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Various axiomatic theories of magnitude estimation are presented.
The axioms are divided into the following categories: behavioral, in
which the primitive relationships are in principle observable by the
experimenter; cognitive, in which the primitive relationships are
theoretical in nature and deal with subjective relationships that the sub-
ject is supposedly using in making his or her magnitude estimations;
and psychobehavioral, in which the relationships are theoretical and
describe a supposed relationship between the experiment's stimuli and
the subject's sensations of those stimuli. The goal of these axiomatiza-
tions is to understand from various perspectives what must be observed
by the experimenter and assumed about the subject so that the results
from an experiment in which the subject is asked to estimate or produce
ratios are consistent with the proposition that the subject is, in a
scientific sense, ``computing ratios'' in making his or her magnitude
responses. ] 1996 Academic Press, Inc.

1. INTRODUCTION

General

Stevens' (1946, 1951) method of magnitude estimation is
still widely used and highly controversial. This paper
presents axiomatic theories for measuring stimuli in terms
of magnitude estimations. These theories are about idealized
situations and do not involve considerations of error.

Although I believe the axiomatic approaches of this paper
will prove useful in clarifying some of the murky and con-
troversial issues that continue to plague the magnitude
estimation literature, it is not my intention either to review
various parts of this vast literature or to examine it
systematically in terms of the new results presented here.

In psychology, Shepard (1978, 1981), Krantz (1972),
Marley (1972), and Luce (1990) have provided systematic
theories of magnitude estimation and the related technique
of cross modality matching. (Krantz's and Luce's theories
are axiomatic; Marley's is probabilistic.) The axiomatiza-
tions presented here, besides having different primitive con-
cepts and axioms, differ from these and other theories in a
number of important respects: In general, the axiomatizations

do not assume that the subject in a magnitude estimation
experiment has a good understanding of numbers or
numerals; nor do they assume (as in many psychophysical
applications) that the subject's responses exhibit invariance
with respect to transformations of the stimuli; and some of
the axiomatizations are based in part on meaningfulness
considerations��specifically, that the subject's subjective
interpretations of numerals in a magnitude estimation
experiment correspond to functions ``computed meaning-
fully'' from some underlying ``inner psychological measure-
ment structure''. (Other axiom systems are also presented
that are based only on behavioral considerations and make
no assumptions about how the subject produces his or her
responses).

Two Principles of the Stevens' Theory of Magnitude Estimation

Let X be a set of stimuli that is presented to a subject.
Then Stevens' method of ratio magnitude estimation
proceeds by having the subject produce a function .t from
X into R+ with the following properties: An element
t��which we will call the modulus��is selected from X. The
subject is instructed to consider the number 1 as represent-
ing his or her subjective intensity of t, and to keep this con-
sideration in mind in giving his or her numerical estimate of
his or her subjective intensity of stimuli x in X. The
experimenter uses these verbal estimates of the subject to
construct the function .t by assigning the number corre-
sponding to the subject's numerical estimate as the value of
the function .t(x).

Although Stevens is a very articulate and, on the surface,
an apparently clear writer, his expositions about what
underlies and is accomplished by his method of ratio
magnitude estimation lacks rigor. I believe the following
two assumptions, which I will refer to as Stevens's Assump-
tions, are inherent in his ideas about ratio magnitude
estimation:

1. The function .t is an element of a ratio scale S that
adequately measures the subject's subjective intensity of
stimuli in X.

2. Each element x in X can be used as a modulus and the
resulting representation .x is in the ratio scale S, i.e., there
exists r in R+ such that .x=r.t .
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Let D=[.t | t # X]. Then D is the complete data set that
is generated by conducting all possible magnitude estima-
tions of stimuli in X with all possible moduli from X. D can
be recoded as the set E of 3-tuples of the form (x, p, t),
where

(x, p, t) # E iff .t(x)=p.

In triples (x, p, t) in E, p is put in bold typeface because
it represents a numeral and not a number. In this article,
numbers are assumed to be highly abstract scientific objects,
and it is not assumed that subjects understand or use such
scientific objects in their calculations or responses, nor is
it assumed that subjects have or use a philosophically
sound correspondence between (scientific) numbers and
numerals. Thus for the purposes of this paper, the occur-
rence of the numeral p in the expression ``(x, p, t)'' should
be interpreted as a response item provided by the subject to
the experimenter.

Definition 1. Let X and E be as above. Then E is said
to have the multiplicative property if and only if for all x and
t in X and all p in R+, if (x, p, t) # E, ( y, q, x) # E, and
( y, r, t) # E, then r=p } q.

The multiplicative property obviously imposes powerful
constraints on the subject's magnitude estimation behavior.
It is implied by Stevens' Assumptions:

Theorem 1. Let X and E be as above, and suppose
Stevens' Assumptions and that .z(z)=1 for all z in X. Then
E has the multiplicative property.

Proof. Suppose (x, p, t) # E, ( y, q, x) # E, and ( y, r, t) # E.
Then .t(x) = p, .x( y) = q, and .t( y) = r. By Stevens'
Assumptions, let u in R+ be such that

.x=u.t .

Then 1=.x(x)=u.t(x)=u } p, i.e.,

u=
1
p

.

Therefore,

q=.x( y)=u.t( y)=
1
p

} .t( y)=
1
p

} r,

i.e., r=p } q.

In almost all the cases in the literature either insufficient
or the wrong kind of data have been collected for the valid
testing of the multiplicative property. However, because of
the strong structural relationship it describes. I suspect that
the multiplicative property would fail empirically for most

of the kinds of situations where magnitude estimation is
employed. If such massive failures are indeed the case, then
in light of Theorem 1 something fundamental must be
changed in the preceding theory of ratio magnitude estima-
tion.

In my opinion, it is Stevens' method of constructing the
representations .t that is most suspect: I see no reason why
just because a subject says or indicates for a fix modulus t
and for various x in X that ``x is p times more intense than
t,'' it then follows that .t(x)=p is a valid representation of
the subject's subjective intensity of x with respect to t.
Stevens and other magnitude estimation theorists do not
provide any theoretical or even intuitive rationale for this;
at most they only note that the method of ratio magnitude
estimation produces representations (that they presume to
be part of ratio scales) that interrelate in consistent and
theoretically interesting ways with other phenomena. It is
my conjecture that the consistency results not by reflecting
some underlying reality but from a lack of enough relevant
data that might reveal structural inconsistencies.

A More General Form of Ratio Magnitude Estimation
Another property of magnitude estimation behavior,

which to my knowledge has never been systematically
investigated, is the commutative property. This latter
property, which is weaker than the multiplicative property,
is defined formally as follows:

Definition 2. Let X and E be as above. Then E is said
to have the commutative property if and only if for all p and
q in I+ and all x, y, z, t, and w in X, if (x, p, t) # E,
(z, q, x) # E, ( y, q, t) # E, and (w, p, y) # E, then z=w.

It is shown latter in this article that there are ratio
magnitude estimation situations in which the multiplicative
property fails but the commutative property holds and the
situation can be measured in such a way that (i) a ratio scale
S on the stimuli results, and (ii) there is a strict order
preserving mapping f from the numerals occurring in the
magnitude estimation situation into the positive real num-
bers such that for all stimuli x and t and all numerals p,

(x, p, t) iff �(x)=f (p) �(t) for all � in S. (1)

One way of interpreting Eq. (1) is that (1) the numerals
represent the subject's subjective measures (and not numeri-
cal measures) of ratios of subjective intensities, and (2) f is
the scientific way of interpreting these subjective measures
of ratios as numerical ratios. The form of ratio magnitude
estimation embodied in Eq. (1) is clearly a generalization of
the kind of magnitude estimation which results in those
situations for which Stevens' methods for constructing ratio
scales for magnitude estimation data are appropriate: If the
multiplicative property holds, then f in Eq. (1) can be
chosen so that f (p)=p, i.e., f can be chosen in such a way
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that it interprets numerals in the same manner as is done in
science. However, there is nothing in either the ways of
collecting the magnitude estimation data or in the represen-
tational theory that is used later in this article to measure
such data to suggest that such a coinciding of interpreta-
tions is anything more than a coincidence. In order to treat
it as something more, further theoretical assumptions need
to be made about the subject's mental processing in a ratio
magnitude estimation paradigm, and such assumptions
necessarily fall outside of behavioral modeling of the data.

Overview and Organization of the Article

To make the technical material easier to understand and
flow together, various proofs of theorems and lemmas are
placed at the end of the paper in Section 5. Some of
the proofs in Section 5 make use of results and concepts
presented in previous sections.

Section 2 presents some basic concepts about magnitude
estimation and theory of measurement. This material is
background to the rest of the paper.

Section 3 presents various axiomatizations of ratio
magnitude estimation: It is assumed that the responses of a
subject participating in a magnitude estimation experiment
are coded as above as triples of the form (x, p, t). The
axiomatizations state what observable properties the triple
should have and what theoretical assumptions should be
made about how the numerals p relate to an inner psy-
chological measurement structure J on sensations. When
the axioms are satisfied, it is shown that J can be measured
in such a way that the measurements of the inner psy-
chological interpretations of numerals p are functions that
are multiplications by positive reals. It is not a consequence
of the axiom system that the measurement of the psy-
chological interpretation of the numeral p is the real number
p that is the scientific designation of the numeral p.
However, an axiom can be added that achieves this, i.e., an
axiom can be added so that under measurement each
numeral p will correspond to a function that is multiplica-
tion by the number p. Also, axiomatizations are presented
for ratio magnitude estimation that is based only on
observable responses of the subject.

The axiomatizations discussed above are generalized to
situations where totally ordered sets can be taken as
``the numerals''. An instance of this of particular importance
to psychology is where the ``numerals'' p correspond to func-
tions on a physical continuum that under physical
measurement are represented as multiplications by positive
reals.

Section 3 also discusses the semiclassical problem about
whether or not there is an essential difference between
representing numerals as multiplications versus additions
(Torgerson, 1961; Birnbaum, 1982). A theorem is presented
that shows under very plausible conditions that changes of

the instructions to the subject (e.g., ``estimate differences''
instead of ``estimate ratios'') do not materially alter the
structure of the data set. This result provides a theory for an
observed empirical fact that equal difference judgments
produce the same data as equal ratio judgments.

Section 4 discusses issues considered throughout the
paper.

2. PRELIMINARIES

General

Throughout this paper, R denotes the set of real numbers,
R+ the set of positive real numbers, I the set of integers, and
I+ the set of positive integers, � denotes the ``greater than
or equal to'' relation on R, and by convention, � is used
also to denote ``greater than or equal to'' relations on R+,
I, and I+. The (partial) operation of composing functions is
denoted by V . For functions T and positive integers k, the
notation T k stands for k functional compositions of T, e.g.,
T 2=T V T.

For a binary relation �
*

, ``x >
*

y'' stands for ``x �
*

y
and not y�

*
x'' and ``x>� *

y'' stands for ``not x >
*

y''.
By definition, �

*
is said to be a total ordering on X if and

only if X is a nonempty set, �
*

is a transitive and reflexive
relation on X, and for all x and y in X, either x >

*
y or

y >
*

x or x=y. By definition, a set X is said to be
denumerable if and only if there exists a one-to-one function
from it onto I+.

Continua

A continuum is an ordered structure that is isomorphic to
(R+, �). Continua were qualitatively characterized by
Cantor (1895). The following definition and theorem essen-
tially capture Cantor's characterization:

Definition 3. (X, p ) is said to be a continuum if and
only if the following four statements are true:

1. Total ordering: p is a total ordering on X.

2. Unboundedness: (X, p ) has no greatest or least ele-
ment.

3. Density: For all x and z in X, if xoz, then there exists
y in X such that xoy and yoz.

4. Dedekind completeness: Each p -bounded nonempty
subset of X has a p -least upper bound.

5. Denumerable density: There exists a denumerable
subset Y of X such that for each x and z in X, if xoz, then
there exists y in Y such that xpy and ypz.

Theorem 2. (X, p ) is a continuum if and only if it is
isomorphic to (R+, �) .

Proof. Cantor (1895). (A proof is also given in
Theorem 2.2.2 of Narens, 1985.)
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Measurement Scales and Structures

Definition 4. S is said to be a (measurement) scale on
X if and only if X is a nonempty set and S is a nonempty
set of functions from X into R.

Let S be a scale. Then S is said to be homogeneous if and
only if (i) all elements of S have the same range R, and
(ii) for each x in X and each r in the range R there exists .
in S such that .(x)=r.

S is said to be a trivial scale if and only if it is a scale that
consists of a single element.

S is said to be a ratio scale if and only if (i) S is a scale,
(ii) for each . in S and each r in R+, r. is in S, and (iii) for
all . and # in S there exists s in R+ such that .=s#.

S is said to be a subscale of a ratio scale if and only if S
is a scale and S�T or some ratio scale T.

S is said to be a translation scale if and only if (i) S is a
scale, (ii) for each . in S and each r in R, r+. is in S, and
(iii) for all . and # in S, there exists s in R such that
.=s+#.

Definition 5. Let X be a nonempty set. Elements of X
are called 0-ary relations on X. n-ary relations on X, n # I+,
are subsets of Xn (the Cartesian product of X with itself n
times). In particular, 1-ary relations on X are subsets of X.

Relations based on X are a more general class of relations:
Besides 0-ary and n-ary relations on X, they include sets of
0-ary and n-ary relations on X, relations of 0-ary and n-ary
relations on X, relations of sets of 0-ary and n-ary relations
on X, etc.

Suppose f is a function on X. By definition for a subset Y
of X,

f (Y)=[ f (x) | x # Y].

Also by definition, for an n-ary relation R on X( f (R) is the
n-ary relation S on the range of f such that for all x1 , ..., xn

in X,

R(x1 , ..., xn) iff S( f (x1), ..., f (xn)).

For a relation U based on X, f (U) is defined inductively in
the obvious way, e.g., if U is a set of n-ary relations on X,
then

f (U)=[ f (u) | u # U],

etc.
Note that the relations based on X include elements of X

as well as X itself.
For the kinds of general measurement results described in

this article, no loss in generality results from assuming that
the measurement structures contain relations based on X:

Definition 6. X is said to be a structure if and only if X

is of the form

X=(X, R1 , ..., Rj , . . .) j # J ,

where X is a nonempty set and Rj , j # J, are relations based
on X.

Let X=(X, R1 , ..., Rj , . . .) j # J be a structure. Then, by
definition, the primitives of X consist of X and Rj , j # J. Also
by definition, X is called the domain of X.

Definition 7. Let X=(X, R1 , ..., Rj , . . .) j # J and
Y=(Y, S1 , ..., Sk , . . .) k # K be structures. Then the follow-
ing three definitions hold:

(1) f is said to be an isomorphism of X onto Y if and only
if J=K, f is a one-to-one function from X onto Y, and for
each j # J, f (Rj)=Sj .

(2) Y is said to be a numerical representing structure for
X if and only if Y�R and there exists an isomorphism of X

onto Y.

(3) S is said to be a scale of isomorphisms for X if and
only if there is numerical representing structure N such that
S is the nonempty set of isomorphisms of X onto N.

Definition 8. A structure X=(X, �
*

, R1 , ..., Rj , ...)j # J

is said to be continuous if and only if (X, �
*

) is a con-
tinuum.

The structures considered in this paper will either be con-
tinuous or could have total orderings �

*
added as

primitives so that the resulting structures are continuous.
(The results of the paper, however, will apply with
appropriate modifications to more general situations in
which the total ordering �

*
need not be Dedekind com-

plete.)

Definition 9. An automorphism of a structure X is, by
definition, an isomorphism of X onto X.

Definition 10. Let X=(X, �
*

, R1 , ..., Rj , . . .) j # J be a
continuous structure.

X is said to be homogeneous if and only if for each x and
y in X there exists an automorphism : of X such that
:(x)=y.

X is said to be 1-point unique if and only if for all
automorphisms : and ; of X, if :(x)=;(x) for some x in X,
then :=;.

Theorem 3. Suppose X=(X, �
*

, R1 , ..., Rj , . . .) j # J is
a continuous structure. Then the following three statements
are true:

1. There exists a scale of isomorphisms S of X such that
for each . in S, .(X)=R+ and .(�

*
)= �.

2. Let S be a scale of isomorphisms on X. Then (the
structure) X is homogeneous if and only if (the scale) S is
homogeneous.
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3. Suppose X is homogeneous and 1-point unique. Then
there exists a ratio scale S of isomorphisms of X such that for
each . in S, .(X)=R+ and .(�

*
)= �.

Proof 1. By Theorem 2, let . be an isomorphism of
(X, �

*
) onto (R+, �

*
) . Let N=(R+, �, .(R1), ...,

.(Rj), . . .) j # J . Then it easily follows from Definition 5 that

. is an isomorphism of X onto N. Let S be the set of
isomorphisms of X onto N. Then S{< since . # S, and
thus S is a scale of isomorphisms.

Statement 2 easily follows from Definitions 9, 10, and 4.
Statement 3 follows from Theorem 2.12 of Narens (1981)

and from Theorem 4.2 of Chapter 2 of Narens (1985).

Magnitude Estimation Situations

Convention 1. Throughout the rest of this article, X
will denote a nonempty set and p will denote a binary
relation on X.

In the intended interpretations of the article, elements of
X are the possible stimuli to be presented to a subject for
judgment and p is an experimenter determined, intensity
ordering on X. (In psychophysical applications where X is a
set of physical stimuli, p will be taken to be the natural
physical ordering on X.)

Convention 2. Throughout the article E denotes the
magnitude estimation behavior of a subject to stimuli from
X. Unless stated to the contrary, all elements of E will have
the form of an ordered triple (x, p, t), where x and t are
elements of X and p is a positive integer. (For technical
reasons discussed earlier, p is placed in bold typeface when
it is part of a triple in E.)

The integral nature of p in Convention 2 is not essential,
and the more general case is discussed in Subsection 3.5.

In the intended interpretations, the experimenter gives
the subject a magnitude estimation task, and E is the record
of the experimental results. There are many kinds of
magnitude estimation tasks where the experimental results
can be coded as such a set.

The axiomatic theories presented in this paper do not
depend on the details of the instructions given to the sub-
ject; they depend only on the set E and an explicit theory of
the relationship of E to psychological processes. Some
researchers, however, may want to give different interpreta-
tions to the axiomatic theory depending on the instructions
given to the subject. For example, the same axiomatic
theory may apply to data collected from the following three
instructions:

(1) Find a stimulus in X which appears to be p times
greater in intensity than the stimulus t.

(2) Pick the number p which best describes the stimulus
x as being p times more intense than the stimulus t.

(3) Find the stimulus which in your subjective valua-
tion is p+ the valuation of the stimulus t.

For (1) and (2) a researcher might want to represent
stimuli numerically so that the numerical interpretation of
(x, p, t) is that the numerical value of x is p times the
numerical value of t, whereas in (3) he or she might want to
interpret (x, p, t) so that the numerical value of x equals p
plus the numerical value of t.

3. RATIO MAGNITUDE ESTIMATION

In ratio magnitude estimation, the subject is asked to
estimate ratios subjectively. This can be done in many ways.
For concreteness, throughout most of this section it will be
assumed that the subject has been instructed to ``find a
stimulus in X that appears to be p times greater in intensity
than the stimulus t.''

In this section, several versions of ratio magnitude
estimation are axiomatized. For the purposes of exposition
and discussion, it is convenient to divide the axioms into the
following three categories: (i) experimental or behavioral
assumptions, (ii) inner psychological assumptions, and
(iii) psychobehavioral assumptions.

The experimental and behavioral assumptions consist of
axioms about the stimuli, axioms about the subject's
behavior, and axioms about the relationships between the
stimuli and the behavior of the subject. The primitives that
appear in these axioms are in principle observable to the
experimenter.

Convention. To simplify formulations and exposition,
the term ``behavioral'' will be used throughout this article to
describe both experimental and behavioral assumptions.

The inner psychological assumptions are axioms about the
mental activity of the subject, often involving subjective
experience. These assumptions are theoretical in nature and
are formulated in terms of relationships that are not observ-
able by the experimenter.

The psychobehavioral assumptions are axioms that link
behavioral objects and relationships with inner psychologi-
cal ones. These linkages are theoretical in nature and are not
observable by the experimenter.

3.1. Behavioral Axiomatization

The behavioral axiomatization consists of only
behavioral assumptions.

In the following axiom, p is intended to be a total order-
ing of the stimulus set selected by the experimenter.

Axiom 1. (X, p ) is a continuum.

The assumption that (X, p ) is a continuum can be
weakened so that the results presented in the paper generalize
to more situations. However, to achieve such generalizations
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more complicated axiomatic systems would be needed,
and because the presentations of these generalized systems
would add very little to the main issues of the paper, they
are not pursued here.

Axiom 2. The following five statements are true:

1. E�[(x, p, t) | x # X, p # I+, and t # X].

2. For all (x, p, t) in E, xpt.
3. For all t in X, (t, 1, t) is in E.

4. For all x and t in X and all p in I+, there exist exactly
one z in X and exactly one s in X such that

(z, p, t) # E and (x, p, s) # E.

5. For all x, y, t, and s in X, if (x, p, t) # E and
( y, p, s) # E, then

xpy iff tps.

Statements 1, 2, and 3 of Axiom 2 are straightforward. (It
is possible to reformulate the axiom system so that only
numerals greater than 1 are used. If this is done, then State-
ment 3 can be eliminated by modifying Statement 2 as
follows: For all (x, p, t) in E, xo t.) Statement 4 describes a
highly idealized situation��one in which infinitely many
magnitudes ratios p and infinitely many stimuli t are pre-
sented to subject. Statement 5 says that the magnitudes
behave in a strictly increasing manner.

Axiom 3. The following three statements are true:

1. For all (x, p, t) and ( y, q, t) in E,

xoy iff p>q.

2. For all x and t in X, if xo t, then there exist y in X
and p in I+ such that yox and ( y, p, t) # E.

3. For all x and t in X, if xo t, then there exist y and z
in X and p in I+ such that

( y, p+1, t) # E, ( y, p, z) # E, and xozo t.

Axiom 3 describes natural conditions for a ratio
magnitude estimation paradigm. Statement 1 provides the
linkage of the usual ordering on numbers (and consequently
the usual ordering on numerals) to the experimenter deter-
mined ordering on stimuli. Statement 2 plays a role some-
what akin to the Archimedean axiom in measurement
theory: It essentially says that no element of X is ``infinitely
large'' in terms of magnitude estimation to another element
of X. Statement 3 also plays the role of an Archimedean
axiom: It essentially says that no two distinct elements are
``infinitesimally close'' in terms of magnitude estimation.

Axiom 4 (Commutative Property). For all p and q in
I+ and all x, y, z, t, and w in X, if (x, p, t) # E, (z, q, x) # E,
( y, q, t) # E, and (w, p, y) # E, then z=w.

If we let q vp stand for first estimating p times a stimulus
t and then q times that estimated stimulus, then Axiom 4
says that q vp=p vq, a condition that in algebra is called
``commutativity''.

Definition 11. Assume the behavioral assumptions
Axioms 1 to 4. For each p in I+, define the binary relation
p� on X as follows: For all x and t in X,

x=p� (t) iff (x, p, t) # E.

p� may be thought of as the behavioral interpretation of p.
Since p� is defined entirely in terms of behavioral concepts,

it is a behavioral concept.
It easily follows from Statement 4 of Axiom 2 that for

each p in I+, p� is a function on X.

Definition 12. Assume Axioms 1 to 4. Let

B=(X, p , 1� , ..., p� , . . .) p # I + .

By definition, B is called the behavioral structure (associated
with E).

Note that the primitives of B are behavioral concepts.
In terms of the current formulation, the traditional goal

of measurement through the magnitude estimation
paradigm is achieved by measuring the behavioral structure
B through a scale S such that for each p in I+ and each ,
in S, ,( p� ) is a function that is multiplication by the integer
p. In Section 3.4, we will show that the multiplicative
property (Definition 1) is exactly what is needed to add to
Axioms 1 to 4 to achieve this goal.

A more limited goal is to measure B in such a way that
for each p in I+ and each , in S, ,( p� ) is a function that is
multiplication by some positive real c, with not necessarily
c=p. The axiom system, Axioms 1 to 4, already accom-
plishes this:

Definition 13. , is said to be a multiplicative represent-
ing function for B if and only if , is a function from X into
R+ such that for each p # I+, ,( p� ) is a function that is multi-
plication by a positive real.

A scale S on X is said to be a multiplicative scale for B

if and only if each element of S is a multiplicative represent-
ing function for B.

Theorem 4. Assume Axioms 1 to 4. Then there exists a
numerical representing structure N such that the scale of
isomorphisms S of B onto N is (i) a multiplicative scale for
B and (ii) a ratio scale.
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Proof. Theorem 15.

Theorem 5. Assume Axioms 1 to 4. Suppose S is a ratio
scale of isomorphisms of B. Then S is a multiplicative scale
for B.

Proof. Theorem 16.

3.2. Cognitive Axiomatization

Some researchers are content to deal with behavioral
issues only. For these, there is no need to go beyond
behavioral primitives and behavioral assumptions.

Others are interested in the interplay between cognition
and behavior. For this case one needs to include additional
psychobehavioral and psychological primitives and
assumptions. With the addition of these primitives one
has the ability to formulate clearly conditions for
measurements of the behavioral structure B to translate
into measurements of a cognitive structure based on sensa-
tions.

For magnitude estimation, the obvious cognitive ques-
tion is ``How is the subject producing his or her responses in
the magnitude estimation paradigm?'' In this section, a min-
imal theory (Axioms 5 to 8 below) is presented for answer-
ing this. (``Minimal'' is meant to convey here the author's
belief that any plausible cognitive theory at the same level of
idealization as the minimal theory designed to answer the
question will imply the minimal theory.)

The minimal theory is based on the idea that the respon-
ses of the subject correspond to inner psychological func-
tions that are computed by the subject from an ``inner psy-
chological measurement structure''. The exact form of the
``computation'' and the specific primitives that make up the
``inner psychological measurement structure'' are not given;
only their most general features are specified. (This is what
gives the ``minimalness'' to the theory.)

Magnitude estimation is usually not the primary goal of
empirical studies: It is generally used as an instrument to
investigate a substantive domain of interest. In such situa-
tions, the choice between behavioral and cognitive scales
will depend on the particular objectives of the research.

Although the minimal theory together with Axioms 1 to
4 force a strong relationship between the behavioral and
cognitive, they do not force these scales to have identical
measurement properties: By Theorem 4, X is measured
behaviorally by a ratio scale of isomorphisms of B, whereas
by Theorem 6 below, the inner psychological measurement
structure upon which the magnitude estimations depend is
measured by a scale that is a subscale of a ratio scale.
Theorem 6 shows that a necessary and sufficient condition
for this inner psychological measurement structure to be
measurable by a ratio scale is that it be homogeneous. With
this additional assumption of homogeneity, the behavioral
and cognitive scales that result from magnitude estimation
are for practical purposes identical (Theorem 7 below).

Psychobehavioral Assumptions

Axiom 5. 9 is a function from X into the set of the sub-
ject's sensations.

Axiom 5 makes the philosophical distinction between
objects in X and sensations of objects in X. Objects in X are
considered behavioral but not inner psychological, whereas
sensations of objects in X are considered inner psychologi-
cal but not behavioral.

(Using the word ``sensation'' to describe mental impres-
sions of stimuli in X may not be appropriate in several kinds
of magnitude estimation situations, e.g., when X consists of
objects or circumstances of social value and the subject
magnitude estimates the social value of elements of X. For
such applications other appropriate concepts can be sub-
stituted for ``sensation,'' and the results of such substitutions
will have no effect on the theory and results of the paper.)

In the following axiom p� is the inner psychological
intensity ordering on the set of sensations 9(X) referred to
in Axiom 7.

Axiom 6. For all x and y in X,

xoy iff 9(x) o� 9( y).

Inner Psychological Assumptions

Axiom 7. The subject has an inner psychological struc-
ture

J=(9(X), p� , R1 , ..., Rj , . . .) j # J

for ``measuring'' the intensity of sensations in 9(X).

It follows from Axioms 1 and 6 that p� is a total ordering
and that 9 is a one-to-one function.

In the inner psychological structure J, the primitives
9(X), p� , and Rj , j # J, are considered to be inner psy-
chological.

The primitive p� is intended to be the subject's ordering
of his or her subjective intensities of sensations in 9(X).

Except for the domain 9(X) and the primitive p� (which
is linked to the behavioral ordering p through the psy-
chobehavioral Axiom 6), other individual primitives of J
are not explicitly mentioned in axioms of this section.
However, the structure J of primitives plays an important
role in various assumptions of the section, e.g., in Axiom 8
below which assumes that certain functions are definable in
terms of the primitives of J, or in various hypotheses
of theorems which assume that the structure J is
homogeneous.

Definition 14. For each p in I+, define p̂ from 9(X)
into 9(X) as follows: For each x and t in X,

p̂[9(t)]=9(x) iff (x, p, t) # E.
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It easily follows from previous axioms that p̂ is a
function.

The expression ``p̂[9(t)] = 9(x)'' may be considered
as the inner psychological correlate of the expression
(x, p, t) # E. With this in mind, it is natural to consider the
function p̂ as the inner psychological interpretation of the
numeral p.

The next axiom says that the function p̂ is defined (con-
structed, calculated) in terms of the primitives of J. As now
discussed, by various theories (Narens, 1988; Narens 6
Mausfeld, 1992; Narens, in press) this is equivalent to say-
ing that p̂ is meaningful with respect to the structure J.

In the traditional approaches to the theory of measure-
ment (e.g., Krantz et al., 1972; Suppes et al., 1990, Luce et
al., 1990; Narens, 1985), meaningfulness has been identified
with invariance. In the present context, the traditional
approaches would consider the appropriate invariance con-
cept for the meaningfulness of inner psychological rela-
tionships dependent on J to be invariance under the set of
automorphisms of J. Narens (1988, manuscript) shows
that relationships that are invariant under the auto-
morphisms of a structure coincide with those that are
definable in terms of the primitives of the structure through
an extremely powerful logical language��a language of
equivalent or greater power than axiomatic set theory.
Narens (1988, in press) argues that the kinds of extremely
powerful logical languages used for this purpose are for
many applications too powerful, in the sense that they are
too permissible in the kinds of relations that they allow as
``meaningful,'' and he suggests that in scientific applications
less powerful languages be employed. In terms of invariance
under automorphisms, a consequence of this suggestion is
that invariance under automorphisms should be considered as
a necessary condition for meaningfulness but not necessarily
as a sufficient condition for meaningfulness.

Intuitively, this is how meaningfulness enters in the pre-
sent context: Subjective magnitude is captured by the inner
psychological structure J. We do not know much about J
except that its domain consists of sensations of stimuli, and
we believe that J has a primitive ordering of sensations
corresponding to ``subjective intensity''. We assume that the
subject's magnitude estimations involve the structure
J��that is, the subject somehow performs a calculation or
evaluation involving J to produce his or her responses to
trials in the magnitude estimation experiment. We assume
that the subject does this in a way that gives a constant
meaning to each numeral p; i.e., it is assumed that the inter-
pretation that the subject gives to the numeral p is calculated
or defined in terms of the primitives of J. Of course, some-
thing needs to be said about the subjective methods of
calculation or definition of the numeral p. They are inner
psychological, and it is natural, therefore, to suspect that
they would have special properties reflecting that they are
products of mental activity. Nevertheless, without knowing

the details of these properties, it is reasonable to believe they
can be captured formally in terms of the extremely powerful
logical languages (which among other things contain the
equivalents of all known mathematics), and therefore by the
above mentioned results of Narens (1988, in press) that
these inner psychological methods of calculation or definition
are invariant under the automorphisms of J. These intuitive
considerations are summarized in the following axiom:

Axiom 8. Assume Axioms 5 and 7. For each p in I+, p̂
is meaningful with respect to J.

In Axioms 1 to 8, most of the mathematical structure
about magnitude estimation is contained in the behavioral
axioms 1 to 4, often as testable hypotheses. The mathemati-
cal content in the inner psychological and psychobehavioral
axioms is very minimal and, for reasons stated previously, is
necessary for any reasonable theory of ratio magnitude
estimation that includes mental phenomena.

Definition 15. . is said to be a multiplicative represent-
ing function for J if and only if . is a function from 9(X)
into R+ such that for each p # I+, .( p̂) is a function that is
multiplication by a positive real.

A scale S on 9(X) is said to be a multiplicative scale for
J if and only if each element of S is a multiplicative
representing function for J.

Axioms 1 to 8 yield the following theorem:

Theorem 6. Assume Axioms 1 to 8. Then there exists a
numerical structure N with domain R+ such that the follow-
ing three statements are true:

1. The set S of isomorphisms of the inner psychological
structure J onto N is a subscale of a ratio scale.

2. S (as defined in Statement 1) is a multiplicative scale
for J.

3. If J is homogeneous, then the following two
statements are true:

(i) S (as defined in Statement 1) is a ratio scale.

(ii) Let t be an arbitrary element of X, and by (i) let .
be the unique element of S such that .(9(t))=1, and by
Statement 2, for each p in I+, let cp be the positive real such
that multiplication by cp is .( p̂). Then for all p in I+ and x
in X,

(x, p, t) # E iff .(9(x))=cp .

Proof. Theorem 13.

Assume Axioms 1 to 8. By Theorem 4, the data in E can
be appropriately measured behaviorally by a ratio scale of
isomorphisms S of B. Properly speaking, S only measures
the subject's behavior in an experiment. It can, however, be
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used to define a closely related derived sensory scale S$ that
measures intensity of sensations of stimuli of X by letting

S$=[.$ | . # S and for each x in X, .$(9(x))=.(x)].

Nevertheless, S$ may be inappropriate for measuring sub-
jective intensity. One reason is that the qualitative structure
for subjective intensity��the structure J in Axiom 7��may
not be homogeneous, and S$, like S, is a ratio scale and
therefore is homogeneous. However, under the assumption
that the inner psychological structure J is homogeneous,
the following strong relationship obtains between
behaviorally based scales and inner psychologically based
ones:

Theorem 7. Assume Axioms 1 to 8 and that J is
homogeneous. Then (i) for each scale S of isomorphisms of
B, its derived sensory scale S$ (discussed above) is a scale of
isomorphisms of J, and (ii) for each scale T of isomorphisms
of J, there exists a scale U of isomorphisms of B such that
U$=T, where U$ is the derived sensory scale for U.

Proof. Theorem 19.

The principal difference between using Axioms 1 to 4 and
measuring the behavioral structure B and using Axioms 1
to 8 and measuring the inner psychological structure J is
the choice of primitives: In B the primitives are

X, p , 1� , ..., p� , ...,

whereas in J the primitives are

9(X), p� , R1 , ..., Rj , . . ..

Thus the inner psychological structure B$ that is coordinate
to B has the form

B$=(9(X), p� , 1� , ..., p̂, . . .) p # I + .

It easily follows from Axioms 7 and 6 that B and B$ are
isomorphic. The primitives of B$ need not be the inner psy-
chological primitives for subjective sensitivity (i.e., are not
the primitives of J); they are only definable from the latter
(Axiom 8). Because of this, B$ (and therefore B) may have
a different scale type than J, and therefore may be inap-
propriate for measuring subjective intensity.

3.3. Translation Scales

Definition 16. . is said to be an additive representing
function for J if and only if . is a function from 9(X) into
R such that for each p # I+, .( p̂) is a function that is an
addition by a nonnegative real.

A scale S on 9(X) is said to be an additive scale for J if
and only if each element of S is an additive representing
function for J.

By transforming the structure N in Theorem 6 via the
function r � log(r), the following theorem is obtained:

Theorem 8. Assume Axioms 1 to 8. Then the following
two statements are true:

1. There exists an additive scale of isomorphisms of J.

2. If J is homogeneous, then there exists a translation
scale of isomorphisms for J that is an additive scale for J.

Measuring objects of a domain by a scale of isomor-
phisms of a structure based on the domain is a variant of the
representational theory of measurement. The representa-
tional theory is at the present time the dominant theory of
measurement in the literature, and it is the basis of the
massive treatise, Foundations of Measurement, Vols. I�III,
by (in various orders of authors) Krantz, Luce, Suppes, and
Tversky.

The representational theory of measurement does not
choose among isomorphic numerical representing struc-
tures with respect to their appropriateness for measuring a
given situation. In particular, if Axioms 1�8 hold, the
representational theory is not able to decide whether a mul-
tiplicative scale of isomorphisms of J is more appropriate
in a particular situation than an additive scale of
isomorphisms of J. (Torgerson, 1961, reached a similar
conclusion. His arguments, when applied to the representa-
tional theory, essentially consists of the above observation.)

It is natural to ask what happens when the subject
engages in different kinds of magnitude estimation tasks on
the same set of stimuli, e.g., one task in which he or she is
instructed to estimate ratios and another in which he or she
is instructed to estimate differences. Suppose Axioms 1 to 8
hold for both tasks. Then by Theorem 4 the subjects' data
can be measured separately by multiplicative scales of the
behavioral structures associated with the data sets from the
tasks. In addition, if the same homogeneous inner psy-
chological structure is used by the subject to ``compute'' his
or her responses in both tasks, then it is a consequence of
Theorem 9 below that a scale for X exists that is
simultaneously a multiplicative scale of the behavioral struc-
tures associated with the two sets of data collected in the
two tasks.

Although the representational theory of measurement
cannot justify the selection of one scale of isomorphisms of
a structure over another, it still is able in some circumstances
to make relative distinctions between various scales of
isomorphisms of different structures with the same domain.
For the above situation with two magnitude estimation
tasks, consider the case where a scale on X is simultaneously
a multiplicative scale of isomorphisms of the behavioral
structure associated with the first task and an additive scale
of isomorphisms of the behavioral structure associated the
second task. (It is trivial to construct examples of this case.)
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However, by the above discussion, in the context of Axioms
1�8 such relative distinctions can be made only when either
the subject uses a different inner psychological measurement
structure for each task or the subject uses a nonhomogeneous
inner psychological measurement structure for both tasks.

The following theorem is the technical result used in
reaching the above conclusions:

Theorem 9. Suppose for Task 1 (i) the subject has been
instructed to ``Find a stimulus in X which appears to be p times
greater in intensity than the stimulus t,'' (ii) E is his or her
responses to this task, (iii) Axioms 1�8 hold and the inner psy-
chological structure J is homogeneous, and (iv) S is a multi-
plicative scale of isomorphisms of J. (The existence of S
follows from (iii) and Theorem 6.)

Also suppose in Task 2 that different instructions are given
to the subject, e.g, ``Find the stimulus which in your subjective
valuation is q+ the valuation of the stimulus t,''and as a
result of these instructions the subject produces the partial
data set H where elements of H have the form (x, q, t), where
q is a fixed positive integer, t ranges over the elements of X,
and (1) for each t in X there exists exactly one x in X such
that (x, q, t) # H, (2) for all (x, q, t) in H, xp t, and (3) for
all x, y, t, and v in X, if (x, q, t) and ( y, q, v) are in H and
t>v, then xoy. Let q̂ be the following function on 9(X): For
all x and t in X,

q̂(9(t))=9(x) iff (x, q, t) # H.

Assume q̂ is meaningful with respect to J. Then there exists
a positive real r such that for all . in S, .(q̂) is the function
that is multiplication by r.

Proof. Theorem 14.

Theorem 9 provides a theoretical basis for the empirical
findings discussed in Torgerson (1961) about difference and
ratio judgments on the same stimuli set:

The situation turns out to be much the same in the quantitative
judgment domain. Again, we have both distance methods, where
the subject is instructed to judge subjective differences between
stimuli, and ratio methods, where the subject is instructed to judge
subjective ratios. Equisection and equal appearing intervals are
examples of distance methods. Fractionation and magnitude
estimation are examples of ratio methods.

In both classes of methods, the subject is supposed to tell us
directly what the differences and ratios are. We thus have the
possibility of settling things once and for all. Judgments of differ-
ences take care of the requirements of the addition commutative
group. Judgments of ratios take care of the multiplication com-
mutative group. All we need to show is that the two scales combine
in the manner required by the number system. This amounts to

showing that scales based on direct judgments of subjective differ-
ences are linearly related to those based on subjective ratios.

Unfortunately, they are not. While both procedures are subject to
internal consistency checks, and both often fit their own data, the
two scales are not linearly related. But when we plot the logarithm
of the ratio scale against the difference scale spaced off in arithmetic
units, we usually do get something very close to a straight line.
Thus, according to the subject's own judgments, stimuli separated
by equal subjective intervals are also separated by approximately
equal subjective ratios.

This result suggests that the subject perceives or appreciates but
a single quantitative relation between a pair of stimuli. This relation
to begin with is neither a quantitative ratio or difference, of course
��ratios and differences belong only to the formal number system.
It appears that the subject simply interprets this single relation in
whatever way the experimenter requires. When the experimenter
tells him to equate differences or to rate on an equal interval scale,
he interprets the relation as a distance. When he is told to assign
numbers according to subjective ratios, he interprets the same rela-
tion as a ratio. Experiments on context and anchoring show that he
is also able to compromise between the two. (pp. 202�203)

3.4. Numeral Scales

Assume Axioms 1 to 8. By Theorem 6, let S be a multi-
plicative scale for J. Then it follows by Theorem 6 that
there exists a function f from I+ onto R+ such that for all
x and t in X and all p in I+ and all . in S,

(x, p, t) # E iff .(x)=f ( p) } .(t).

The literature has almost universally restricted its attention
to the case where f is the identity function on I+. This is
obviously a very special and important case.

Definition 17. . is said to be a numeral multiplicative
representing function for J (respectively, B) if and only if
it is a multiplicative representing function for J (respec-
tively, B) and for each p # I+, .( p̂) (respectively, .( p� )) is
the function that is multiplication by p.

A scale S on 9(X) is said to be a numeral multiplicative
scale for J (respectively, B), if and only if it is a multi-
plicative scale for J (respectively, B) such that each of its
elements is a numeral multiplicative representing function
for J (respectively, B).

The following theorem is an immediate consequence of
Definition 17:

Theorem 10. Suppose . is a numeral multiplicative
representing function for J (respectively, B) and r # R+.
Then r. is a numeral multiplicative representing function for
J (respectively, B).
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Proof. Left to the reader.

The following behavioral axiom is important for estab-
lishing the existence of numeral multiplicative scales:

Axiom 9 (Multiplicative Property). For all p, q, and r
in I+ and all t, x, y, and z in X, if (x, p, t) # E, (z, q, x) # E,
and r=qp, then (z, r, t) # E.

Note that Axiom 9 implies Axiom 4.

Theorem 11. Assume Axioms 1 to 8. Then the following
two statements are logically equivalent:

1. Axiom 9.

2. There exists a representing structure

N=(R+, �, S1 , ..., Sj , . . .) j # J

such that the set S of isomorphisms of the inner psychological
structure J onto N is a numeral multiplicative scale for J
(Definition 17).

Proof. Theorem 17.

Assume Axioms 1 to 9. Then it is easy to show that the
scale S in Statement 2 of Theorem 11 is a ratio scale if and
only if J is homogeneous.

The following is the ``behavioral version'' of Theorem 11:

Theorem 12. Assume Axioms 1 to 4. Then the following
two statements are logically equivalent:

1. Axiom 9.

2. There exists a representing structure

N=(R+, �, T1 , ..., Ti , . . .)i # I +

such that the set S of isomorphisms of the behavioral struc-
ture B onto N is a ratio scale and is a numeral multiplicative
scale for B (Definition 17).

Proof. Theorem 18.

If Axioms 1 to 9 are assumed, then Theorem 11 and
Theorem 12 seem to suggest that numeral multiplicative
scales of isomorphisms are more appropriate for the
measurements of J and B than other kinds of multi-
plicative scales of isomorphisms. However, as previously
discussed, the representational theory of measurement does
not distinguish between the appropriateness of different
isomorphic numerical representing structures for the same
qualitative structure, and therefore is not able to distinguish
between the appropriateness of scales of isomorphisms
associated with these structures.

Stevens (1946, 1951) presented a theory of measurement
that when applied to magnitude estimation yielded unique
numeral scales. Unfortunately, his theory is not fully

specified, particularly as to what constitutes a proper con-
struction of a scale. The following argument, which I believe
is inherent in Stevens perspective about measurement,
attempts to provide intuitive reasons for accepting the
``special appropriateness'' of numeral multiplicative scales:

Assume Axioms 1 to 9. Let q vp stand for first estimating
p times a stimulus t and then q times that estimated
stimulus. Then Axiom 9 says that

q vp=r iff q } p=r,

i.e., that the subject does ``correct arithmetic in his or
her magnitude estimation''. In multiplicative scales of
isomorphisms of B, the operation v is interpreted in terms
of the operation of multiplication of positive real numbers,
} , and the numeral multiplicative scale of isomorphisms of
B is the only multiplicative scale of isomorphisms of B that
preserves the important behaviorally observed fact that the
subject does correct arithmetic in his or her magnitude
estimation. Therefore, the numeral multiplicative scale of
isomorphism of B should be used for the behavioral
measurement of B.

With respect to the representational theory, the above
intuitive argument is somewhat obscure:

In the inner psychology of the subject, numerals p
correspond to functions p̂ that are meaningful with respect
to J, and the operation v corresponds to the operation of
composing such functions, V . However, in doing ``correct
arithmetic'' on numerals much more structure is required.
For example, in understanding why 2 v3=6, more than the
formal properties of multiplication are used: In particular,
the definitions of the numbers 2, 3, and 6 are also used. One
usual definition of the number 1 is purely in terms of multi-
plication: It is the unique number x such that x } y=y for all
numbers y. The usual way of defining 2 is in terms of the
number 1 and addition, i.e., 2=1+1,. In general, the usual
definitions of individual positive integers >1 in ordinary
arithmetic depend on the successor function \( p)=p+1.
Thus it is natural to expect that subjects who use ``correct
arithmetic'' in magnitude estimation could use their under-
standing of individual numerals and therefore of the numeral
analog of the successor function.

In the subject's inner psychology, functions p̂ correspond
to numerals p, and the operation of function composition V
on [ p̂ | p # I+] corresponds to operation of multiplication
of numerals, v . Since for p # I+ p̂ is meaningful with respect
to the inner psychological structure J, the operation V is
also meaningful, since it is reasonable to assume that the
formula

\x[ p̂ V q̂(x)=p̂(q̂(x))]

will lead to a proper (inner psychological) definition of V in
terms of the primitives of J. (In the above formula, ``\''
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stands for the logical quantifier ``for all''.) Since the data set
E is consistent with the subject having the means to do
``correct arithmetic'' on numerals, we will also assume that
his or her calculations used in this kind of ``correct
arithmetic'' is the result of calculations based on J. In
accord with the above discussion, this will interpreted to
mean (i) at least there is an inner psychological correlate to
the arithmetic the successor function \( p)=p+1 that the
subject could use in defining individual numerals >1, and
(ii) \ is meaningful with respect to J. It is the lack of a
theory of how such an inner psychological correlate inter-
acts with the data E that makes obscure the assumption that
the subject is using ``correct arithmetic''.

3.5. Generalized Ratio Magnitude Estimation

The theory of ratio magnitude estimation encompassed
by Axioms 1�8 does not make strong assumptions about the
structure of numerals��it only uses assumptions that are
formulable in terms of the ordering of the numerals. Because
of this, results that follow from these axioms easily genera-
lize to other kinds of magnitude estimation situations:

Let N be a nonempty set, and (with a mild abuse of nota-
tion) let � be a binary relation on N. Elements p, p # N, are
called generalized numerals. (Note the use of bold typeface
when referring to generalized numerals and regular typeface
when referring to elements of N.)

The following are the two most important cases of
generalized numerals:

(1) I+�N�[r | r # R+ and r�1], and

(2) (C, �) is a physical continuum, e # C, and N=
[a | a # C and a�e].

Case (1) generalizes ratio magnitude estimation to situa-
tions where the subject can use nonintegral numerals, and
Case (2) applies to situations where the subject's behavior is
characterized in terms of generalized numerals based on
physical stimuli, e.g., in an experiment where (x, p, t) stands
for the pressure p that results when the subject squeezes a
ball to display how much he or she believes that crime x is
more serious than crime t.

The axioms for generalized magnitude estimation are the
same as Axioms 1�8 with the following exceptions:

1. N is substituted throughout for I+.

2. � is assumed to be a total ordering on N with a least
element e and no greatest element.

3. Statement 3 of Axiom 2, which states,

For all t in X, (t, 1, t) is in E,

is replaced by,

For all t in X, (t, e, t) is in E.

4. Statement 3 of Axiom 3, which states,

For all x and t in X, if xo t, then there exist y and z in
X and p in I+ such that

( y, p+1, t) # E, ( y, p, z) # E, and xozo t,

is replaced by,

For all x and t in X, if xo t, then there exist y and z in
X and p and q in N such that

q>p, ( y, q, t) # E, ( y, p, z) # E, and xozo t.

It is an easy (but somewhat tedious) matter to verify that
all the above consequences of the behavioral axiomatization
consisting of Axioms 1�4 and the cognitive axiomatization
consisting of Axioms 1�8, when appropriately reformulated
using the above conventions, are consequences of the
corresponding axiom systems made up from the above
axioms for generalized magnitude estimation.

4. DISCUSSION

Axioms 1�4 are necessary for any idealized theory of
magnitude estimation in which numerals are to be inter-
preted as multiplications. By Theorem 4, they are also suf-
ficient for obtaining ratio multiplicative scales for represent-
ing the data in E. This by itself is not enough to conclude
that ``the subject has a ratio scale for subjective intensity'' or
that ``the subject uses a ratio scale to formulate his or her
responses''; to draw such conclusions additional assump-
tions are needed about how the subject's responses are
related to his or her experiences. A minimal form of the rela-
tionship is described in Axioms 5�8. Axioms 1�8, however,
are still not enough to conclude that the ``subject has a ratio
scale of subjective intensity'': it is only enough to conclude
that the subject's scale is a subscale of a ratio scale
(Theorem 6). To insure that this subscale is a ratio scale, an
additional assumption must be imposed��namely, that of
homogeneity of the inner psychological structure J used by
the subject to compute the inner psychological correlates of
the numerals (Statement 3 of Theorem 6).

In the axiomatization for ratio magnitude estimation, the
behavioral Axioms 1 to 4 carry the mathematical structure
of Axioms 1 to 8; the only mathematical role of Axioms 5�8
is to provide the theoretical links between the observed
behavior of the subject and his or her mental processing.
(I believe that the latter axioms accomplish this role in as
minimal a way as one would want. )

In Axioms 1�4, Axioms 1, 2, and 3, which state elemen-
tary properties of magnitude estimation that one would
expect to hold in idealized magnitude estimation settings,
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are very limited mathematically. It is Axiom 4, which
states

q vp=p vq, where ``q vp'' stand for a
first estimating p times a stimulus t and
then q times that estimated stimulus

that contains the important algebraic structure for multi-
plicative representations, and therefore it is the axiom that
in empirical settings should be carefully evaluated.

Assume Axioms 1�8. By Theorem 4 let S be a multi-
plicative scale of isomorphisms of B. Suppose a researcher
uses S to measure subjective intensity. Then implicitly, the
researcher is assuming that a function 9 from stimuli onto
sensations exists so that the derived sensory scale

S$=[.$ | S and for each x in X, .$(9(x))=.(x)]

measures subjective intensity of sensations. By Theorem 7, if
the inner psychological structure J is homogeneous, then
S$ could also be achieved through a scale of isomorphisms
of J. Thus, under the assumption of the homogeneity of J,
S$ is by the representational theory of measurement a
proper scale for measuring subjective intensity. However, if
J is not homogeneous, then according to the representa-
tional theory of measurement, S$ would not be a proper
scale for measuring subjective intensity.

Although the representational theory is currently the
dominant theory of measurement in the literature, there are
other theories that would always permit S$ to be a proper
scale of measurement for intensity of sensations. One of
these, which is based on meaningfulness considerations
instead on representational ideas, is described in Narens
(manuscript). (The discussion of these alternative
approaches to measurement is outside the intended scope of
the paper.)

The representational theory, which is based on
isomorphisms, cannot distinguish between multiplicative
and additive scales for J (Theorems 6 and 8), even if the
subject were asked to participate in different experiments on
the same stimuli and were instructed to use ratio calcula-
tions in one of the experiments and difference calculations in
the other (Theorem 9). However, the kind of measurement
theory used by Stevens (and many researchers in the
behavioral sciences) can in principle distinguish between
multiplicative and additive representations, since these
theories make the additional assumption (which are rarely
made explicit or even acknowledged by their adherents)
that the data E reflect an inner psychological ``arithmetic''
that is structurally like ordinary arithmetic. In the simplest
case this assumption would consist of at least the behavioral
Axiom 9 and an additional inner psychological axiom that
there is an inner psychological mapping of the inner
psychological operation of function composition V on

[ p̂ | p # I+] onto the inner psychological arithmetic multi-
plication operation.

If in addition to Axioms 1�8 the behavioral Axiom 9,

q vp=r iff q } p=r,

where q vp stands for first estimating p times a stimulus t
and then q times that estimated stimulus, is assumed, then
the representational theory of measurement also yields a
numeral multiplicative scale. However, unlike Stevens, the
representational theory places no special significance on
numeral scales: In the representational theory, any scale of
isomorphisms for J is just as good as any other scale of
isomorphisms for J. Thus in the representational theory,
even the restriction of measurement to multiplicative scales
for J is not enough to specify a numeral scale for J, since
the scale formed by taking powers of the representations a
numeral scale for J is easily verified to be a multiplicative
scale for J. Therefore the best one can achieve within the
representational theory with respect to giving numeral
scales ``special significance'' is to state additional axioms
involving at least one of the primitives of the inner psy-
chological structure J that is different from X and p� so
that the numeral multiplicative representations for J are
the only representations for J that are multiplicative and
represent at least one of the newly axiomatized primitives
in a prescribed way, e.g., represent a primitive operation �

as +.

5. PROOFS

Lemma 1. Assume Axioms 1 to 8. Then for all p and q in
I+, p̂ V q̂=q̂ V p̂.

Proof. Let p and q be arbitrary elements of I+ and t be
an arbitrary element of X. Let

z=p̂ V q̂[9(t)]=p̂[q̂[9(t)]],

and

w=q̂ V p̂[9(t)]=q̂[ p̂[9(t)]].

Then by Definition14, (9&1[p̂[9(t)]],p, t), (9&1[(q̂[9(t)]],
q, t), (z, p, 9&1[q̂[9(t)]]), and (w, q, 9&1[ p̂[9(t)]])
are in E. Thus by Axiom 4, z=w, i.e., p̂ V q̂[9(t)]=q̂ V
p̂[9(t)]. Since t is an arbitrary element of X, p̂ V q̂=q̂ V p̂.

Lemma 2. Assume Axioms 1�8. Then the following two
statements are true for each p in I+:

1. p̂ is onto 9(X) and for each x and y in X,

9(x) o� 9( y) iff p̂[9(x)] o� p̂[9( y)].
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2. p̂&1 is a function from 9(X) onto 9(X) such that for
each x and y in X,

9(x) o� 9( y) iff p̂&1[9(x)] o� p̂&1[9( y)].

Proof. Statement 1 follows from Definition 14 and
Statements 4 and 5 of Axiom 2.

Statement 2 follows from Statement 1 and Statement 4 of
Axiom 2.

Lemma 3. Assume Axioms 1 to 8. Then the following two
statements are true for all p and q in I+:

1. p̂ V q̂&1=q̂&1 V p̂.

2. p̂&1 V q̂&1=q̂&1 V p̂&1.

Proof. 1. By Lemma 1, p̂ V q̂=q̂ V p̂. Thus p̂=q̂ V
p̂ V q̂&1. Therefore, q̂&1 V p̂=p̂ V q̂&1.

2. By Lemma 1,

p̂ V q̂=q̂ V p̂.

Taking inverses then yields

q̂&1 V p̂&1=p̂&1 V q̂&1.

Definition 18. Let H be the smallest set of functions
such that

(i) [ p̂ | p # I+]�H, and

(ii) if : and ; are in H, then : V ; is in H.

Lemma 4. Assume Axioms 1�8. Then for each : and ; in
H, : V ;=; V :.

Proof. The lemma follows by a simple induction argu-
ment from Lemma 1.

Definition 19. Let H&1=[:&1 | : # H].

Lemma 5. Assume Axioms 1�8. Then the following three
statements are true for all : and ; in H&1,

1. : V ; # H &1

2. : V ;=; V :.

3. For each x and y in X, there exists # in H&1 such that
9(x) o� #(9( y)).

Proof. Statement 1 follows from Definition 18 and not-
ing that :&1 V ;&1=(; V :)&1.

Statement 2 follows from Lemma 4 and noting that

: V ;=(;&1 V :&1)&1=(:&1 V ;&1)&1=; V :.

To show Statement 3, let x and y be arbitrary elements
of X. If xoy then it easily follows from Statement 3
of Axiom 2 and Axiom 6 that for #=1� =1� &1,
9(x) o� #(9( y)). Thus suppose ypx. By Statement 2 of
Axiom 3, let z in X and p in I+ be such that zoy and
(z, p, x) # E. Then by Statement 1 of Axiom 3, Axiom 6. and
Lemma 2, it follows that for #=q̂&1, where q=p+1, that
9(x) o� #(9( y)).

Definition 20. Let K be the smallest subset of func-
tions such that

(i) H�K;

(ii) H&1�K; and

(iii) if : and ; are in K, then : V ; is in K.

Lemma 6. Assume Axioms 1�8. Then (K, V ) is a com-
mutative group, i.e., (i) V is associative and K{<, (ii) for all
: and ; in K, : V ; is in K, (iii) for all : in K, :&1 is in K, and
(iv) for all : and ; in K, : V ;=; V :.

Proof. (i) Since V is functional composition, it is
associative, and it follows from the definitions of E, H, and
K that K{<.

(ii) follows from Condition (iii) of Definition 20.

(iii) By using Lemma 1, Lemma 3, and induction, it
follows that for all $ and % in H, $ V %&1=%&1 V $. By this
and the associativity and commutativity of V on H, it then
easily follows from Lemma 5 and Definition 20 that K con-
sists of elements of the form,

#=:1 V } } } V :m V (;1 V } } } V ;n)&1,

where :1 , ..., :m and ;1 , ..., ;n are elements of H. But for
such #, #&1 has the same form, i.e.,

#&1=(;1 V } } } V ;n) V (:1 V } } } V :m)&1.

(iv) follows from Lemma 5 and an argument similar to
(iii) above.

Lemma 7. Assume Axioms 1 to 8. Then for all x and y in
X and all : in K,

9(x)p � 9( y) iff :(9(x))p � :(9( y)).

Proof. The lemma follows from Lemma 2 and the defini-
tions of H and K.

Lemma 8. Assume Axioms 1�8. Suppose u, x, and z are
in X and 9(u) o� 9(x) p� 9(z). Then for some $ in K,

9(u) o� $[9(z)] o� 9(x).
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Proof. Suppose not. A contradiction will be shown. Let

Z=[w | w # X and xpw and for all ; # K

either ;(9(w)) p� 9(u) or 9(x) p� ;(9(w))].

Then by hypothesis, z # Z. By the definition of Z, x is a p -
upper bound of Z. Therefore by Axiom 1, let v be the least
upper p -bound of Z. Then

xpv. (2)

By Statement 3 of Axiom 3 and Lemma 2, p in I+ can be
found so that q=p+1, $=p̂&1 V q̂, and

9(u) o� $(9(x)) o� 9(x). (3)

Consider $(9(v)). Since q=p+1>p, it follows by State-
ment 1 of Axiom 3 and Lemma 2 that q̂(9(v)) o� p̂(9(v))
and therefore by the definition of $ and Lemma 2 that

$(9(v)) o� 9(v). (4)

Since by Equation 2 xpv, it follows from Lemma 7 and
Eq. (3) that 9(u)o$(9(v)). Then, since p is a total order-
ing, either (i) 9(x)p$(9(v)) or (ii) 9(u)o$(9(v))o

9(x). Part (i) and Eq. (4) contradicts v being the least upper
bound of Z. Therefore (ii) holds. Since by Axioms 1 and 6,
(9(X), p�) is a continuum, let t in X be such that

9(u)o$(9(v))o9(t)o9(x).

Then by Lemma 7, 9(v)o$&1(9(t)). Thus, since v is the
least upper bound of Z, let s in Z be such that

9(v)p9(s)o$&1(9(t)).

Then xpvps and

9(u)o$(9(v))p$(9(s))o9(t)o9(x),

which contradicts the assumption that s is in Z.

Lemma 9. Assume Axioms 1�8. Then for all : and ; in K,
:(9(x)) o� ;(9(x)) for some x in X if and only if for all y
in X, :(9( y)) o� ;(9( y)).

Proof. Suppose x in X is such that

:(9(x)) o� ;(9(x)).

Then by Lemma 7,

(;&1 V :)(9(x)) o� 9(x). (5)

Suppose y in X is such that :(9( y))o� � ;(9( y)). A con-
tradiction will be shown. Since o� is a total ordering,

;(9( y)) p� :(9( y)). (6)

By Statement 3 of Lemma 5, let # in K be such that

9(x) p� #(9( y)).

By Eq. (5) and Lemma 8, let $ # K be such that

;&1 V :(9(x)) o� $[#(9( y))] o� 9(x). (7)

Then

:(9(x)) o� (; V $ V #)(9( y)),

which by commutativity of (K, V ) yields

:(9(x)) o� ($ V # V ;)(9( y)),

which by Eq. (6) yields

:(9(x)) o� ($ V # V :)(9( y)),

which by commutativity of (K, V ) yields

:(9(x)) o� (: V $ V #)(9( y)),

which yields

9(x) o� ($ V #)(9( y)),

which contradicts Eq. (7).
Suppose for all y in X, :(9( y)) o� ;(9( y)). Then for

some x in X, :(�(x))o 9 ;(9(x)).

Lemma 10. Assume Axioms 1�8. Then for all : in K, if
:(9(x)) o� 9(x) for some x in X, then :(9( y)) o� 9( y)
for all y in X.

Proof. Let : be an element of K and x be an element of
X such that :(9(x)) o� 9(x). Then

:(9(x)) o� @(9(x)),

where @ is the identity element of K. Then by Lemma 9, for
each y in X,

:(9( y)) o� @(9( y))=9( y).

Definition 21. For each nonempty subset U of K, : is
said to be an upper bound of U if and only if : is a function
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from 9(X) into 9(X) such that for all ; in U and all x
in X,

:(9(x)) p� ;(9(x)).

By definition for each nonempty subset U of K,
#=l.u.b. U if and only if # is an upper bound of U and for
all upper bounds : of U, :(9(x)) p� #(9(x)) for all x in X.
If U is a nonempty subset of K and #=l.u.b. U, then # is said
to be the least upper bound of U. Lower bound of U and
greatest lower bound of U (g.l.b. U) have the obvious
analogous definitions.

Since (X, p ) is a continuum, it easily follows that least
upper bounds for upper bounded, nonempty subsets U of K
always exist and are unique.

Definition 22. By definition, let

L=[l.u.b. U | U{< and U�K and U has an upper
bound].

Lemma 11 Assume Axioms 1�8. Then the following four
statements are true :

1. (L, V ) is a commutative group.

2. (L, V ) is homogeneous, i.e., for all 9(x) and 9( y) in
9(X) there exists : in L such that :(9(x))=9( y).

3. For all : in L and all x and y in X

9(x) p� 9( y) iff :(9(x)) p� :(9( y)).

Proof. 1. Suppose : and ; are arbitrary elements of L.
By Definition 22, let U and V be nonempty subsets of K such
that

:=l.u.b. U and ;=l.u.b. V.

We will first show that : V ; is an element of L. Let

W=[#$ # K | _:$_;$[:$ # U and ;$ # V and for all
x in X, :$ V ;$(9(x)) p� #$(9(x))]].

(In the above equation, the symbol ``_'' stands for the
existential quantifier ``for some''.) Then W is nonempty,
since :$ V ;$ is in W for all :$ in U and all ;$ in V. W is
bounded above by : V ;. Let #=l.u.b. W. It easily follows
from the definitions of :, ;, and # that : V ;(9(x)) p�

#(9(x)) for all x in X. Thus to show : V ;=#, it is sufficient
to show that the assumption that for some x in X, : V
;(9(x)) o� #(9(x)) leads to a contradiction:

Suppose x in X is such that : V ;(9(x)) o� #(9(x)). It
follows from Lemma 8 that } in K can be found so that

: V ;(9(x)) o� } V #(9(x)) o� #(9(x)).

Then

: V ;(9(x)) o� (}&1 V :) V ;(9(x)) o� #(9(x)).

In particular,

:[;(9(x))] o� }&1 V :[;(9(x))].

Thus, since :=l.u.b. U, let :$ in U be such that

:[;(9(x))] p� :$[;(9(x))]

p� }&1 V :[;(9(x))] o� #(9(x)). (8)

By applying Lemma 8 to Eq. (8), $ in K can be found so that

:$[;(9(x))] o� $ V #(9(x)) o� #(9(x)),

which yields

:$[;(9(x))] o� $&1 V :$[;(9(x))] o� #(9(x)).

Since by the Lemma 6, * is commutative on K, it follows
that

:$[$&1 V ;(9(x))] o� #(9(x)). (9)

Since, by choice of $ and Lemma 10 $(9(z)) o� 9(z) for all
z # X, it follows that

;(9(x)) o� $&1 V ;(9(x))).

Since ;=l.u.b. V, let ;$ in V be such that

;(9(x)) p� ;$(9(x)) p� $&1 V ;(9(x))).

Then by Eq. (9) and Lemma 7

:$ V ;$(9(x)) o� #(9(x)),

which contradicts that # is the l.u.b. of W.
To show that inverses of elements of L are in L, let

:1=g.l.b.['&1 | ' # U].

Then it easily follows that :1 is in L and :1=:&1.
The identity function @ on 9(X) is in L since it is in K.
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Since it is immediate that V is associative, the above
shows that (L, V ) is a group. Since by Lemma 6 V is com-
mutative in K,

: V ;=l.u.b.[' V & | ' # U and & # V]

=l.u.b.[& V ' | ' # U and & # V]

=; V :,

and thus V is a commutative operation on L.

2. Let 9(x) and 9( y) be arbitrary elements of 9(X). It
will be shown that :(9(x))=9( y) for some : in L. If
9(x)=9( y), then @(9(x))=9( y) where @ is the identity
element of L. So suppose 9(x){9( y). Without loss of
generality, suppose 9( y) o� 9(x). Let

U=[; | ; # K and 9( y) p� ;(9(x))].

Then it easily follows that U is a nonempty bounded subset
of K. Let :=l.u.b. U. If :(9(x))=9( y), then Statement 2
has been shown. Suppose :(9(x)){9( y). A contradiction
will be shown. Since :(9(x)){9( y), it follows from the
definitions of U and :,

9( y) o� :(9(x)) p� 9(x).

By Lemma 8, let $ in K be such that

9( y) o� $(9(x)) o� :(9(x)).

Then $ is in U and $(9(x)) o� :(9(x)), which contradicts
:=l.u.b. U.

3. Let : be an arbitrary element of L and x and y be
arbitrary elements of X. It follows from the definition of L
that 9(x) p� 9( y) implies :(9(x)) p� :(9( y)). Assume

:(9(x)) p� :(9( y)).

Then, since :&1 # L, it immediately follows that
9(x) p� 9( y).

Lemma 12. Assume Axioms 1�8. Then there exists a
numerical structure

N=(R+, �, S1 , ..., Sj , . . .) j # J

such that the following three statements are true:

1. The set S of isomorphism of the inner psychological
structure J (as defined in Axiom 6) onto N is nonempty.

2. For all . in S (as defined in Statement 1) and all p in
I+, .( p̂) is a function that is a multiplication by a positive
constant.

3. If J is homogeneous, then the following two
statements are true:

(i) S (as defined in Statement 1) is a ratio scale.

(ii) Let t be an arbitrary element of X, and by (i) let .
be the unique element of S such that .(9(t))=1, and by
Statement 2, for each p in I+, let cp be the positive real such
that multiplication by cp=.( p̂). Then for all p in I+ and x
in X,

(x, p, t) # E iff .(9(x))=cp .

Proof. Since by Lemma 11 (L, V ) is a homogeneous,
commutative group on the continuum (9(X), p�) , it
follows by the proof of Theorem 2.12 of Narens (1981) (see
also Theorem 4.2 of Chapter 2 of Narens, 1985) that a ratio
scale T from 9(X) onto R+ and a function . can be found
such that . # T, .( p�)=�, and for each { in T, {(L) is
the set of multiplications by positive reals. Let . be an ele-
ment of T. Let

N=.(J)=(.(9(X)), .( p�), .(R1), ..., .(Rj), . . .) j # J ,

and let S be the set of isomorphisms of J onto N.

1. S{<, since . # S.

In order to show Statements 2 and 3, it will first be shown
that for each automorphism : of J that .(:) is a function
that is multiplication by a positive real:

Let : be an automorphism of J. Since for each p in I+,
p̂ is meaningful with respect to J, it follows from previous
remarks about meaningfulness that p̂ is invariant under the
automorphisms of J. Using this fact, it is easy to verify that
the elements of H, K, and L are invariant under the
automorphisms of J. Therefore, in particular, for each ; in
L and each x in X,

:[;(9(x))]=;[:(9(x))]. (10)

Let f be the function .(:) from R+ onto R+, and for each
; in L, let r; be the positive real such that .(;) is multiplica-
tion by r; , and for each x in X, let sx be the positive real such
that .(9(x))=sx . Then from Eq. (10), one obtains

f (r; } sx)=r; } f (sx). (11)

Since : is also an automorphism (9(X), o�) , it follows
that f is a strictly increasing function. Also,

R+=[r; | ; # L]=[sx | x # X].

It is well-known that all strictly increasing functions g on
R+ that satisfy the functional equation

g(r } s)=r } g(s)
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for all r and s in R+ have the form

g(u)=c } u,

where c is a positive constant. Thus it follows from Eq. (11)
that .(:) is a multiplication by a positive constant.

2. Suppose p is an arbitrary element of I+ and ' is an
arbitrary element S. Since p̂ # L, let s be the positive real
such that .( p̂) is multiplication by s. Then since S is a scale
of isomorphisms of J onto N, :=.&1 V ' is an
automorphism of J. Since p̂ is meaningful, it is invariant
under :, i.e.,

: V p̂=p̂ V :.

By an above argument given in Statement 1, let r in R+ be
such that .(:) is multiplication by r. Then for each x in X,

'[ p̂(9(x))]=.[.&1 V ' V p̂(9(x))]

=.[: V p̂(9(x))]

=.[ p̂(:(9(x)))]

=.( p̂)[.(:(9(x)))]

=s } (r } .(9(x))),

i.e., '( p̂) is the function that is multiplication by s } r.

3. (i) Suppose J is homogeneous. Let r be an
arbitrary element of R+. Since .(L) is the set of multiplica-
tions by positive reals, let ; in L be such that .(;) is multi-
plication by r. Let x be an element of X. By the homogeneity
of J, let : be an automorphism of J such that
:(9(x))=;(9(x)). Since .(L) is the set of multiplications
by positive reals and since by an above argument given in
Statement 1 .(:) is a function that is multiplication by a
positive real, it follows that .(:) is multiplication by r,
because

.[:(9(x))]=.[;(9(x))]=r } .(9(x)),

i.e., .(:) is multiplication by r. It is easy to verify for each
automorphism # of J that . V # is an isomorphism of J
onto N. Therefore, '=. V : is in S, i.e., for all y in X,

'(9( y))=r } .(9( y)).

Therefore, since r is an arbitrary element of R+, it has been
shown that s } . # S for each s in R+. To show Clause (i)
that S is a ratio scale, one then just needs to note that from
above .($) for an automorphism $ of J is a multiplication
by a positive real and that for all ' in S and all x in X,

'(9(x))=t } .(9(x)),

where multiplication by t is .(%) where % is the
automorphism .&1 V ' of J, i.e.,

'(9(x))=.[.&1 V '(9(x))]

=.[%(9(x))]

=.(%) V .(9(x))

=t } .(9(x)).

Since T and S are ratio scales and . # S & T, it follows
that S=T. Clause (ii) then follows, since . V p̂ is an ele-
ment of .(L)=T for each p in I+.

Lemma 13. Let N and S be as in Lemma 12. Then there
exists a set K of elements of R+ such that for each . in S,

(i) 1 # K, and for each r and s in K, r&1 # K and rs # K;
and

(ii) S=[r } . | r # K].

Proof. The theorem is an easy consequence of the
following facts: (1) S is a scale of isomorphisms of J;
(2) for all ' and # in S, '&1 V # is an automorphism of J;
(3) the automorphisms of J form a group; and (4) by the
proof of Lemma 12 '(:) is a function that is multiplication
by a positive real for each ' in S and each automorphism
: of J.

Theorem 13 (Theorem 6). Assume Axioms 1�8. Then
there exists a numerical structure N with domain R+ such
that the following three statements are true:

1. The set S of isomorphisms of the inner psychological
structure J onto N is a subscale of a ratio scale.

2. S (as defined in Statement 1) is a multiplicative scale
(Definition 13) for J.

3. If J is homogeneous, then the following two
statements are true:

(i) S (as defined in Statement 1) is a ratio scale.

(ii) Let t be an arbitrary element of X, and by (i) let .
be the unique element of S such that .((9(t)))=1, and by
Statement 2, for each p in I+, let cp be the positive real such
that multiplication by cp is .( p̂). Then for all p in I+ and x
in X,

(x, p, t) # E iff .(9(x))=cp .

Proof. Follows immediately from Lemmas 12 and 13.

Theorem 14 (Theorem 9). Suppose for Task 1 (i) the
subject has been instructed to ``Find a stimulus in X which
appears to be p times greater in intensity than the stimulus t,''
(ii) E is his or her responses to this task, (iii) Axioms 1�8 hold
and the inner psychological structure J is homogeneous, and
(iv) S is a multiplicative scale of isomorphisms of J. Suppose
in Task 2 different instructions are given to the subject, e.g.,

126 LOUIS NARENS



File: 480J 110919 . By:CV . Date:11:07:96 . Time:09:28 LOP8M. V8.0. Page 01:01
Codes: 5563 Signs: 4038 . Length: 56 pic 0 pts, 236 mm

``Find the stimulus which in your subjective valuation is p+
the valuation of the stimulus t,'' and as a result of these
instructions the subject produces the partial data set H where
elements of H have the form (x, q, t), where q is a fixed
positive integer, t ranges over the elements of X, and (1) for
each t in X there exists exactly one x in X such that
(x, q, t) # H, (2) for all (x, q, t) in H, xp t, and (3) for all x,
y, t, and v in X, if (x, q, t) and ( y, q, v) and t>v, then x>y.
Let q̂ be the following function on 9(X): For all x and t in X,

q̂(9(t))=9(x) iff (x, q, t) # H.

Assume q̂ is meaningful with respect to J. Then there exists
a positive real r such that for all . in S, .(q̂)= is the func-
tion that is multiplication by r.

Proof. Let P be the set of automorphisms of J. Since by
assumption q̂ is meaningful with respect to J, it is invariant
under the elements of P, i.e., for all ; in P and all x in X,

q̂[;(9(x))]=;[q̂(9(x))]. (12).

Let . be an arbitrary element of S. Then, since J is
homogeneous, it follows by the proof of Lemma 12 that
.(P) is the set of multiplications by positive reals. Let f be
the function .(q̂) from R+ onto R+, and for each ; in P, let
r; be the positive real such that .(;) is multiplication by r; ,
and for each x in X, let sx be the positive real such that
.(9(x))=sx . Then from Eq. (12), one obtains

f (r; } sx)=r; } f (sx). (13)

It easily follows from assumptions (1) and (3) above that q̂
is a strictly increasing function onto R+. It is well known
that all strictly increasing functions g on R+ that satisfy the
functional equation

g(r } s)=r } g(s)

for all r and s in R+ have the form

g(u)=c } u,

where c is a positive constant. Thus it follows from Eq. (13)
that .(q̂) is a multiplication by a positive constant.

Theorem 15 (Theorem 4). Assume Axioms 1�4. Then
there exists a numerical representing structure N such that
the scale of isomorphisms S of B onto N is (i) a multi-
plicative scale for B and (ii) is a ratio scale.

Proof. Let 9 be the identity function on X, p�= p ,
I+=J, and the inner psychological structure J be

J=(9(X), p� , 1� , ..., }� , . . .) j # I + .

Then it is easy to verify that Axioms 5�8 hold. Thus by
Theorem 13 let S be a multiplicative scale of isomorphisms
of J onto the structure N, where

N=(R+, �, M1 , ..., Mj , . . .) j # I + .

Then S is a multiplicative scale of isomorphisms of B onto
N. By Lemma 13, for all . and # in S there exists s in R+

such that #=s } .. Thus to show that S is a ratio scale, it is
sufficient to show that r } . # S for each r in R+ and each .
in S.

Let r be an element of R+ and . be an element of S. It
follows from Lemma 4 that for each j in I+ that }� is an
automorphism of J. Therefore by the proof of Lemma 12 it
follows that .( }� ) is multiplication by a positive real, sj .
Therefore Mj is multiplication by sj . Since for all j in I+ and
all x and t in X,

x=}� (t) iff .(x)=sj } .(t)

iff r } .(x)=r } sj } .(t)=sj } r } .(t),

and for all u and v in X,

upv iff .(u)�.(v) iff r } .(u)�r } .(v),

it follows that r } . is an isomorphism of J onto N and
therefore is an element of S.

Theorem 16 (Theorem 5). Assume Axioms 1�4. Sup-
pose S is a ratio scale of isomorphisms of B. Then S is a
multiplicative scale of isomorphisms of B.

Proof. By Theorem 15, let T be a multiplicative scale of
isomorphisms of B that is a ratio scale. Since both S and T
are ratio scales, it then follows from Theorem 2.7 of Narens
(1981) that r in R+ can be found so that S=[.r | . # T].
Because T is a multiplicative scale, it easily follows that .r

is a multiplicative representing function for each . in T.
Therefore S is multiplicative scale of isomorphisms of B.

Theorem 17 (Theorem 11). Assume Axioms 1�8. Then
the following two statements are logically equivalent:

1. Axiom 9.

2. There exists a representing structure

N=(R+, �, S1 , ..., Sj , . . .) j # J

such that the set S of isomorphisms of the inner psychological
structure J onto N is a numeral multiplicative scale for J
(Definition 17).

Proof. It immediately follows from Definition 17 that
Statement 2 implies Statement 1. Assume Statement 1, i.e.,
assume Axiom 9.
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By Theorem 13, let T be a multiplicative scale of
isomorphisms of J onto the structure

I=(R+, �, S1 , ..., Sj , . . .) j # J .

For each r in R+, let Ir be the structure

Ir=(R+, �, S1, r , ..., Sj, r , . . .) j # J ,

where for each j # J, Sj, r is the m( j)-ary relation on R+

defined by: For all a1 , ..., am( j) in R+,

Sj, r(ar
1 , ..., ar

m( j)) iff Sj (a1 , ..., am( j)).

Then for each r in R+, the scale Tr=[.r | . # T] is a mul-
tiplicative scale of isomorphisms of J onto Ir .

Let r in R+ be such that for each . in Ir .(2� ) is the func-
tion that is multiplication by 2, and let

S=Tr and N=Ir .

Then S is a multiplicative scale of isomorphisms of J onto
N and .(2� ) is the function that is multiplication by 2 for
each . in S. It will be shown by contradiction that S is a
numeral multiplicative scale for J.

Suppose S is not a numeral multiplicative scale for J.
Let k be a positive integer such that .(k� ){ multiplication
by k. Then it easily follows that k{1 and k{2. Thus k>2.
Let . be an element of S and let c be the positive real num-
ber such that .(k� ) is the function that is multiplication by
c. There are two cases to consider:

Case 1. k>c. Then log k>log c, and thus by elemen-
tary properties of real numbers, positive integers m and n
can be found so that

m log k>n log 2>m log c,

i.e.,

km>2n>cm. (14)

Let + be the function on the positive reals such that for each
positive real t, +(t) is the function that is multiplication
by t. Then by Axioms 1�8 and Axiom 9,

+(2n)=.(2� )n=.(2n@)

and

+(cm)=.(k� )m=.(km@).

Then, because by Equation (14) 2n>cm, +(22)>+(cm), and
thus

.(2n@)>.(km@). (15)

Because Axioms 1�8 require .( p̂)>.(q̂) whenever p>q, it
follows from Eq. (14) that

.(km@)>.(2n@),

contradicting Eq (15).

Case 2. k<c. Similar to Case 1.

Theorem 18 (Theorem 12). Assume Axioms 1�4. Then
the following two statements are logically equivalent:

1. Axiom 9.

2. There exists a representing structure

N=(R+, �, T1 , ..., Ti , . . .) i # I +

such that the set S of isomorphisms of the behavioral struc-
ture B onto N is a ratio scale and is a numeral multiplicative
scale for B (Definition 17).

Proof. The proof of the existence of a numeral multi-
plicative scale S of isomorphisms of B is similar to
Theorem 17. By Theorem 15 B has a ratio scale of
isomorphisms, and therefore N can be chosen in such a way
that S is a multiplicative ratio scale of isomorphisms.

Theorem 19 (Theorem 7). Assume Axioms 1 to 8 and
that J is homogeneous. For each function h from X into R+,
let h$ be the function on 9(X) that is defined by: For all t
in X,

h$(9(t))=h(t).

Then the following two statements are true:

1. For each scale S of isomorphisms of B, the set of
functions

S$=[.$ | . # S]

is a scale of isomorphisms of J.

2. For each scale T of isomorphisms of J there exists a
scale S of isomorphisms of B such that

T=[.$ | . # S].

Proof. 1. Let S be a scale of isomorphisms from B

onto

N=(R+, �, 1$, ..., k$, . . .) k # I+ .

Since for k in I+, k� is meaningful with respect to J, it
follows from previous remarks about meaningfulness that k�
is invariant under the automorphisms of J. Therefore, the
structure

J$=(9(X), p � , R1 , ..., Rj , ..., 1� , ..., k� , . . .) j # J, k # I +
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has the same set of automorphisms as J. Let . be an ele-
ment of S and let

N$=(R+, �, .$(R1), ..., .$(Rj), ..., 1$, ..., k$, . . .) j # J, k # I + .

Then .$ is an isomorphism of J$ onto N$. Let T be the scale
of isomorphisms from J$ onto N. Since J and J$ have the
same set of automorphisms, it easily follows that T is a
scale of isomorphisms of J onto

(R+, �, .$(R1), ..., .$(Rj), ..., ) j # J .

It will be shown that T=[!$ | ! # S].
Let H be the set of automorphisms of N and H$ be the

set of automorphisms of N$. Then H$�H. Since by
assumption J is homogeneous and since J and J$ have the
same set of automorphisms, J$ is homogeneous. Therefore
by isomorphism N$ is homogeneous. N is 1-point unique,
since it is isomorphic to B, which by Theorem 15 has a ratio
scale of isomorphisms. Let % be an arbitrary element of H.
It will be shown that % # H$, thus establishing H=H$. Let
a be an element of R+. Since N$ is homogeneous, let ' in H$
be such that %(a)='(a). Then, since N is 1-point unique,
%='. Thus

H=H$.

Let # be an arbitrary element of S. Then it easily follows
from S being a scale of isomorphisms that an auto-
morphism : in H can be found such that

#=: V ..

However, since for each t in X

#$(9(t))=#(t)

=: V .(t)

=: V .$(9(t))

and since : # H=H$ and .$ # T, it follows that #$ # T.
Let $ be an arbitrary element of T. Then it easily follows

from T being a scale of isomorphisms onto N$ that an
automorphism ; in H$ can be found such that

$=; V .$.

Since H=H$, ; is also an automorphism of N. Therefore,
; V . is in S. Since for all t in X,

$(t)=; V .$(9(t))=; V .(t)=(; V .)$(9(t)),

$=(; V .)$.

2. By an analogous argument, Statement 2 follows.
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