniTION 11, Nis the set of positive, integral numerals; i.e.,

N={plpel'}.
Axiom 1. <X, <) is a continuum ( Definition 6).

Axiom 2. {a, |p e N} is a set such that the following six statements hold for all p
and q in N:

! Narens (1996) suggests that these constraints are too powerful and are likely to fail empirically. He
suggests that a weaker condition, called the ‘“‘commutativity property,” should be considered in its place.
The commutativity property is implied by the multiplicative property and results in a ratio scale (Narens,
1996, 1997). Ellermeir and Faulhammer (2000) directly tested the multiplicative and commutativity
properties in a standard psychophysical paradigm and found that the multiplicative property failed but
the commutativity property held. Luce (2001) provides an axiomatization using the commutativity
property in a more complicated setting that includes magnitude production.
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a, is a <-strictly increasing function from X onto X.

X < o (x).

o, is the identity function 1 on X.

Foralltin X, o, (1) <, (1) iff p<gq.

Forall x and t in X, if t < x, then there exist m in N and z in X such that

A e

1<z<x and Ot 1 () = o, (2).

6. (Multiplicative property) If r = q- p, then o, = &, * ;.

Conditions 1 to 4 of Axiom 2 are straightforward and are very reasonable ideali-
zations for ratio estimation. Condition 5 is an Archimedean condition that guaran-
tees that no two elements are infinitesimally close with respect to estimation. As has
been previously discussed, Condition 6—the multiplicative property—is a natural
consequence of Stevens ideas about ratio estimation.

THEOREM 5. Assume Axioms 1 and 2. For each p in 1%, let f, be the function
from R* onto R* such that for all u in R™,

By(w)=p-u.
Then the set of isomorphisms of
X, <,q, .0, ...) onto (R*,<, By, ..., B, .-
form a ratio scale. ( Note by Definitions 2 and 3, ratio scales are nonempty.)

Proof. Theorem 12 of Narens (1996).

Theorem 5 justifies, through the representational theory of measurement, Axioms
1 and 2 as an adequate theory of ratio estimation. I believe it also provides a
rigorous foundation for the theory behind the often confusing ideas that Stevens
promulgated on the subject. Generalizations and empirical implications of
Theorem 5 are discussed in Narens (1996, 1997).

6. CONSTANT DIFFERENCE SEQUENCES

As discussed earlier, the method of standard sequences has played a prominent
role in the theory of measurement as a means for constructing measurement func-
tions. Conceptually and mathematically the construction works because the ele-
ments of a standard sequence are equally spaced with the spacing having the size of
the first element of the sequence.? In the literature, the equally spaced nature of a
sequence is initially justified on intuitive considerations involving the construction
of the sequence. Then additional justifications are provided by theorems that show

% Luce and Tukey (1964) introduced a form of standard sequence in which the indices of elements of
the sequence range over integers instead of positive integers. Such sequences occur in certain interval
scalable situations.
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the existence of a function ¢ from the domain X into the positive reals such that for
all equally spaced sequences x, ..., X;, ... and all positive integers n,

P(x,41) — @(x,,) = @(x7).

This section presents a qualitative theory of equally spaced sequences. Essen-
tially, the theory states that systems of equally spaced sequences may be viewed
formally as a form of ratio estimation.

DrerFINiTION 12, Let X = <X, <X ) be a continuum. Then & is said to be a system
of constant difference sequences of X if and only if the following three conditions
hold:

1. [Each element of S is a sequence of elements of X.

2. For each element x of X there exists an element ¢ of & such that x is the
first element of o.

3. There exists a function ¢ from X onto R* such that for all y and z in X,

yxz iff ¢(y)<o(2),

and for each sequence x,, ..., X, ... in © and each nin I™,

P(x,41) —9(x,) = 9(x)).

Let S be a system of constant difference sequences of the continuum X. Then, by
definition, functions ¢ satisfying Condition 3 above are called S-representing func-
tions.

The following theorem characterizes systems of constant difference sequences.

THEOREM 6. Let X=<X, <) be a continuum and S be a nonempty set of
sequences of elements of X. For each p in 1" and each t and y in X, let

o, (t) = y if and only if there exists o in S such that t is the first
element of o and y is the p™ element of o.

Then the following two statements are equivalent:

1. S isa system of constant difference sequences for X.

2. Interpreting o, (t) =y as the subject estimates that y is p times as intense as
t, Axioms 1 and 2 hold.

Proof. Assume Statement 1. Let ¢ be a S-representing function (Definition 12).
Let ¢ be an arbitrary element of X. Then it easily follows that

ol ()] =1-9(2).

Suppose nis in [* and ¢[a,(¢)] = r- (). Then by Definition 12,

Pl (D] =@l (D] +e(0) =n-p() + o) = (n+1)-¢(2).
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Thus by induction, ¢[«,(1)] =m-¢(¢), for each m in [* and each ¢ in X. From this
and the hypotheses of the theorem, Statement 2 easily follows. (The details are left
to the reader.)

Assume Statement 2. Then Statement 1 of Definition 12 is true by hypothesis,
and Statement 2 of Definition 12 is true by Statement 2 of Axiom 2. By Theorem 5,
let ¢ be an isomorphism of

<X7 < > Xps -eey O('pa > onto <R+’ < > ﬂla ] ﬂp’ >,

where for each p in I*, B, is the function from R* onto R* such that for all « in
R*, B,(u) = p-u. It only needs to be shown that ¢ satisfies Statement 3 of Defini-
tion 12. Because ¢ is an isomorphism of <X, <X ) onto {R*, < >, the first equation
in Statement 3 of Definition 12 is true. To show the second equation, it is sufficient
to show that for each ¢ in X and each nin I™,

plons1 (D] = @la, ()] + ().

By the choice of ¢,

plon (D] = (n+1)-9(t) =n-9(t) +¢(2) = p[o, () ]+ (0).

THEOREM 7. Suppose X =X, <X ) is a continuum and S is a system of constant
difference sequences for X. Let & be the set of S-representing functions
( Definition 12). Then & is a ratio scale.

Proof. Theorems 5 and 6.

The following theorem shows that the standard sequences produced through the
classical method for continuous extensive structures are constant difference
sequences.

THEOREM 8. Let X=X, <, @ ) be a continuous extensive structure. Then the
set of standard sequences of X (Definition 9) is a system of constant difference
sequences (Definition 12).

Proof. Immediate from Definition 9, Theorem 3, and Definition 12.

7. QUALITATIVE MEASUREMENT

Measuring functions assign real numbers to empirical or qualitative entities. In
science, ‘“‘real numbers” are construed to be the same real numbers used by
mathematicians, namely a variety of platonic entities whose existence do not
depend on material objects or minds. In mathematics textbooks, the ontology of
real numbers has its roots in set-theoretic constructions involving nonnegative
integers, which in the more sophisticated texts are taken to be the finite ordinals. A
more classical idea of “real number” is that of a qualitative relation corresponding
to a notion of “ratio.” The latter idea has it roots in Eudoxes’ theory of propor-
tions in Book V of Euclid and is closely connected with methods of classical
measurement. This view of real number was held by Frege (1903) as well as by
Whitehead and Russell (1913). (A modern, mathematical development is given in
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Krull, 1960, 1962.) Of course, adoption of this approach to real numbers leaves the
door open for other kinds of “numbers” associated with other kinds of measure-
ment processes. Such a view of measurement numbers was advocated by Adams
(1966) and was systematically and formally developed by Niederée (1992a,b). These
measurement-based approaches to ‘“‘number” reveal possible avenues for achieving
metaphysical reduction in quantitative science.

This section presents a theory of qualitative measurement for ratio estimation in
which the empirical or qualitative objects are measured by “numbers” correspond-
ing to (qualitative) invariants of the measurement process. Given the importance of
invariants in mathematics and science, this provides for an intriguing concept of
“number.”

DreriNtTION 13, By definition, an automorphism of a structure ¥ is an iso-
morphism of ) onto ).

DreriNiTION 14, Let 9=<Y,R,,..., R, ...> be a structure and o be a binary
relation on Y. Then « is said to be an invariant of ) if and only if for all auto-
morphisms y of 9 and all x and y in X,

alx, y)  iff a(y(x), y(»)).
DerFmvITION 15.  Assume Axioms 1 and 2. Let
X=X, <, 0,0 0, ...
Then « is said to be a magnitude number of X if and only if

(i) o is a function from X onto X;
(ii) « is an invariant binary relation of X; and
(iii) o is strictly =<-increasing, i.e., for all x and y in X, x <Xy iff a(x) <
a(y).

DErFINITION 16. By definition, let N be the set of magnitude numbers of X.

In the following, N will be taken as the set of “numbers,” and X will be
measured in terms of N by means of a scale that generalizes the idea behind
Stevens’ method of ratio estimation. The next definition provides a natural qualita-
tive ordering on N.

DerFINiTION 17. Define <X’ on N as follows: For all « and fin N,
a <’ giff for all x in X, a(x) < B(x).

THEOREM 9. <N, ') is isomorphic to {R*, < ).

Proof. For each p in I, let 8, be the function from R* onto R* such that for
all uin R™,

B,(w)=p-u,
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and let & be the set of isomorphisms of
X=X, <, 0,00, ...)
onto
M=<(R", <, By, ..., By o)

By Theorem 5, % is a ratio scale. Let iy be an element of %, a be an arbitrary
element of N, and f be the image of « under . Then, by isomorphism, f is an
invariant of 9 and f is a strictly increasing function on R*. Because % is a ratio
scale, the set of automorphisms of 9t is the set of multiplications by positive reals.
Thus, because f is an invariant of 9, for all r and s in R™,

f(r-s)=r-f(s).

It is well known that the only solution to the above functional equation for strictly
increasing f is multiplication by a positive real. Thus f is an automorphism of k.
Therefore, by the isomorphism 1y ', « is an automorphism of X. Thus N is the set of
automorphisms of X. Let <’ be the following ordering on the set H of auto-
morphisms of M: For all ~and k in H and all r in R*,

h<'k  iff h(r) <k(r).

Then, because each element of H is a multiplication by a positive real, it easily
follows that (H, <') is a continuum. By the isomorphism !, (N, <’} is a conti-
nuum.

The following lemma is useful in proofs. It is also employed in extending the key
idea behind Stevens’ method for constructing measuring functions for subjective
ratio estimations to the continuum <N, <'}.

LemMA 1. The following three statements are true:

1. Each element of N is onto X.
2. Foreach y and z in X, there is exactly one f§ in N such that (y) =z.
3. Foralloaand fin N,

axff=f*a.

Proof. Assume the notation of Theorem 9 and its proof. In the proof of
Theorem 9 it was shown that N was the set of automorphisms of X. Thus State-
ment 1 follows. Because (i) the set of automorphisms of 9t is the set of multiplica-
tions by positive reals, and (ii) for each r and s in R™, there exists a multiplication
by a positive real 4 such that A(r) = s, Statement 2 follows by the isomorphism
between M and X. By a similar argument, Statement 3 follows.

DermniTION 18.  For each ¢ in X, let @, be the function from X into N such that
for each x in X,

<D,(x) = ﬂs

where, by Statement 2 of Lemma 1, § is the unique element of N such that f(z) = x.
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Suppose Stevens’ method is used to generate a ratio scale 4. Let ¢ be an arbi-
trary element of X and 6, be the element of 4 such that 6,(¢) = 1. Suppose pel™*
and a,(#) = x. Then Stevens’ method of assigning numbers yields 8,(x) = p. By Sta-
tement 2 of Lemma 1 and Definition 18, &,(x) = «,. Because a, is a primitive of the
structure

X, <,0, 00y 0y oau s

s Ypo

it is an invariant of X, and because by Statement 1 of Axiom 2 «, is also =<-strictly
increasing, it follows from Definitions 15 and 16 that «; is in N. In this way, Defi-
nition 18 may be viewed as a way of extending Stevens’ method to the continuum
<N, <.

Scale types are defined in terms of quantitative relationships between elements of
the scale. For qualitative scales onto qualitative number systems, the equivalent
approach often encounters difficulty. Because of this, it is convenient to classify
scales of qualitatively valued measuring functions in a more abstract manner than
has been traditionally done for scales quantitatively valued measuring functions.
For the scale {®, | r € X} this is accomplished by the following theorem.

THEOREM 10. Let & ={®, |t € X} and G be the set of automorphisms of

X, <, 00, ey 0y oou .

b P’
Then the following five statements are true:

1. Each @ in & is onto N.
2. isordered; ie., for all x and y in X and all ® in &,

xSy iff () <N D(y).

3. & is homogeneous; i.e., for all x in X and all B in N, there exists @ in &
such that &(x) = p.

4. & is generated by automorphisms; i.e., for each @ in &,
S ={Dxo|aeG}.
5. & is 1-point unique; i.e., for all ® and ¥ in &, if ®(x) =¥ (x) for some x in
X, then®d =Y.

Proof. 1. Let ¢ be an arbitrary element of X and a be an arbitrary element of
N. Then by Definition 18, @,(a(t)) = a.

2. Let x and y be arbitrary elements of X and @ be an arbitrary element of
&. Let t in X be such that @ = @, and, by Statement 2 of Lemma 1, let § and y be
elements of N such that f(z) = x and y(¢) = y. Then by Definition 18,

D(x)=p and  P(y)=.

Using Lemma 1, it is not difficult to show that

BO<y@® iff 'y
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Thus by Definition 17 and Theorem 9,

x <y iff B < y(0) iff BTy iff D,(x) < D (3).

3. Let x be an arbitrary element of X and § be an arbitrary element of N.
Because by Statement 1 of Lemma 1 f is onto X, let ¢ in X be such that f(¢) = x.
Then by Definition 18, @,(x) = f.

4. Only the following needs to be shown: For all x and y in X, there exists a
in N such that

D =D, *a. (1)

Let @, and @, be arbitrary elements of . By Statement 2 of Lemma 1, let « in N
be such that

a(x) = y.

Equation (1) will be shown by showing QD;I x @ =o. It follows from Statements 1
and 2 that 45;1 % @_ is a one-to-one function from X onto X. Let z be an arbitrary
element of X. By Statement 2 of Lemma 1, let 8 in N be such that

0(x)=z.
By Statement 3 of Lemma 1,
Oxa=o0x0.
Thus by Definition 18,
45;1 * D (2)= q§y_1(o9) =0(y)=0xoa(x) =ox*0(x) =a(z).

5. Suppose @ and ¥ are in &, x € X, and &(x) = ¥ (x). By Statement 4, let a
in N be such that @ =¥ x «. Then

w(x) =¥ D(x) =x=1(x),
which by Statement 2 of Lemma 1 yields « =1, and therefore, ® =¥.

Let  be a scale of isomorphisms of a continuous structure 9 =Y, <y,
U,,U,,...> onto a numerical structure M =<R*, <, V,,V,,...>. In the obvious
manner, the concepts of order, homogeneity, generation by automorphisms, and 1-
point uniqueness of Theorem 10 can be modified so that they apply to 7. Because
elements of J are isomorphisms, it easily follows that J is an ordered scale.
Homogeneity and 1-point uniqueness are conditions characteristic of the ratio
scalability of 9 in the following sense: If J is homogeneous and 1-point unique,
then by using Theorem 4.3 of Chapter 2 of Narens (1985) it follows that there exists
a numerical structure M = (R*, <, V],V ...> such that  is the set of iso-
morphisms ) onto I’ and that J is a ratio scale. If J is a ratio scale, then it
easily follows that it is generated by automorphisms. Thus the conditions of order,
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homogeneity, generation by automorphisms, and I-point uniqueness may be viewed
as algebraic properties that are characteristic of the ratio scalability of 9.

DerFINITION 19. F=<{F,<', @, ®,e) is said to be a positive continuum field if
and only if & is isomorphic to (R*, <, +,-, 1).

Let F=<(F,<', ®, ®,e) be a positive continuum field. Then <’ is called the
total ordering relation, @ the addition operation, ® the multiplication operation,
and e the multiplicative identity.

Positive continuum fields are the positive parts of what in algebra are known as
Dedekind complete totally ordered fields. The following theorem follows from a
well-known characterization of the Dedekind complete totally ordered fields.

THEOREM 11. Let & be a positive continuum field. Then there is exactly one iso-
morphism of § onto {R*, <, +,-, 1.

There are various ways of defining addition and multiplication operations N so
that these defined operations together with =<’ provide a rich algebraic structure on
N. In the following, a way in which the operation of function composition # is the
multiplication operation is presented. (There are also natural constructions in which
x is the addition operation.)

It is easy to verify that the identity function : on X is in N and that function
composition * is an operation on N. * will be taken as the multiplication operation
on X. Because 1 is an identity element of %, z will be taken as the multiplicative
identity of the qualitative number system.

With these choices made, the choice of an addition operation on N presents a
problem, because there are many natural choices. Theorem 12 below describes one
of these.

THEOREM 12. There exists exactly one operation @' on N such that
N, <, @, % 1)
is a positive continuum field and o, =1 ® 1.

Proof. By the proof of Theorem 9 it easily follows that <N, <, *,7) and
{R*, <, -, 1) are isomorphic. Thus let ¢ be an isomorphism of (N, <’, %, 1) onto
{R*, <, -,1). Let c=¢(a,). Then by isomorphism, to show the theorem the
following needs only to be shown: There is exactly one operation +' on R* such that

(R*, <, +,-, 1) is a continuum field and 1+ 1 = c.

Because 1 <’ a,, it follows that 1 < c. Let +' be the operation on R* such that for
all u and vin R™,

, log 2 log2_ logc
u+ v= (ulogc+vlogc)log2_

Then by direct verification, (R*, <, +',-,1> is a positive continuum field and
1+ 1=c. To show the uniqueness of +', suppose +” is another operation on R*
such that <R*, <, +",-,1) is a positive continuum field and 1+” 1 =c¢. Because
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(R*, <, +,-,1) and <R*, <,+",-,1) are positive continuum fields, it easily
follows that

(R*, <, +> and (R, <, +")
are continuous extensive structures. Then by Theorem 10.3 of Chapter 2 of Narens
(1985), let r in R* be such that for all # and v in R™,
u+"v=W+ v’)%.
Then

1
r

c=1+"1=(1"+1")r =2,

and thus r = %€2 and therefore, +" = +'.

logc?

DerINITION 20. Let @' be the unique operation on N described in the statement
of Theorem 12.

@' will be taken as the addition operation for N. Let
N=<N, <, @, %,1).

Then M is defined through qualitative means. Because by Theorem 12 9t is a posi-
tive continuum field, 9 is by Theorem 11 easily adequate as a system of ‘“‘numbers”
for performing calculations.

8. CONCLUSIONS

Stevens developed his theory of measurement to counter the view that all strong
forms of measurement relied on qualitative addition operations. He developed
methods of measuring based on subjective estimations as examples of measurement
that were radical departures from the classical methods. It was universally accepted
that his methods were radical departures, but it remained controversial whether
they were valid methods of measurement. In Section 5, axioms in terms of observ-
ables were presented that described assumptions inherent in Stevens’ theory of sub-
jective estimation of ratios. Theorem 5 showed that these axioms provide, through
the representational theory of measurement, a rigorous foundation for measuring
phenomena through subjective estimations.

In classical measurement, a qualitative addition operation was used to produce
standard sequences. Measurement was then accomplished through use of those
sequences. Theorem 6 showed that the structure of standard sequences was the
same as the structure that one obtained through ratio estimation satisfying Axioms
1 and 2. This result produces twin ironies: First, Stevens’ radical method is not
radical at all, except perhaps for data collection, since it is structurally the same as
the key structure that classical measurement uses to measure. (And one can argue
that the data collection is scarcely radical, because for centuries astronomers
collected related kinds of data for star classification.) Second, Stevens’ critics were
wrong in holding that subjectively based estimations could not be used for
establishing strong forms of measurement. Although these estimations are based on
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subjective experience, the estimations themselves are part of the observable world,
and as such they can enter in methods of measurement in exactly the same manner
as observable elements of standard sequences arising from a physical addition
operation.

Stevens’ method of measurement consisted of constructing real valued functions
¢, such that

p = @,(x) iff the subject estimates that x is p-times as intense as ¢.

In Section 7 it was shown that instead of a real valued function a qualitative valued
function @, could be used, where for positive integral p,

o, = D,(x) iff the subject estimates that x is p-times as intense as ¢
iff o, () =x,

and where the range of @, consisted of invariants of the measuring process that
were strictly increasing functions from the domain of stimuli onto itself. Because
these invariants with naturally defined operations and relations on them form a
structure isomorphic to {R*, <, +,-, 1), they can be taken as “numbers” for many
scientific purposes. Accordingly, @, may be viewed as a qualitative measuring func-
tion onto an algebraically rich number domain. Theorem 10 and the discussion
following it establishes that

{®, | ¢ is in the domain of stimuli}

has the algebraic properties characteristic of ratio scales.
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