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A Meaningful Justification for the Representa-
tional Theory of Measurement

Louis Narens

University of California, Irvine

Measurement, the means by which numbers enter science, is of fundamen-
tal importance to modern science. The relationship between its qualitative
and quantitative aspects has generated many theories and much controversy.
In 19th century geometry similar developments led mathematician Felix
Klein to devise a theory for unifying qualitative and quantitative approaches
to geometry. Klein’s theory, which today is called the Erlanger program, was
based on transformation groups. In this article, the Erlanger program is given
a new foundation based on mathematical logic and is extended to science.
The current dominant theory of measurement in the literature, the represen-
tational theory, is then justified in terms of the new foundation for the
Erlanger program. Certain inferential techniques used in dimensional analysis
and the related technique of possible psychophysical laws are also given jus-
tifications in terms of the new foundation.  © 2002 Elsevier Science (USA)

1. INTRODUCTION

This article presents a new foundation for a familiar theory of measurement. The
foundation takes ‘“meaningfulness’ as an undefined term, states axioms about it,
and then shows that the only “meaningful” forms of measurement are equivalent to
the representational theory; i.e., each meaningful set of measuring functions on a
qualitative domain A has a characterization as a set of structure preserving map-
pings from a qualitative structure with domain A4 into a purely mathematical struc-
ture.

The axioms are designed to reflect the following common practice in science:
mathematics may be freely employed in scientific formulation, deduction, and
inference. Definitions that allow the free use of mathematics are called scientific
definitions. The axioms say that an entity is meaningful with respect to a qualitative
structure if and only if it is scientifically defined in terms of the qualitative
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structure. The set of meaningful entities generated by the qualitative structure is
called a scientific topic.

Let X be a qualitative structure describing a geometry. In mathematics, the geo-
metric content of X has been identified with the set of entities left invariant by the
transformations that leave the primitives of X invariant. For example, in the Eucli-
dean geometry of the plane, the transformations that leave the primitive Euclidean
concepts (e.g., point, line, circle, intersection, congruence) invariant are those that
are composed of translations, rotations, and reflections. According to this view of
geometry, the Euclidean concepts (e.g., midpoint of a line segment) are those that
are left invariant by these transformations. This article presents theorems showing
the equivalence of geometric content and scientific topic. Thus the theory of mea-
ningfulness presented here also provides a new foundation for the concept of geo-
metric content, which is a key component of the famous program developed by
mathematician Felix Klein for geometry, called the Erlanger program.

Inferential techniques based on invariance have appeared in geometry, physics,
and the behavioral sciences. While it is agreed that these techniques often produce
important insights, the literature lacks reasonable justifications for them. Results of
this article suggest that their epistemology is better understood in terms of scientific
definability than its shown equivalent, invariance, while their mathematical power is
best understood in terms of invariance.

2. KLEIN’S ERLANGER PROGRAM

DerINITION 1. Let X be a nonempty set. By definition, a permutation on X is a
one-to-one function from X onto X. A subset G of permutations on X is said to be
a permutation group if and only if the identity function, ¢, is in G, and if f and g are
in G, then the functional composition of f and g, f * g, is in G, and the inverse of
f, f71, is in G. In the literature, permutation groups are often called transformation
groups or transformational groups.

For most of the history of mathematics, geometry was the study of physical
space, which was conceptualized as Euclidean 3-dimensional geometry. However,
by the middle of the 19th century, Euclidean geometry no longer received universal
acceptance from mathematicians as being necessarily descriptive of physical space.
A little later in the century, analysis provided the basis for modeling Euclidean and
non-Euclidean geometries. In such analytic geometries, it was difficult to distinguish
geometric concepts from nongeometric ones. Before, when geometry was based on
physical space, metaphysical principles about physical reality could be invoked to
define what was geometrical. However, in analytical geometry no analogous
program could be carried out, because the methods of analysis did not provide the
necessary insight into the geometrical nature of things. This problem led mathema-
tician Felix Klein to develop a program for defining and manipulating the geomet-
rical content within an analytic geometry.

Klein’s method consisted of identifying a geometry with the invariants under a
permutation group. The following quotation from Veblen and Young (1946) illus-
trates how geometers employed this identification to transfer results and concepts
from one geometric structure to another:
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At each step we have helped ourselves forward by transferring the results of one geometry
to another, combining these with easily obtained theorems of the second geometry, and thus
extending our knowledge of both. This is one of the characteristic methods of modern
geometry. It was perhaps first used with a clear understanding by O. Hesse [ Gesammelte
Werke, p. 531], and was formulated as a definite geometrical principle (Ubertragungsprin-
zip) by F. Klein [1872].

This principle of transference or of carrying over the results of one geometry to another
may be stated as follows: Given a set of elements [e] and a group G of permutations of these
elements, and a set of theorems [T] which state relations left invariant by G. Let [e'] be
another set of elements, and G' a group ofpermutations of [e']. If there is a one-to-one recipro-
cal correspondence between [e] and [e'] in which G is simply isomorphic with G’, the set of
theorems [T] determines by a mere change of terminology a set of theorems [T'] which state
relations among elements e' which are left invariant by G'.

This principle becomes effective when the method by which [e] and G are defined is such
as to make it easy to derive theorems which are not so easily seen for [¢'] and G'. This has
been abundantly illustrated in the present chapter ...

DEFINITION. Given a set of elements [e] and a group G of permutations of [e], the set
of theorems [7"] which states relations among the elements of [e] which are left invariant by
G and are not left invariant by any group of transformations containing G is called a gener-
alized geometry or a branch of mathematics.

This is, of course, a generalization of the definition of a geometry [by Klein, 1872] ....
pp. 284-S85)

Instead of the terms generalized geometry or branch of mathematics, the more
neutral term scientific topic is employed throughout this article. This is appropriate
because the article is primarily concerned with scientific content.

Historically, the identification of a scientific topic with the invariants of a group
has been a very potent epistemological principle in mathematics and physics.
However, Klein, geometers, and others who have employed this identification have
provided only very vague justifications for it. This article presents a generalization
based on mathematical logic of Erlanger’s approach to a scientific topic. The idea
behind the generalization is that a scientific topic is propagated by a special form of
definability.

3. MEANINGFULNESS

3.1. Scientific Topics

Fundamental to the theory presented in this article is that certain relations and
concepts belong to a fragment of science and others do not. Those that belong will
be called meaningful (with respect to the fragment) and those that do not mea-
ningless (with respect to the fragment). A theory of meaningfulness consists of giving
necessary or sufficient conditions for meaningfulness. Because theories of meaning-
fulness are metascientific and philosophical in nature, different theories arise
naturally out of various epistemological and metaphysical positions typically taken
about science. Several formal theories of meaningfulness are presented and dis-
cussed in Narens (2002).



REPRESENTATIONAL THEORY OF MEASUREMENT 749

This article presents a theory of meaningfulness that extends and generalizes the
Erlanger program to scientific domains. The theory, which provides a precise
description of scientific topic, is then used to justify the representational theory of
measurement, currently the dominant theory of measurement.

The meaningfulness concept is based on the following four intuitive principles
about scientific topics.

Principle 1. Scientific topics have both qualitative and quantitative aspects. The
qualitative aspects are relations and concepts formulated entirely in terms of rela-
tions and concepts on the domain A4 of the topic. These relations and concepts may
be higher order, e.g., a relationship between five binary relations on A. The quanti-
tative aspects include pure mathematics and relationships, including higher-order
ones, between the qualitative aspects and pure mathematics, e.g., the set of func-
tions from A into the real numbers.

Principle 2. The domain A4 of the scientific topic is a qualitative set belonging to
the topic.

Principle 3. The scientific topic is closed under scientific definition; i.e., if
a,, ..., a, belong to the topic and a is defined scientifically in terms of a,, ..., a,,
then a belongs to the scientific topic.

Principle 4. Pure mathematics may be used freely in scientific definitions.

Principles 1 and 2 reflect a common practice in mathematical science of using
pure mathematics in the formulations of scientific concepts and the derivations of
scientific results. Because of the nonempirical, nonqualitative nature of pure
mathematics, Principles 3 and 4 allow relations and concepts to belong to the
scientific topic that are neither qualitative nor empirical. Thus the concept of mea-
ningfulness presented in this article should not identified with either empiricalness
or qualitativeness.

3.2. Formal Development

ConvenTION 1. Throughout this article the following conventions are observed:

R denotes the set of real numbers, [* the set of positive integers, (f the empty set,
and € the set-theoretic membership relation. When Z is a set, the notation {Z, € )
will, by convention, denote the structure (Z, G'>, where G’ is the restriction of €
to Z.

For each set x, B(x) denotes the power set of x, i.e., the set of all subsets of x,

A denotes a nonempty set of objects. 4 is called the scientific domain and ele-
ments of 4 are called atoms. It is assumed that each atom in A4 is not a set. 4 is to
be interpreted as a scientific domain of objects for the fragment of science under
consideration.

W denotes the set of nonmathematical entities based on A. W is defined induc-
tively as follows: W, = A, and for each positive integer n,

I/Vn-H = W/;l v ‘B(I/Vn)_{g}’
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and

w= W,
nel®

In the intended interpretation, the nonmathematical entities belonging to the scien-
tific topic will form a subset of W'.

It is well known that for » in I* and sets s and ¢ in W the concepts of the set of
n-ary relations on s and the set of functions from s into ¢ can be formulated in
terms of the entities in W and the e -relation of set theoretic membership and are in
W. For example, an ordered pair (x, y) of elements x and y of W is defined to be
the set

a={{x}, {x. y}},

with the first element of the ordered pair, x, being the element of W belonging to
both elements of a and the second element of the ordered pair, y, being the element
of W belonging to exactly one element of a. An ordered triplet (x, y, z) is defined to
be ((x, y), z) and ordered n-tuples for n > 3 have analogous definitions. Functions
are certain kinds of sets of ordered pairs, and r-ary relations are sets of n-tuples.
Similarly all the usual concepts associated with functions and relation, e.g., domain,
range, composition of two functions, can be formulated for functions and relations
in W in terms of entities of W and the € -relation.

ConNVENTION 2. For the purposes of this article, pure mathematics will corre-
spond to certain sets that are built out of the empty set using the e -relation and
principles of set theory. Formally, let

and for each nin I, let
P, =P, uPBL).

Let

Pi=|) P

nel® "
Foreachnin I, let
Pr. =P, U B(P),

and let

p=\J P

nel*

For the purposes of this article, P is called the set of pure sets and the elements of P
are called pure sets.
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(P, €) is a very powerful mathematical system. It is well known that most of
ordinary mathematics is formulable in {P, € > in the following sense: Structures
and concepts of ordinary mathematics have isomorphic counterparts in (P, € ).
For example, the finite ordinals, the set of finite ordinals, @, and the finite ordinal
successor function a*=au {a} are elements of P; and therefore elements of P.
These satisfy G. Peano’s well-known axiom system for the natural numbers. Then,
by using the well-known constructions of Peano and Dedekind, it is easy to show
that the operations of addition and multiplication are definable on @ (within
{P, € )) and that the resulting algebraic structure—which we will call the set-
theoretic natural numbers—is isomorphic to the natural numbers with its usual
operations of addition and multiplication. By taking ordered pairs of set-theoretic
natural numbers and (in terms of the set-theoretic arithmetical operations of addi-
tion and multiplication) defining the appropriate operations of addition and mul-
tiplication on them (which is easy to do within (P, € )), another algebraic structure
results—which we will call the set-heoretic integers—that is isomorphic to the usual
system of integers with its usual operations of addition and multiplication.
Similarly, by taking ordered pairs of the set-theoretic integers and defining for them
the appropriate operations of addition and multiplication, the structure of set-
theoretic rational numbers can be constructed, and it is easy to show that it is iso-
morphic to the rational numbers under addition and multiplication. By using
similar, but little more involved constructions, the structure of set-theoretic real
numbers can be constructed out of the set-theoretic rational numbers, and it can be
shown that it is isomorphic to the structure of real numbers with its usual opera-
tions of addition and multiplication. And, of course, all these latter constructions
can also be carried out in {P, € ). Then structures based on the real numbers, e.g.,
the space of continuous functions from the real numbers into itself, can be con-
structed in (P, € ), etc.

In set-theory the concept of pure set is much larger than P, e.g., it includes
P, B(P), P(PB(P)), etc., and in fact it is too large to be realized as a set. However,
for the purposes of this article, it is convenient to have the concept of pure set
realizable by a set, and P is a good choice for this. If, for some reason, a larger set
of pure sets were needed to represent a portion of mathematics that one might use
in science, then that larger set could be substituted for P without changing in any
essential way the theory presented in this article.

ConvenTION 3. For the purposes of this article, ordinary mathematics will be
identified with the structure of pure sets, (P, € ).

In order to effectively use pure mathematics in scientific applications involving a
scientific domain A4, the following axiom is employed to guarantee that A is
imbeddable into a pure set.

AxioMm 1. There exists a one-to-one function from A onto an element of P.

CoNVENTION 4. Both (W, € > and {P, € ) are substructures of the set-theoretic
fragment {V, € >, where V is defined inductively as

V=4,
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and for each nin I, let
I/vn+1 = I/n o S‘B(I/n)’

and let

vi=U v

nel®

Foreachnin I, let
Vi =VaiuBW),
and let

V=1 V.
nel™
For the purposes of this article, V' is called the set of scientific entities and the ele-
ments of V' are called scientific entities. Elements x of V' such that there exists y in V'
such that y € x are called (scientific) sets. The only nonsets in J are the elements of
A, i.e., are the atoms. The set of pure sets P and the set of nonmathematical entities
W are proper subsets of . (Note that, in particular, ¢ is not an element of W.)

The set-theoretic fragment {(J', € > contains additional concepts that are neither
nonmathematical nor purely mathematical. E.g., if f is a function from a nonempty
subset of A4 into the set-theoretic reals, then f is neither nonmathematical nor
purely mathematical.

The set-theoretic fragment {V/, € ) with the distinctions of nonmathematical and
purely mathematical entities is a sufficient instantiation of Principle 1. To obtain
Principles 2 to 4, an undefined term ‘““meaningfulness” is introduced, and in terms
of it the essential properties of a scientific topic encompassed by Principles 2 to 4
are formally introduced.

3.3. Scientific Definability

DrerFINtTION 2. Let M(x) be a 1-place predicate. “M(x)” is to be read as “x is
meaningful.” Throughout the rest of this article, for purposes of readability
“M(x)” and “x is meaningful”” will often be used interchangeably.

It is assumed that the reader is familiar with the concept of first order language.

Let L(A, €) be a first order language (with identity), with an individual constant
symbol, A, and a binary predicate symbol, €. (Except for the above, there are no
other individual constant symbols or predicate symbols in L(A, €).) L(A, €) is
used to describe the structure {V', 4, € ». (In particular, A will be interpreted as 4
and € as the restriction of the € -relation to V.) Let a4, ..., a, and a be elements of
V. Then a is said to be scientifically defined in terms of a,, ..., a, if and only if there
is a formula

@(X, X5 eees xn9 yla LA ym)
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of L(A, €) and pure sets b, ..., b,, such that the following is a true statement about
the structure <V, 4, € ):

O(a,a,...,a,, by, ..., b,) and for all x, if O(x, a,, ..., a,, by, ..., b,,),
then x = a.

Note that M is not a predicate symbol of L(A, €).
The following axiom, which relates meaningfulness and scientific definability, is
an instantiation of Principles 3 and 4:

Axiom 2. For all entities a, a,, ...,a, inV, if M(a,), ..., M(a,) and a is scientifi-
cally defined in terms of a,, ..., a,, then M(a).

Meaningful entities will be identified with the entities that belong to the scientific
topic. Because A is the interpretation of A, 4 is meaningful and thus Principle 2
holds:

LemMA 1.  Assume Axiom 2. Then the following two statements are true:

1. M(A).
2. For each pure set p, M(p).

Proof. Let p be an arbitrary pure set. Then the lemma immediately follows from
Axiom 2 and the formulas x = A and x = p.

By themselves Axioms 1 and 2 do not provide satisfactory means for describing
meaningful entities. This deficiency is eliminated by adding another axiom (Axiom 3
below). The addition of this axiom allows meaningfulness to be determined through
a structure of primitive relations based on A.

3.4. First-Order Structures

DEerFINITION 3. Let 4 be a nonempty set. Elements of A4 are called 0-ary relations
on A. n-ary relations on A4, nel*, are subsets of A" (the Cartesian product of 4
with itself # times). In particular, 1-ary relations on A4 are subsets of A4.

R is said to be a first-order relation on A if and only if R is a 0-ary relation or
n-ary relation on A4 for some #n in I™.

Note that the first-order relations on A include elements of 4 as well as 4 itself.

DeriNITION 4. X is said to be a first-order structure if and only if X is of the
form

x = <A, Rj>jeJ,

where A4 is a nonempty set, J is a pure set, and for each j in J, R; is a first-order
relation on A.

Let X =<4, R;);., be a first-order structure. Then, by definition, the primitives
of X consist of 4 and R;, j € J. Also by definition, 4 is called the domain of X.

Let X=<X,R;>;.; and Y =Y, S )i be first-order structures such that for
each jin J, R; is a m( j)-ary relation. Then f is said to be an isomorphism of X onto
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9 if and only if f is a one-to-one function from X onto Y, J =K, and for all je J
and all x,, ..., x,,; in X,

Rj[xl, cees xm(j)] iff Sj[f(xl)9 it f(xm(j))]'

g is said to be a homomorphism of X into ) if and only if g is a function from X
into Y, J = K, and for all j e J and all entities x,, ..., X,,;),

Ri[x15 -y Xy ] iff Sj[g(xl)a - g(xm(j))]'

(Note the use of “iff” in the above definition of “homomorphism.”)

DerFINITION 5. Let X =<4, R;);.; be a first-order structure such that for each j
in J, R; is a m(j)-ary relation. Then f is said to be an automorphism of X if and
only if it is an isomorphism of X onto X, i.e., if and only if f is a one-to-one func-
tion from A4 onto A4 such that for each jin J and each a, ..., a,; in 4,

R[a, ..., a,,] iff Ri[f(a), ..., f(au;)]

DErFINITION 6. Let f be a one-to-one function from 4 onto a set NV and let R be
an n-ary relation on A. Then, by convention, f(R) is the n-ary relation S on N such
that for all y,, ..., y, in N,

S(yi, ..., y,) if and only if there exist x;, ..., x,, in 4 such that
f(xl) =V1seees f(xn) = Vu and R(xh ceey xn)'

LemMmA 2. Let X=<A, R;>;.; be a first-order structure and f be a one-to-one
JSunction from A onto N. Then f is an isomorphism of X onto {N, f(R;));c,-

Proof. Immediate from Definition 6.

3.5. Invariance under Permutations

A permutation f on A (Definition 1) can be extended naturally to subsets of 4 as
follows: for each subset x of A4, let

f(x)={f(a)|aex}.
Using a similar idea, permutations on A4 can be extended naturally to V" as follows:

DrerFINiTION 7. Let f be a permutation on 4. Using the notation of Conven-
tion 4, f will be extended to a function f on V as follows: For each x in V; = 4, let

Si(x) = f(x),

and for each nin I* and each y in V,,, —V,, let

ForiP) ={fu(2) |z €y},

and let

fr=U fu

nel™
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For each x in V7, let
f1(x) = f*(x),
and for each nin I* and each yin V', =V}, let
fra) ={f1(@)|zey},

and let

f=u 71

nel*

£ is called the extension of f to V.
Let f be a permutation on A. Note that by Definition 7,

@) ={f®Ixed}=0.

THEOREM 1. Let [ be a permutation on A, and let f be the extension of f to V.
Then the following six statements are true:

f4)=4.
2. ForallxandyinV,

xey iff f(x)ef(y).

3. For all pure sets p, f(p) = p.
4. For all ordered n-tuples (a,, ..., a,) of elements of V,

flay, ... a)) = (f(a)), ..., f(a,)).
5. f is a one-to-one function from V onto V.
6. F=f

The proof of Theorem 1 is not difficult. It follows by Definition 7 and an induc-
tive argument. For details, see Jech (1973) or Chapter 3 of Narens (n.d.).

LeEMMA 3. Let f be a permutation on A, f be the extension of f to V, and
a,, ..., a, be elements of V such that fori=1, ..., n,

f(ai) =4a;.
LetabeinV,

@(x’ X1s ey xn, yla (At ym)

be a formula of L(A, €), and b,, ..., b,, be pure sets in V. Suppose the following
statement is true about the structure V', A, € »:

O(a,ay,...,a, by, ..., b,) and for all x, if O(x, a,, ..., a,, b, ..., b,,),
then x = a.

Then f(a) = a.
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Proof. By hypothesis, f(a,)=a; for i=1,..,n and by Statement 3 of
Theorem 1, f(b,) =b, for k=1, ..., m. Thus by Statements 1 to 3 of Theorem 1, f
is an automorphism of

B=LKV,4A4, €,a,,...,a, by, ....b,).

It is well known that automorphisms preserve definable relations (e.g., see
Corollary 22D on page 93 of Enderton, 1972). Application of this to B yields the
following principle: For each automorphism ¢ of B and each element e in V, if e is
defined in terms of the primitives of B through first-order logic, then ¢(e) has the
same definition in terms of the primitives of B. The conclusion of the lemma
follows by applying the above principle to B and f.

The following theorem links Klein’s Erlanger program (which is based on
invariance) with Axiom 2 (which is based on scientific definability).

THEOREM 2. Suppose G is a permutation group on A. Define the predicate M(x)
as follows: For each ainV,

M(a) iff f(a)=a foreach f in G.
Then Axiom 2 is true.

Proof. First note that for the structure (V, 4, € > an element « of V' is definable
in terms a,, ..., a, through the first-order language L(A, €) if and only if a is
definable in terms of A4, a, ..., a, through the first-order language L(A, €). By
hypothesis and Statement 1 of Theorem 1, M(A4). Axiom 2 is then an immediate
consequence of the hypothesis of the theorem and Lemma 3.

CONVENTION 5. Let f be an arbitrary permutation on A4, f the extension of f
to V, and n a positive integer. Throughout the rest of this article, n-ary relations R
on A will be identified with the set ¢ of n-tuples (a4, ..., a,) such that R(a,, ..., a,).
By Statement 4 of Theorem 1, for each ordered n-tuple (x, ..., x,) of elements of 4,

FLGas o )1 = (1), s S(6)) = (f (1), s £(3).

Therefore,

f_(t) = {(f(al)’ LS ] f(an)) | (alﬁ LR an) € t}'

Thus f is an automorphism of {4, R) if and only if f(¢) = ¢. Elements b of ¥ such
that f(b) = b are often said to be left invariant by f.

The following lemma is useful in later proofs.

Lemma 4. Let X = <A, R;);.; be a first-order structure, « be an automorphism of
X, and {Q,, ..., Q,} be a finite subset of {R;|jeJ}. Then the following two state-
ments are true:

1. Noting that {A, R;);.; is the ordered pair (A, F), where F is the function on
J such that F(j) = R, for each j in J, it follows that &(X) = X.

2. o is an automorphism of <A, Q,, ..., Q,>.
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Proof. 1. Let jbe an arbitrary element of J and let R be F(j). Then &(R) = R,
because R is a primitive of X and « is an automorphism of X. By Definition 4, J is a
pure set. Thus j is a pure set, and by Statement 2 of Theorem 1, &(j) = j. Thus for
the ordered pair j, F(j)),

&(j, £(j))) = ((j)), &(F(j)) = (j, B) = j, F(j))

Since F is the set of such ordered pairs (as j varies within J), it follows from Defi-
nition 7 that &(F)=F. Because a(F)=F, it then follows that &((4, F))=
(a(A), a(F)); i.e., a(X) = X.

2. Immediate from Definition 5.

4. REPRESENTATIONAL THEORY OF MEASUREMENT

4.1. Representational Theory

In the measurement literature, the term scale is used to denote a specific way of
measuring, as in the centimeter scale, as well as a set of specific ways of measuring,
as in a ratio scale for length. Throughout this article, the latter usage of scale will be
retained and the former will be replaced by other terms. The following is a very
broad definition of scale.

DErFINITION 8. A scale on A4 is a nonempty set of functions from A into a pure
set.

A theory of measurement consists of a precise specification of how a scale is
formed. The currently dominant approach to measurement in the literature is the
representational theory. The representational theory really comprises many related
theories of measurement. What they have in common is that they require a scale to
be a set of structure preserving mappings (e.g., a set of isomorphisms or homo-
morphisms) from some qualitative or empirically based structure into a structure
from pure mathematics. For this article, the following version of the representatio-
nal theory is assumed:

DerFINITION 9. X is said to be a qualitative structure if and only if X is a first-
order structure on 4.
Suppose X = {4, R;»;, is a qualitative structure. Then

m: <Na Sj>jeJ

is said to be a mathematical representing structure for X if and only if N is a pure set
and there exists a one-to-one homomorphism of X into 9.

DEerINITION 10. & is said to be a representational scale if and only if there exists
a qualitative structure X and a mathematical representing structure 9t for X such
that % is a subset of one-to-one homomorphisms from X into 9.

The representational theory was first formulated by Scott and Suppes (1958).
They justified this approach to measurement as follows:
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A primary aim of measurement is to provide a means of convenient computation. Practical
control or prediction of empirical phenomena requires that unified, widely applicable
methods of analyzing the important relationships between the phenomena be developed.
Imbedding the discovered relations in various numerical relational systems is the most
important such unifying method that has yet been found. (Scott & Suppes, 1958,
pp. 116-117)

4.2. Representational Concepts of Meaningfulness

The imbedding by a one-to-one homomorphism ¢ of a fragment of science &
captured by a structure X of observable primitives with domain A4 into a portion N
of pure mathematics allows the full power and results to pure mathematics be
brought to bear in the analysis of % . In science it is important to have a criterion
for the interpretation of a relation S on the domain of 9t to be scientific significant
for the fragment of science, i.e., to have a criterion for ¢ ~!(S) to be scientifically
significant about & . The seeking of such criteria has become known as the mea-
ningfulness problem, and over time representational theorists have suggested
various ways to deal with it. One of these is the Erlanger program’s concept of
meaningfulness based on permutation invariance specialized to qualitative mea-
surement structures; another is a meaningfulness concept due to Pfanzagl (1968),
which the following definition calls #-invariance.!

DreriniTION 11, Let & be a scale on 4 and R be a n-ary relation on 4. Then R is
said to be S-invariant if and only if there exists a purely mathematical n-ary rela-
tion S such that for all ¢ in & and all q,, ..., a, in 4,

R(ay, ..., a,) iff S(e(ay), ..., 9(a,)).

Because Definition 11 does not assume that the scale & results from the repre-
sentational theory, it may be viewed as a way of extending Pfanzagl’s meaningful-
ness concept to nonrepresentational theories of measurement such as Stevens’
theory (Stevens, 1951) or Niederée’s theory (Niederée, 1992).

The representational theory does not provide principled ways of selecting math-
ematical representing structures for a qualitative structure. This clearly presents a
problem for the representational use of & -invariance as a meaningfulness concept,
since, as the following example shows, there exist a qualitative structure X, a first-
order relation R on A, and scales & and  that are the sets of one-to-one homo-
morphisms X into respectively mathematical representing structures 9t and 9t such
that R is &-invariant but not J -invariant.

ExXAMPLE. Let 4= {a,b,c}, X =<4, > ), where

x>yiff(x=aand y=5) or (x=>band y =c¢),

! For descriptions of additional meaningfulness concepts considered by the representational theory,
see Narens (1981); Narens (1985, Chap. 2, Sect. 14); Luce Krantz, Suppes, and Tversky (1990, Chap. 22);
and Niederee (1994). See also Chiang (1995, 1997, 1998).
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and let | = ({3,2,1}) and M= (R*, ). Let R(z) be the following relation on A:
R(z) if and only if z = b. Let S(z) be the following relation on {3, 2, 1}: S(z) if and
only if z=2. Then the set ¥ of one-to-one homomorphisms of X into 9t consists
of the single function ¢, where @(a)=3, p(b)=2, and ¢(c)=1. Thus R is
S-invariant, because for each x in A4,

R(x) iff S(p(x)).

Let J be the set of one-to-one homomorphisms of X into 9. It will be shown by
contradiction that R is not J -invariant. For suppose R were J -invariant. Then a
relation T on R* can be found such that for all x in 4 and all y in 7,

R(x)  iff T((x)). (D

Let ¢ be as before, i.e., p(a) =3, p(b) =2, and ¢(c) =1. Then ¢ is in J. Thus by
Eq. (1) applied to ¢,

T(z) iff z=2. )

Let 6 be the following function on A: 68(a) =4, 0(b) =3, and 6(c) = 1. Then @ is
also in 7, and applying Eq. (1) to 8, we obtain

T(z) iff z=3,

contradicting Eq. (2).

Because of various kinds of difficulties inherent in the meaningfulness part of the
homomorphism approach to representational theory of measurement, Narens
(1981, 1985, 2002) decided to base the representational theory on scales of iso-
morphisms. When this is done, the kind of difficulty illustrated in the above
example disappears. (See the equivalence of Statements 1 and 2 in Theorem 5
below.)

4.3. Dimensional Analysis and the Possible Psychophysical Laws

Luce (1978) provided a measurement-theoretic foundation for an important part
of dimensional analysis of physics in terms of a qualitative structure of primitives X.
Luce showed that dimensionally invariant relations on the domain of X were those
that were invariant under the automorphisms of X. Such invariant relations he
termed ‘“meaningful.” Luce viewed this form of meaningfulness as a qualitative
version of the quantitative meaningfulness concept employed by Stevens (1946,
1951) for selecting statistics appropriate to a measurement situation. He did not,
however, connect it with the Erlanger program or methods of geometric inference.
Narens (1988) investigated the interconnections between an important inferential
technique of dimensional analysis, the Erlanger program, and a definability concept
of meaningfulness:
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One of the main applications of the Erlanger program’s meaningfulness concept has been
to rule out nonmeaningful entities from consideration. This practice can be intuitively jus-
tified by [ Lemma 3] as follows:

Suppose in a particular setting we are interested in finding the functional relationship of
the qualitative variables x, y, and z. We believe that the primitive relations (which are
known) completely characterize the current situation. Furthermore, our understanding (or
insight) about the situation tells us that x must be a function of y and z. (This is the typical
case for an application of dimensional analysis in physics.) This unknown function—which
we will call “the desired function”—must be determined by the primitive relations and the
qualitative variables x, y, and z. Therefore, it should somehow be “definable” from the rela-
tions and variables. Even though the exact nature of the definability condition is not known,
(it can be argued that) it must be [at least as weak as scientific definability]. Thus by
[Lemma 3] we know that any function relating the variable x to the variables y and z that is
not invariant under the automorphisms of the primitives cannot be the desired function. In
many situations, this knowledge of knowing that functions not invariant under the auto-
morphisms of the primitives cannot be the desired function can be used to effectively find or
narrow down the possibilities for the desired function. (Narens, 1988, p. 70.)

Drawing upon principles inherent in dimensional analysis in physics, Luce (1959)
formulated related principles for the psychophysical case of a function of an
observed physical quantity onto an unobserved psychological quantity and showed
that his principles greatly delimited the possible mathematical forms of the func-
tion. He termed functions that satisfied his principles, “possible psychophysical
laws,” and an important literature developed in the behavioral sciences that
extended and applied his methods. Falmagne and Narens (1983), Falmagne (1985),
Roberts and Rosenbaum (1986), and Aczél, Roberts, and Rosenbaum (1986) con-
nected various extensions of Luce’s possible psychophysical laws with the concepts
of meaningfulness related to the representational theory. (An alternative approach
to meaningfulness and dimensional analysis is given in Dzhafarov, 1995.)

5. MEASUREMENT THROUGH MEANINGFULNESS

5.1. Meaningful Scales

The traditional form of the representational theory of measurement proceeds as
follows: (1) A qualitative structure X is selected to capture the domain A of interest;
(2) a mathematical representing structure 9t is selected to measure X in terms of the
scale & of homomorphisms of X into N; and meaningfulness is identified with a
form of invariance associated with &, e.g., with &-invariance. This section inverts
most of the process: (i) As before, a qualitative structure X is selected to capture the
domain A of interest; (i) a theory of meaningfulness which assumes that meaning-
ful entities are scientifically defined in terms of X and its primitives is assumed; (iii)
in terms of this theory of meaningfulness, the concept of a meaningful scale is for-
mulated; and (iv) it is shown that for each meaningful scale & there exists a math-
ematical representing structure 9t such that & is a scale consisting of homo-
morphisms of X into .
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DEerFINITION 12.  Assume Axiom 2. Then & is said to be a meaningful scale if and
only if & is a scale (Definition 8) and M(&). (Note that in this definition, like in
Axiom 2, the predicate M is treated as an undefined term.)

5.2. The Representational Theory

DerINiTION 13, X is said to be a structure with meaningful primitives if and only
if X is a qualitative structure and each primitive of ¥ is meaningful.

LemMma 5. Let X{A, R;>;.; be a qualitative structure. Suppose X is meaningful.
Then X is a structure with meaningful primitives.

Proof. Formally, X is the ordered pair (4, F), where F is the function on J such
that for each j in J, F(j) = R;. Since X is meaningful by hypothesis, (4, F) is mea-
ningful, and therefore F is meaningful. Then for each j in J, R; is meaningful,
because it is defined in terms of a pure set, j, and a meaningful entity, F. Thus X is
a structure of meaningful primitives.

DEerFINITION 14. X is said to generate M if and only if the following three condi-
tions hold:

(1) X is a first-order structure with meaningful primitives;
(i) X is meaningful; and
(iii) for all entities a, M (a) if and only if a has a scientific definition in terms
of X and finitely many primitives of X.

M is said to be qualitatively generated if and only if M is generated by some X.

Observe that by Lemma 5, Condition (i) in Definition 14 is a consequence of
Condition (ii) and is therefore from a logical point of view redundant.

AxioM 3. M is qualitatively generated.

THEOREM 3. Assume Axiom 2. Suppose X = (A, R;);.; is a qualitative structure,
X is meaningful, X is a first-order structure, & is the set of homomorphisms of X into
(respectively, isomorphisms of X onto) =N, S;>;.;, N is a pure set, and & # .
Then & is a meaningful scale.

Proof. X is meaningful by hypothesis, and J, N, and N are pure sets. Thus & is
meaningful, because it has a scientific definition in terms of X, 4, J, 9%, and N as
the set of homomorphisms of X into (respectively, isomorphisms of X onto) .

The next theorem gives, under the assumption of Axioms 2 and 3, a method for
constructing for each meaningful scale & a structure with meaningful primitives X
such that & is a set of homomorphisms of X into a mathematical representing
structure.

THEOREM 4. Assume Axioms 2 and 3. Suppose & is a meaningful scale. By
Axiom 3, let Y) = (A, T;);.,; generate M. Let

N= ) o(4),

ped
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and for each j e J, let

Sj= U (P(I}),

pesd

and let
N=LN,S)jecs
For each j € J define R; on A as follows:

For each a,, ..., a,; of A, Ri(ay, ..., a,;) if and only if there
exists @ in & such that S;(p(a,), ..., P(a,;))-

Let
x = <Aa Rj >jEJ
Then & is a set of homomorphisms of X into 9.

Proof. Because by hypothesis & is meaningful, R; is meaningful by Axiom 2 for
each j in J. Thus X is a first-order structure with meaningful primitives. Since by
hypothesis, the range of each element of & is a pure set, the union of these ranges,
N, is a pure set. Let j be an arbitrary element of J. Without loss of generality,
suppose R; is a m(j)-relation. Let a,, ..., a,; be m(j) arbitrary elements of 4, and
Y be an arbitrary element of . Then by the definition of R; given above,

Rj(al, eeey dm(j)) iff Sj(l//(al), ] 'p(am(j))’

establishing that i is a, homomorphism of X into 9t.

5.3. Meaningfulness

THEOREM 5. Assume Axioms 1, 2, and 3. By Axiom 3, let X = <A, R;;., gener-
ate M. Suppose R is a first-order relation on A. Then the following four statements
are equivalent:

(1) For each scale &, if & is the set of isomorphisms of X onto a mathematical
representing structure, then R is & -invariant.

(2) There exists a scale & such that & is the set of isomorphisms of X onto a
mathematical representing structure and R is & -invariant.
(3) R is meaningful.

(4) R is invariant under the automorphisms of X.

Proof. (1) > (2). Assume (1). Then it needs to only be shown that there exists
a set of isomorphisms of X onto a mathematical representing structure. By
Axiom 1, let ¢ be a one-to-one function from A4 onto a pure set N. Let
N =N, p(R;));c;. Let & be the set of isomorphisms of X onto 9. By Lemma 2,
p € &. Thus & # J and therefore is a scale.
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(2) > (3). Assume (2). Without loss of generality, suppose R is a n-ary rela-
tion. By hypothesis, let 9t be a mathematical representing structure and & be the
set of isomorphisms from X onto 9N. Then & is meaningful by Theorem 3.

Because R is by hypothesis S-invariant, let S be a n-ary relation on the domain
of 9 such that for all x,, ..., x, in 4,

R(x,, ..., x,) iff for all ¢ e &, S(p(x,), ..., p(x,)).

Because S is a pure set (of n-tuples of elements of the domain of 9t) and R is the
unique relation such that all x, ..., x, in 4,

R(xq, ..., x,) iff forall ¢@e &, S(p(x;), ..., p(x,)),

it follows from Lemma 1, the meaningfulness of %, and Axiom 2 that R is mea-
ningful.

(3) > (4). Assume (3). Since X generates M, by Axiom 2 let Q,, ..., O, be
primitives of X such that R is scientifically definable in terms of X and Q,, ..., O,.
Let a be an arbitrary automorphism of X. To show Statement (4) it is sufficient to
show that &(R) = R, where & is the extension « to V. By Lemma 4, &(¥) = X and
a(Q,)=0,,fori=1, ..., k. Thus by Lemma 3, &(R) = R.

(4) > (1). Assume (4). By Axiom 1, let ¢ be a one-to-one function from A4
onto a pure set N. Let N = (N, ¢(R;));.;. Let & be the set of isomorphisms of X
onto N. By Lemma 2, p € &. Thus & # J and therefore is a scale. Let i/ be an
arbitrary element of &. Then, because ¢ and y are isomorphisms of X onto R, it
easily follows that ¢! % is an automorphism of X. Let S = ¢(R). Then it follows
from Definition 6 and the hypothesis (4) that for all x,, ..., x, in 4,

R(x, ..., x,) iff Rl '+y(x)), ..., 07 Y(x,)]
iff S[p(e ™" xY(x))), ..., (@' *Y(x,))]
iff STy (x)), ..., ¥(x,)],

and thus, because ¥ is an arbitrary element of &, R is ¥-invariant.

6. CONCLUDING REMARKS

Invariance has a number of important roles in mathematics and science. Klein
(1872) explored one of these in his Erlanger program for geometry, where it was
employed as a method for classification, discovery, and inference. In modern
physics, related developments took place that were greatly influenced by the
Erlanger program. However, before its systematic application in geometry, inferen-
tial techniques using invariance were employed by physicists, and one of these
methods developed into what is today called dimensional analysis. Eventually
dimensional analytic techniques found their way into the behavioral sciences.

Luce (1959) attempted to provide a mathematical and epistemological foundation
for a behavioral variant of dimensional analysis with his theory of possible
psychophysical laws. As the representational theory of measurement developed in
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the 1960s and the structure of physical units was given a rigorous measurement-
theoretic foundation, it became possible to understand qualitatively many of the
key components of physical dimensional analysis. Luce (1978) provided a qualita-
tive treatment for the component called dimensional invariance. He showed dimen-
sional invariance to be formally an instance of the Erlanger program in the follow-
ing sense: The structure of physical units 9 may be viewed as a numerical
representing structure that results from the measurement of a qualitative structure
X through the scale & of isomorphisms of X onto 9, and each dimensionally
invariant relation on the domain of 9t corresponds through the isomorphisms in &
to a first-order relation on the domain of X that is left invariant by the auto-
morphisms of X.

The Erlanger program provided no justification of the use of invariance under a
group of permutations as a criterion for belonging to a scientific topic. Because of
this, its methods often appear mysterious. For me, this mystery is dispelled by the
identification of a scientific topic with the set of meaningful entities generated by a
qualitative structure (Axioms 2 and 3) and the equivalence of meaningfulness with
invariance under automorphisms (Statements 3 and 4 of Theorem 5).

Theorem 5 also shows the equivalence of meaningfulness with various concepts
of invariance based on measurement scales. Thus Axioms 1 to 3 comprise a foun-
dation for representational concepts of meaningfulness based on the concept of a
scientific topic. They also provide through Theorems 3 and 4 a justification of the
representational theory of measurement in terms of meaningfulness considerations.

Scientific definability (Definition 2) contains strong Pythagorean elements. One
of these is its free use of pure mathematics for defining meaningful entities. The use
of strong forms of pure mathematics in science has a long history. It also raises a
number of epistemological issues, including the determination of the empirical con-
tents of scientific mathematical expressions. The latter issue has sometimes been
identified in the measurement literature with concepts of meaningfulness based on
invariance. I believe such identifications to be in error. Similarly, the theory of
meaningfulness comprising Axioms 1 to 3 should not be identified with empirical-
ness.

Scientific inquiry is a complicated issue with many overlapping parts. I believe
meaningfulness belongs primarily to the theoretical part of scientific inquiry.
Because of the overlap of the theoretical part of a science with its experimental and
applied parts, meaningfulness often has important ramifications in the experimental
and applied parts.

Meaningfulness is essentially a theoretical position about scientific content and
its role in (theoretical) inference. For example, consider the case where by extra-
scientific means (e.g., intuition, experience) a scientist is led to believe that a func-
tion z = F(x, y) that he or she needs to describe from a subset of 4 x 4 into 4 is
completely determined by the observable, first-order relations R, ..., R, on 4. Then
it is reasonable for the scientist to proceed under the hypothesis that F belongs to
the scientific content of X = (4, R,, ..., R,), which for this discussion may be taken
as the set of meaningful entities determined by Axioms 1 to 3. Thus the scientist
assumes F has a scientific definition in terms of X and its primitives. By Lemma 3,
F is invariant under the automorphisms of X. Suppose the scientist knows enough
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properties about X and has the mathematical skill to determine the automorphism
group G of X. Then methods of analyses involving automorphisms may be
employed to provide information helpful in characterizing F. There are several
methods in the literature for accomplishing this.

Note that in the above process, scientific definability is used zo justify F belong-
ing to the appropriate topic, invariance is used as a mathematical technique to find
helpful information for characterizing F, and that these two uses are connected by a
theorem of mathematical logic. Also note that the scientist’s belief that F belonged
to the topic generated by X is extra-scientific. Therefore, the deductions based on
information obtained through the above process should be either checked by
experiment or derived from accepted scientific theory and facts; i.e., they should be
treated as scientific hypotheses that need corroboration. Thus, for the purposes of
science, the above process is a method of generating hypotheses and not facts: If the
scientist’s extra-scientific beliefs are correct, then the generated hypotheses will be
facts; however, the scientist has no scientific guarantee that his or her beliefs are
correct.

The concept of meaningfulness and methods of inference based on it cease to
have value when all entities in V' are meaningful. For the theory of meaningfulness
described by Axioms 1 to 3, this occurs when the qualitative structure has the iden-
tity function on A as its only automorphism. (This follows from the equivalence of
Statements 3 and 4 of Theorem 5.) Such situations are plenteous in science, for
example, the geometry of physical space-time as described by Einstein’s general
theory of relativity. They should not be taken as a refutation of Axioms 1 to 3 as a
valid description of “scientific topic:”” They only establish that the above concept of
scientific topic ceases to be useful as a theoretical tool in some situations.

Because an entity may belong to one scientific topic and not to another, the
concept of meaningfulness developed in this article is relative. In particular, it
should not be identified with “having meaning.” Although Axiom 3 is formulated
in terms of a qualitative structure, meaningfulness should not be identified with
qualitativeness, because it allows the free use of pure mathematics in the specifica-
tion of meaningful entities.

I prefer to reserve the term “lawfulness” for particular kinds of meaningful rela-
tionships that display an extra form of invariance. I believe that “laws” obtained
through the methods of possible psychophysical laws and dimensional analysis
possess this extra kind of invariance, but a proper discussion of the subject is
outside the scope of this article. (Chapter 6 of Narens, 2002, is devoted to this issue.)

In science, relationships are often formulated across subtopics. For purposes of
interpretation and theory, it is often important to know if such relationships belong
to one or another subtopic. For example, in behavioral psychophysics, the situation
under consideration often has a characterization in terms of three qualitative struc-
tures based on the set of possible stimuli, A: a physical structure X =<4, C,, ..., C,.>
for characterizing the relevant physical aspects of the stimuli in 4; a psychological
structure Y = {A, Dy, ..., D, for characterizing the relevant behavior of the subject
in regards to 4; and a psychophysical structure 3 =<4, Cy, ...,C,,, D, ..., D,) that
combines psychological and physical structures and characterizes the situation
under consideration. In psychophysics, the physical structure is used to measure the
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stimuli in 4 through an element ¢ of a scale &. Then the subject’s behavior is
usually described and analyzed in terms of the numerical ¢-values of stimuli from
X. Suppose S is a first-order relation on ¢(A4) that the scientist believes to be
important. For purposes of theory, it is often helpful to interpret S as a first-order
relation R on A. In this circumstance, ¢ '(S) is the obvious choice for R. Assume
this choice.

Case 1. R is outside the scientific topic generated by 3. Then R is not com-
pletely determined by 3; i.e., 3 is inadequate for describing R. In this situation, we
say “S (under the interpretation ¢! has some nonpsychophysical content.” It may
be possible to remedy this by selecting a different structure of psychophysical prim-
itives so that R belongs to the scientific topic determined by the new structure.

Case 2. R is in the scientific topic generated by 3. Then it is often of episte-
mological and theoretical interest to determine if R has purely psychologyical con-
tent—that is, if R is in the scientific topic generated by the qualitative psychological
structure 9). Suppose R is not in the scientific topic generated by 9). In this case we
say “S (under the interpretation ¢~') has psychophysical content and some non-
psychological content.” Narens and Mausfeld (1992) gave examples of well-known
psychophysical situations where the psychologically important quantitative rela-
tions were treated in theoretical discussions as if they were purely psychological.
However, Narens and Mausfeld showed that these relations had psychophysical
content and some nonsychological content. They concluded that additional
psychological primitives and additional experimental results were needed to rigor-
ously establish that the relations had purely psychological content. In short, Narens
and Mausfeld showed that the original psychophysical situations and experimental
observations were inadequate for drawing the intended theoretical conclusions.

The topical content of R (and therefore S) may be evaluated by invariance and
definitional methods. The definitional method consists of providing a scientific
definition of R in terms of an appropriate structure and its primitives. This method
is only useful for establishing that R has a particular kind of content; it is not useful
for showing that R does not have a particular kind of content. Invariance methods
can be employed for both purposes: For psychophysical content, one first forms the
mathematical representing structure 3’ = ¢(3) and then uses regular mathematical
methods to check whether S is invariant under the automorphisms of J3'. By
Lemma 2, ¢ is an isomorphism of 3 onto 3'. Thus by isomorphism, R = ¢~'(S) is
invariant under the automorphisms of 3 if and only if S is invariant under the
automorphisms of J’. Therefore by the equivalence of Statements 3 and 4 of
Theorem 5,

R has psychophysical content iff it belongs to the scientific topic generated by 3
iff S is invariant under the automorphisms of 3'.

In particular, if S is not invariant under the automorphisms of J’, then R has some
nonpsychophysical content. An analogous evaluation for the psychological content
of R arises by substituting the qualitative psychological structure ¥ for 3 in the
above procedure.



REPRESENTATIONAL THEORY OF MEASUREMENT 767

The theory of meaningfulness comprising Axioms 1 to 3 was designed to provide
an epistemologically sound foundation for the Erlanger program’s concept of
geometrical content and various uses of invariance in science. A principal use of
this theory—showing certain entities to be nonmeaningful—becomes valueless when
the qualitative generating structure has the identity as its only automorphism, i.e.,
becomes valueless when all entities in 7 are meaningful. Other theories of meaning-
fulness that generalize the Erlanger program are developed Narens (2002), and
some of these appear to deal effectively with the case of generating structures with
trivial automorphisms. Their discussion, however, is outside the scope of this
article.
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