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1. In t roduc t ion  

Wigner (1960), in a widely read and cited article, articulated what 
had previously been recognized by many scientists, namely, the remarkable 
affinity between the basic physical sciences and mathematics, and he noted 
that it is by no means obvious why this should be the case. The remark- 

ableness of this fact is obscured by the historical co-evolution of physics and 
mathematics, which makes their marriage appear to be natural and foreor- 
dained. But serious philosophical explanations for the underlying reasons 
are not many. 

This paper dissects the normal use of mathematics in theoretical sci- 
ence into three aspects: idealizations of the scientific domain to  continuum 
mathematics, empirical realizations of that mathematical structure, and 
the use in scientific arguments of mathematical constructions that have no 
empirical realizations. The purpose of such a dissection is to try to isolate 
gaps in our knowledge about the justified use of mathematics in science. 
We believe that the apparent Uunreasonablenessn referred to in Wigner's 
title 'The unreasonable effectiveness of mathematics in the natural sci- 
ences" arises from such lack of knowledge, rather than to some principled 
difference in the nature of mathematics and that of science. 

Of the three aspects mentioned, the second - empirical realizations 
of mathematical structure - is the one with the largest body of positive 
results. A number of these are recent, and a major portion of the paper is 
devoted to outlining some of them.' 

2. Infinite Ideal izat ions 

In the sciences, the domains of interest are usually finite. But, from a 
human perspective, such domains are often "largen and "complexn and typ- 
ically, scientists idealize them to infinite ones - to something ontologically 
much larger and more complex than the original domain. Paradoxically, 
the resulting models are frequently much more manageable mathematically 
than the more realistic, finite models. Although such idealized domains are 
necessarily not accurate descriptions of the ones of actual interest, these in- 
finite, ideal descriptions are nevertheless useful in science. In the authors' 

a ~ h e  reader who wishes to know more about this and related research in the theory 
of measurement is referred to two expository papers by the authors, Luce and Narens 
(1987) and Narens and Luce (1986), and to two sets of books: Krante et d. (1971), 
Suppes et d. (1989), and Luce et d. (1990); and Narena (1985; in preparation). 
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view, this is because the focus of science is generally not on giving exact 
descriptions of the entire domain under consideration - such descriptions 
would generally prove to  be too unwieldy and too complex to be of use - 
but rather with the production of generalizations that capture particular, 
scientifically significant features of the domain and that interrelate nicely 
with other generalizations about related domains. 

Many kinds of generalizations used in science require us to ignore cer- 
tain properties that are inherent in finite models; and others emphasize 
properties that are valid only in infinite ones. For example, in finite, or- 
dered domains, maximal and minimal elements necessarily exist. Further, 
a desirable generalization may exclude such elements, as for example: "For 
each American middle class individual, there is a slightly richer American 
middle class individual." Or a useful generalization may use the concept of 
a homogeneous domain (as explained below) - a condition that is a basis 
of many scientific laws and one that usually requires infinite domains. 

The crux of the matter is that science - a t  least as currently practiced 
- relies on special kinds of generalizations rather than exact descriptions, 
and such generalizations necessarily need infinite domains, and hence actual 
scientific domains need to be idealized to infinite ones. There are many ways 
to  carry out such idealizations, and unfortunately at the present time there 
are, in our view, no acceptable formal theories of idealization. While this is 
obviously a very important problem in the foundations of science, it appears 
to  be a very difficult one. Various strategies have been suggested - e.g., 
idealize through some use of potential infinity or through some recursive 
process - but so far these attempts have failed to capture the full power of 
the current practices of mathematical science. 

Intuitively, the idealization of a finite domain should be to some de- 
numerably infinite one. However, mathematical science routinely employs 
nondenumerable domains (e-g., continua, finite-dimensional Euclidean 
space, etc.) for idealizations, because these have special, desirable mod- 
eling properties that are not possible for denumerable domains. (E.g., for 
continua X the proposition, YEach continuous function from a closed inter- 
val of X into X takes on maximum and minimum values," is true, whereas 
for densely ordered, denumerable X it is false.] While it is an interesting 
exercise to try and replace assumptions that imply nondenumerability of 
 articular classes of scientific models with others that are consistent with 
denumerability, we will not go into this topic here, since for this paper it is 
somewhat peripheral. 

Instead, we will simply take as a starting point that science employs 
idealizations of actual (non-mathematical) domains, and that these quali- 
tative idealizations, which are usually infinite (and often nondenumerable) 
are used qualitatively to express generalizations about the original domain. 
But we emphasize that this is a major lacuna in the philosophy of science, 
one about which we do not, at  present, have anything useful to say. In our 
opinion, understanding exactly when such idealizations are helpful is one 
major gap in understanding the effectiveness of mathematics in science and 
is a part of its perceived Uunreasonableness". 

With such idealizations accepted, the next problem is then to explain 
why mathematics is so effective in drawing useful inferences about the qual- 
itative, idealized domain. To investigate this, the properties of qualitative 
structures that permit their quantification will be looked a t  first; that is, 
we will first look at how numbers enter in science through processes of 
measurement. 

3. Empirical Bases for Number Systems 

The number systems most used in science are algebraic subsystems of 
the ordered field of real  number^,^ ( Re,?, +, +). There are many such sub- 
systems, and for the purposes of this paper, the most important ones are 
the subsystems of positive integers, positive rationals, and positive reals, re- 
spectively ( I + ,  >, +, +), (Ra+ ,  >, +, *), and (Re+,  >, +, +). The subsystem 
of positive integers has two important empirical realizations: a system based 
on ordered counting (ordinal numbers) and a system based upon matching 
finite sets in terms of their being in one-to-one correspondence (cardinal 
numbers). Although these two realizations are empirically different, they 
are algebraically identical, since each can be shown to be isomorphic to the 
algebraic system of positive integers. 

The system of positive rationals has a variety of empirical realizations, 
some in terms of the realizations of the system of positive integers. These 
latter will not be discussed in this paper for lack of space. Instead, we will 
focus on those that result from extensive measurement (discussed below), 
which is basic to much of mathematical science and which can also 
empirical realizations of the system of positive real numbers. 

b ~ t  has become conventional in part of the measurement literature to use Re, Ra, and 
I for the real numbers, the rationals, and the integers, respectively, and to superscript 
them with + to denote the positive restrictions. 
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In understanding the role of numbers in science, it is important to 
describe the empirical correlates to the number domain, to the numerical 
ordering relation > on it, and to the operations + and on it. In our 
view, this is not accomplished successfully for continuous domains by the 
webknown classical mathematical construction of the nineteenth century 
due to  Peano and Dedekind, which constructs the system of the positive 
rationals out of the positive integers, and then the system of positive real 
numbers out of the positive rational numbers. The reason for its failure is 
that the empirical correlates that one wants for addition and multiplication 
on the reals are not related in any empirical way via the construction to the 
empirical realization(s) of the positive integers. 

The way we shall proceed in this paper is to start  with algebraic 
structures in which the domain, ordering relation, and addition operation 
are empirically realizable, and then investigate various empirical ways to  

realize multiplication. 

9.1. Eztensive Measurement 

Eztensive structures are algebraic structures of the form X = (X,>', o), 
where X is a non-empty set of objects; 2' is a binary relation on X; and 0 

is binary operation on X, called the concatenation operation. It is assumed 
that: 

(i) >' is a total ordering; 
(ii) 0 is associative and commutative; 

(iii) 0 is monotonic in the sense that it is strictly increasing relative to >' 
in each variable; 

(iv) 0 is positive ( x o y  >' x), where >' is the strict part of 2'; and 
(v) the structure X is such that all elements are 'commensurablen in the 

sense that no two distinct elements of X are infinitely far apart nor 
infinitesimally close together in terms of the ordering and concate- 
nation operation. (Elements x and y, where x >' y, are said to be 
'infinitely far apart" if and only if for all finite positive integers n, n 
concatenations of y remains strictly less than x, where for example 
'three concatenationsn of y is defined by ( y 0 y ) o y .  UInfinitesimally 
closen has a similar but slightly more complicated formulation.) 

The important theorem about extensive structures is that they are iso- 
morphically imbeddable in the numerical structure (Ref ,  2, +), and from 
this it follows immediately that empirical realizations of extensive struc- 
tures are empirical realieations of subsystems of the positive additive reals. 

Extensive structures have many empirical realizations, including 
many of the basic physical dimensions such as length, charge, mass, etc. 
For example, for physical length, concatenation is accomplished by plac- 
ing two perfectly straight measuring rods end-to-end in a line and forming 
a third rod by abutting them; and 2' is determined by putting two rods 
side-by-side in the same direction with left endpoints corresponding and 
observing which spans the other. 

In empirical realizations, the extensive ordering is the empirical cor- 
relate to the usual numerical ordering, and the extensive concatenation 
operation is the empirical correlate to  numerical addition. What is missing 
is an empirical correlate to numerical multiplication. In measurement the- 
ory, the empirical correlate to multiplication rarely is a directly observed 
additional concatenation operation; it usually appears in much more subtle 
and indirect ways. 

Throughout the rest of the paper, we will assume, unless explicitly 
stated otherwise, that the extensive structures discussed are either map- 
pable onto (Ra+ ,  >, +) or (Re+, >,+). These are the two most important 
situations and onea that can easily be described in terms of the defining 
relations, 2' and 0, of extensive structures. 

We now consider three different ways in which multiplication can be 
empirically introduced. 

3 . .  One Empirical Base for Multiplication: Multiplicative 

Representations 

The first way considers multiplication as transformed addition. Al- 
though this idea, in itself, will not suffice to explain multiplication in the 
system of positive reals, in particular its distributivity over addition, it is 
nevertheless instructive to examine it. 

Extensive structures (X, >', 0 )  have isomorphisms into ( R e + ,  2, +) 
and thus have isomorphisms into ((1, m), >, a). By deleting positivity from 
the assumptions of an extensive structure, a generalization results that  
has isomorphisms into (Re+, 2, a) ,  and thus may have an identity element 
(i.e., an element mapping into 1) and negative elements (those mapping 
onto (0,l)). In science, such generalized extensive structures often appear 
in indirect ways, especially in those situations where an attribute is affected 
by two (or more) factors that can be manipulated independently. Exam- 
ples abound. In physics, varying either the volume and/or the substance 
filling the volume affects the resulting ordering by mass. In psychology and 
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economics, varying the amount of a reward and the delay in receiving it 
each affects its ordering according to value. For a detailed discussion, see 
Chap. 6 of Krante et al. (1971). 

Abstractly, there are two disjoint sets X and P and a relation ;: on 
X x P, where (z,p)&(y, q) is interpreted to mean that (z, p) exhibits at  
least as much of the attribute in question as does (y,q). Four empirically 
testable properties are invoked: 

(i) 2 is a weak order, i.e., 2 is transitive -if (z,  p)Z(y, q) and (y, q )2(z ,  r) ,  
then (z ,p)z(z ,  r) - and connected-either (x,p)&(y, q) or (y, q)z(x,  p). 

(ii) Independence, which amounts t o  monotonicity in each factor sepa- 
rately, i.e., if (x, p ) ; ~ ( y ,  p) for some p, then (x, q)k(y,  q) for allq E PI 
and a similar statement for the P-component. 
Fkom these two properties, it follows that there is a unique weak 

order induced on each factor, which is denoted ki, i = XI PI namely z z x y  
if (z,  p ) ~ ( y ,  p) for some p, and a similar statement for kp. 
(iii) Each Zi is a total order. 

The final property is a cancellation one that involves two equivalences 
implying a third. 

(iv) Thomsen Condition: if (z, r )  - (2, q) and (2, p) - (Y, r), then (z,  -- 
(Y, 9). 
As in the case of an operation, two less testable conditions are also 

invoked. One is a form of solvability which in its strongest version asserts 
that given any three of z, y E X, p, q E P, the fourth exists such that 
(x, y) - (p, q). The other is an Archimedean property that guarantees 
that all elements are commensurable. From these, one then shows that an 
operation can be induced on a component, say OX on XI that captures 
all of the information about the conjoint structure, and that (XI kx, ox) 
is a generalixed extensive structure with an isomorphism into (Re, >, +). 
This representation can then be reflected back to give a representation of 
C = (X x PI k), namely, there are two positive real functions $,, t = XI P, 
such that their sum is order preserving, i.e., 

( x ,  P)X(Y q) iff Ilx (z) + cClp (P) 2 Ilx (Y) + Ilr ( 9 )  - 
Such structures are called additive conjoint ones. By taking exponen- 
t i a l~ ,  the representation is transformed into a multiplicative representation 

(dx, B P I ,  i.e.1 

where 8; = exp $;,a = X I  P. There is, so far, no reason to favor one kind 
of representation over the other since we do not have distinct notions of 
addition and multiplication that should be related by the usual distribution 
property, r (s  + t) = rs + rt. We turn to that approach next. 

3.3. A Second Empirical Base for Multiplication: Automorphisms 

Let X = (XI >', 0)  be an extensive sturcture. Consider the class of 
transformatio~ls of X onto itself that leave 1' and 0 invariant - the auto- 
morphisms of the structure. These, of course, capture symmetries of the 
structure in the sense that everything "looks the samen before and after 
the transformation. Although the concept of "automorphismn is highly 
abstract, individual automorphisms and sets of automorphisms are often 
realized empirically. For example, in the structure x it is easy to ver- 
ify empirically that functions like g(z) = z o z  and h(z) = (XOX)OX are 
automorphisms. 

A very important fact about the usual axiomatization discussed above 
is that the structure is homogeneous in the sense that each element "looks 
liken each other element: given any two elements, there is an automorphism 
that takes the one into the other. Another important fact is that it is 
I-point unique in the sense that if two automorphisms agree a t  one point, 
then they agree a t  all points. Both homogeneity and 1-point uniqueness, 
despite their abstractness, play an important role in the empirical aspects 
of measurement theory. This is because they are often implied by purely 
empirical considerations. 

Let m be an isomorphism of X onto R = (R,  >, +}, where R is either 
Raf or Ref .  Let a denote an automorphism of X,  and for z E X ,  let m(z) 
denote the number assigned to it. Then a function fa is defined on R by: 

fa[m(z)]  = m[a(x)]  - 
Since the automorphisms form a group with many nice properties (see be- 
low), these functions combines nicely and define the operation we know as 
multiplication. Among other things, it is related to addition by the familiar 
law of distribution, which reflects nothing more than the fact that i t  arises 
from automorphisms: For suppose z, y E X. Then 

falm(z) + m ( ~ ) l  = fa[m(zoy)l  = m[a(zoy ) ]  

= m[ff (z )oa(y) l  

= mIff(x)l+ mIff(y)l 

= fa[m(z)]  -t fa lm(y)] . 
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It is well-known that this equation defines multiplication in the usual sense, 
i.e., we may write for some positive real r,, 

In this notation, the automorphism property becomes simply 

r (s  + t )  = r s  + s t ,  

which is referred to aa the distribution of multiplication over addition. 
It  should also be noted that one can show that changing the element 

to which the numeral 1 is assigned induces an automorphism of the struc- 
ture, and so a change of unit is reflected in the numerical representation as 
multiplication by a constant. 

9.4.  A Third Empirical Basis for Multiplication: Distributive Operations 

Consider an additive conjoint structure C that has a n  independently 
given operation o on the first component such that X = (X, kx, 0)  sat- 
isfies the properties of an extensive structure. We then say that the oper- 
ation 0 distributes in C if and only if for each z, y, u, v E X,p, q E P, if 
(z,  p) - (Y,  q) and (u ,p)  -- ( v ,  q), then (XOU, p) -- ( y o v ,  g ) .  This is just the 
sort of property that holds when X is a domain of volumes, P of substances, 
and 2 is an ordering by mass. Let #x be an additive representation of X .  
Then one is able to show that we may take d x  = $x in a multiplicative 
representation (flx,flp) of C. Thus, the main consequence is that relative 
to the operation 0, the impact of the second component P is that of an 
automorphism of X ,  since multiplications are the automorphisms of the iso- 
morphic image (Re+, 2,  +) of 1. So by what we showed earlier, ordinary 
distribution of multiplication over addition again obtains. For details, see 
Luce and Narens (1985) and Narens (1985). 

3.5. What Else is Measurable? 

For many sciences, there do not appear to be many, if any, observable 
extensive structures on which to  base measurement. To some degree the 
situation ia alleviated by the representations of additive conjoint structures, 
but even that continues to place a very high premium on additivity - either 
associativity of an induced operation or equivalently, a t  the observational 
level, the Thomsen condition. Many concatenation and conjoint situations 
simply do not admit additive or multiplicative representations. Does this 

mean that  measurement of such variables is impossible? Some, starting 
with Campbell (1920, 1928), have held that one must either have an exten- 
sive structure a t  the empirical level or, as some now accept, be able to  show 
that an extensive structure is implicit, as in additive conjoint measurement. 
The question is whether more is possible a t  the implicit level, and the claim 

of modern work is, 'Yes, a lot more." 
The key new idea for this was developed in a series of papers (Alper, 

1987; Cohen and Narens, 1979; Luce, 1986, 1987; Narens, 1981a,b) and is 
summarized in Chapter 20 of Luce, Krantr, Suppes, and Tversky (1990). 
The major mathematical result, which was completed by Alper (1987)~ is 
that for any ordered structure on the positive real numbers that is both 
homogeneous (see the definition given in the section on autornorphisms) 
and finitely unique in the sense that for some integer N, any two auto- 
morphisms that agree a t  N distinct points are identical, there exists an 
isomorphic structure on the positive real numbers for which the automor- 
phism group lies between the similarity group ( z  -+ rz ,  r > 0)  and the 
power group (z  -+ r s o ,  r > 0, s > 0). An important consequence is that 
each member of this widely diverse class of structures has a subgroup of the 
automorphisms - called the translations - that is isomorphic to (Re+, 2,  +). 
This consequence is useful because we can characterize readily what this 
means qualitatively. 

In general, for an  arbitrary, totally-ordered structure X = 
(X,  >', Rj)jEJ, where each R j  is a relation of finite order on X, define 
the translations to consist of the identity map together with all automor- 
phisms a of X that do not have a fixed point (i.e., for all z E XI a ( z )  # z). 
The set T of translations can be ordered as follows: For a,r E T, r 2" r if 
Vz E X, ~ ( z )  >' r(z).  The critical assumption is that  T = (T, > I f ,  *) is an 
Archimedean, totally-ordered group, where * denotes function composition. 
If this is so, then T is isomorphic to a subgroup of (Re+, 2 ,  +). This is 
essentially the same construction as for extensive structures. We will refer 
to T as the implicit eztenaiwe structure of X .  

If, further, T is homogeneous, then i t  is not difficult to  show that 
X can be mapped isomorphically into the translation group, so that  the 
translations of the isomorphic image of X are left multiplications of the 
translation group of X .  By the above, is isomorphic to a numerical 
structure that has multiplication by positive real numbers (i.e., similarities) 
aa its translations. Thus, measurement is effected for any ordered relational 
structure whose translations form a homogeneous, Archimedean ordered 
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group. This class is far from vacuous: For example, consider any operation 
0 on the positive reals, Re+, for which there is a function f : Re+ onto 
Re+ such that f is strictly increasing, f ( z ) / z  is strictly decreasing, and 
z o y  = yf ( z / ~ ) .  Then the structure (Re+, >,0) has as its translations the 
similarity group. The detaih can be found in Cohen and Narens (1979) and 
Luce and Narens (1985). 

If this sort of implicit extensive measurement is deemed acceptable - 
and there is a growing body of literature which suggests that it is - then 
the study of measurement reduces to uncovering the properties of the set 
of translations. Doing so is not necessarily easy. An important problem is 
to give empirical conditions that for a broad class of situations will insure 
that the translations form a homogeneous group and reasonable conditions 
that will insure it is Archimedean. Some progress along these lines has been 
reported. 

A question can be raised about these general structures that closely 
parallels the issue of the distribution of an extensive structure in a conjoint 
one. 

3.6. Distribution of General Relational Structures in Conjoint Ones 

Given our more general notion of measurement based upon an implicit 
extensive structure for the translations, one must inquire about the extent 
to which it behaves in familiar ways. In particular, it is important to  
understand the extent to which such general measures can be incorporated 
into the structure of physical quantities, which classically has involved just 
extensive structures distributing in conjoint ones. The first issue is to arrive 
at a suitable concept of distribution. This is done in two steps. First, given 
a conjoint structure C = (X x P, ;t), two ordered n-tuples (z;) and (y;) 
from X are said to be similar if and only if there are p, q E P such that 
for i = 1, . . . , n, (z;, p) .- (y;, q). Now, consider a relational structure on 
the first component of C, namely, 1 = {X,;tx, R j ) j E ~ ,  where each R, is 
a relation of finite order on X. We say that X distributes over C if and 
only if for each j E J, if (z;) and (y;) are similar ordered n(j)-tuples and 
(2;) is in R,, then (y;) is also in R,. A careful examination of the earlier 
definition of distribution for an extensive structure shows it to be a special 
case of the more general concept. 

The key result (Luce, 1987) is that if the translations of a relational 
structure are homogeneous, form a group under function composition (or 
equivalently, are 1-point unique), and are Archimedean under the order 

defined earlier, then that structure is isomorphic to  a relational structure 
on the first component of an additive conjoint structure and it distributes 
over the conjoint structure. Conversely, if an additive conjoint structure 
has a relational structure on the first component that distributes over the 
conjoint structure, then the translations of the relational structure form a 
homogeneous, Archimedean-ordered group. 

The significance of this result is that to  the extent we are interested 
in measurement that relates to conjoint structures via the distribution 
property, then the condition that the translations form a homogeneous, 
Archimedean-ordered group is exactly what is needed because it provides 
for the existence of the proper numerical setting in which addition and 
multiplication arise simultaneously with natural emprical correlates. 

4. The Use of Non-Empir ical  Ma thema t i c s  

We take the following generaliration of the above remarks as one 
of our basis theses: In many empirical situations considered in science - 
particularly i n  classical physics - there is a good deal of mathematical 
structure already present in  the empirical situation. Measurement produces 
numerical correlates of that structure. 

We have seen several ways in which the algebraic system of posi- 
tive real numbers can arise in science as numerical correlates of empirical 
concepts. By extending the methods, the system can be generalized to 
include powers and logarithms. More inventive methods could probably 
produce additional empirical correlates to  simple concepts of integration 
and differentiation. Thus, it is reasonable to expect that important parts 
of elementary mathematics concerned with analysis have empirical realiza- 
tions. If science only used such 'elementaryn means, then the scientific 
effectiveness of mathematics would be easily understood. However, science 
also uses additional sophisticated mathematical concepts and methods to 
get results, and many - if not most - of these methods have no empirical 
correlates. Symbolically, this situation can be expressed as follows: 

An empirical situation E has an empirical mathematics EM associ- 
ated with it, that through a measurement representation, m, is isomorphic 
to a fragment ME of mathematics, M .  A scientist uses M I  sometimes in- 
cluding portions of M - ME, to get a result r about E. For this result 
to be 'about El, it  must somehow be translatable into E. With what has 
so far been given, this can only be done if r is a result about ME and is 
translatable into E via m-'. In other words, M is used so that m - ' ( r )  
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can be concluded about EM,  which in turn is used to  draw the empirical 
conclusion r about E. If this use of M is 'unreasonably effective", then its 
"unreasonablenessn consists in using some part of M - ME to draw conclu- 
sions about ME,  a matter formulated purely in terms of mathematics, and 
one whose explanation we believe is likely to be found within mathematics 
itself. 

Put another way, it is commonplace in science that non-interpretable 
mathematics - that is, mathematics with no empirical correlates - is used 
to draw mathematical conclusions that are empirically interpretable. In 

our opinion, such practices have not been adequately justified. 

5. Conclusion 

Our analysis has had three parts: 
First, actual empirical situations are usually conceptualized as struc- 

tures on large finite sets. Because of the complexity of such structures 
and the irregularities and non-homogeneity often necessarily inherent in 
them, the actual empirical situation is often idealized to an infinite "empir- 
icaln situation, where the irregularities and non-homogeneities disappear; 
that is, the actual situation is idealized to  a more mathematically tractable 
structure. A well reasoned account of the conditions under which such ide- 
alizations are acceptable is a major unresolved problem in the philosophy 
of science. 

Second, in many important areas of science, such idealized empirical 
structures contain - often in non-obvious ways - a good deal of mathe- 
matical structure, which through the process of measurement is realized as 

familiar mathematical structures on numerical domains. So it is not un- 
reasonable to  expect the kinds of mathematics inherent in such numerical 
realizations to be effective in producing conclusions that can be translated 
back to the idealized empirical situations (and thereby to the actual empir- 
ical situations) by inverting the measurement process. This aspect of the 
problem is relatively well developed and understood. 

Third, and what remains a mystery, is why mathematics outside of the 
numerical realizations should be so (unreasonably) useful in determining 
correct results about those realizations. This appears to  be more of a 
problem in the philosophy of mathematics than in the philosophy of science. 
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