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The scale type (M, N) of an ordered relational structure is defined in terms of two 
properties, called M-point homogeneity and N-point uniqueness, of the automorphism 
group of the structure. For real structures on an open interval, scale types (1, 1)  and 
(2, 2) correspond to ratio and interval representations, respectively. Accepting certain 
key properties, such as transitivity of the ordering relation and, in the case of  a binary 
operation, monotonicity, and assuming that a real representation exists, then for each 
scale type whose real transformation group is  known, the possible forms for the 
representation can be derived. For structures with a monotonic, binary operation, this 
is  done completely for the ratio and interval cases, and incompletely in what is  shown 
to be the only other interesting case exhibiting substantial symmetry, (1, 2). These 
results are then used to gain a better understanding of the psychological theory of 
util ity of gambles and the possible generalisations of multiplicative conjoint structures, 
which are of importance in dimensional analysis. 

1 l ntroduction 
Axiomatic theories of  measurement lead to theorems of 

three general types. The first, known as a representation 
theorem, formulates, in terms of  the primitives of  a qualita- 
tive (and, potentially, empirical) relational structure, 
axioms that are sufficient (and occasionally necessary as 
well) for the existence of  a homomorphism into a 
numerical relational structure. 

The second, known as the corresponding uniqueness 
theorem, formulates the entire class o f  possible homomor- 
phisms into (and sometimes on to) the same numerical 
structure. This is usually stated in terms of  the group of  real 
transformations that relate the several homomorphisms. In 
many cases it can be formulated in terms o f  the automor- 
phisms of the structure itself. 

The third, known as a meaningfulness theorem, formu- 
lates the class of  statements that can be meaningfully 
asserted, either using the primitives of  the structure itself 
o r  using the terms of its numerical representations. The 
concept of meaningfulness, which is to  some degree contro- 
versial, has in many important cases to d o  with the in- 
variance o f  statements under alternative numerical repre- 
sentations. In some cases of interest, this is equivalent to  
invariance o f  qualitative relations under the automorphisms 
of  the qualitative structure. For physical scientists, the best 
known example of  such a result is Buckingham's n-theorem 
of dimensional analysis (see Buckingham, 1914, and 
Chapter 10 of  Krantz et al, 1971). 

The paper also describes a fourth type of  theorem which 
has only recently begun to be developed. The main goal of 
this fourth type is to accept a few of the most important 
axioms of  a structure, and then to classify all possible 
numerical structures exhibiting those properties. This 
provides a listing of the possible representations for such 
structures. The principle used to classify structures is based 

upon a classification of  the automorphism groups o f  these 
structures The key to arriving at these results is a well 
articulated concept of  what is meant by the scale type of  a 
structure. It is believed that results of  this fourth type, of  
which a number are stated below, will aid significantly in 
completing the traditional work o f  axiomatic measurement 
theory. They make crystal clear which axiom systems need 
to be worked o n ;  however, they d o  not seem t o  be very 
much help in actually finding the axioms needed t o  achieve 
the various representations. 

As we shall see, the current results pertain only to  struc- 
tures that exhibit a considerable degree of  symmetry, as is 
true of  the familiar ratio and interval cases. There is not ,  at 
present, any useful classification o f  non-symmetric struc- 
tures such as finite ones or ones with an intrinsic zero in the 
sense o f  an element invariant under all automorphisms of  
the qualitative relational structure. It is doubtful whether 
anything of use along these lines will arise for the finiteones 
o r  for any others that exhibit little symmetry, but there is 
more optimism about generalising concepts t o  cover ones 
that have substantial substructures that do exhibit 
symmetry, as is true of  the conjoint structures disctissed in 
section 6. 

The paper is organised as follows: section 2 presents the 
general definition of  scale type;  section 3 describes some 
very general results about rea! structures, defined on 
infinite real intervals, when their scale type is known; and 
section 4 applies these results to  the case o f  (non-associa- 
tive) concatenation operations. Section 5 then applies the 
results of  section 4 to one version of  the subjectiveexpected 
utility problem; and finally, section 6 generalises the con- 
cept of  a scale type so as t o  apply the results of  section 4 t o  
conjoint structures (ordering of  the Cartesian product of  
two sets) that are well endowed with factorisable 
automorphisms. 
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2 Intrinsic definition of scale type 

According t o  traditional usage, scale type  refers t o  the  
uniqueness that is established in the uniqueness theorem.  
Usually this is formulated in terms o f  the  group o f  trans- 
formations that map  one representation in to  another in the 
same numerical structure.  The  three most common groups 
are the  similarity, affine, and monotonic  increasing func- 
tions, corresponding to  what are called ratio, interval, and 
ordinal scales. This classification is not complete,  however, 
since there are structures whose uniquenesses are different 
f rom these three groups. This has been noted in various 
systems, including the  unfolding structures o f  Coombs 
(1964) and semiorders o f  Luce (1956),  bu t  the  best under-  
stood instance arose in the  work o f  Narens and Luce (1976)  
on  positive concatenation structures (see Def 4.1 and the 
following discussion). T h e y  were able t o  show tha t ,  when 
two  homomorpllisms o f  such a structure agree at a point,  
they are identical, but  they did not  fully classify the  groups 
involved. Later,  Cohen and Narens (1979)  showed that the 
automorphism group o f  such a structure is isomorphic t o  a 
subgroup of  the  additive real numbers.  They  also noted 
that ,  o f  these subgroups,  only  certain ones  have the  follow- 
ing proper ty  called homogeneity:  viz, given any t w o  points 
in the  structure,  there is an automorphism that takes one  
into the  o ther .  (In some literatures, this concept is called 
transitivity (Glass, 1981).) In Narens (198  l a ,  b),  the  author  
generalised these two  concepts ,  t he  one  having t o  d o  with 
the richness o f  the au ton~orph i sm group and the o the r  t o  
d o  with the uniqueness o f  representations. We present these 
concepts here. 

We d o  not  give formal definitions o f  relational structure,  
o f  homomorphism o f  one structure in to  another,  o f  iso- 
morphism between two  structures,  o r  o f  endon~orph i sn i  
and automorphism within a structure,  as they are the 
standard concepts.  When one  o f  the relations in a relational 
structure is a weak order ,  we speak o f  the  structure as 
ordered, and the  notation x = (X, 2, S I ,  S 2 ,  . . .) is used for  
ordered qualitative structures and R = ( R ,  >, R 1 ,  R 2 ,  . . .) 
fo r  numerical ones  with the natural  ordering 'of the real 
numbers.  In what follows, R is usually the positive real 
numbers,  Re', and occasionally the reals, Re. 

Definition 2.1 

Suppose x is a totally ordered relational structure and 
A is its group o f  automorphisms. Let M and N be  non-  
negative integers. x satisfies M-po in t  homogeneity iff for 
all x.~,  . . . , XM, y l ,  . . . , yM such that xi > x i + ,  and yi > 
yi+ ,. i = 1, . . . , M - 1, there is an automorphism ct in A 
such that ct(xi) = y i ,  i = 1, . . . , M. x satisfies N-po in t  uni- 
queness iff whenever t w o  automorphisms ct and 0 agree at N 
distinct points,  then ct = 0. T h e  structure is said t o  be o f  
scale t y p e  (M, N)  iff M is the  largest value o f  homogeneity 
and N is the  smallest value o f  uniqueness for  t he  structure.  
If  the  structure is M-po in t  homogeneous for  every positive 
integer M ,  then it is said t o  be o f  scale type  (m, m). 

I t  is obvious that  if x is o f  scale type (M,  N ) ,  then M 6 N .  
Fur thermore ,  it is easy t o  show that  if a structure has  a 
ratio o r  interval o r  ordinal scale representation o n  t o  an 
open real interval, then it is o f  scale type  (1,  1) or  ( 2 , 2 )  o r  
(00, w), respectively. 

This observation leads to  three question. First ,  is the  
converse o f  this statenlent true: does  a structure on  an open  
real interval that is o f  scale type  (1 ,  1) necessarily have a 
ratio scale representation? Does  one  o f  type (2,  2) neces- 
sarily have an interval scale representation; And  does  one  o f  

type  (m, m) ~lecessarily have an ordinal scale representa- 
t ion? The answer t o  the  last is 'No', and the  o the r  t w o  are 
discussed below. 

Second,  are there structures o f  scale t y p e ( M ,  N ) , M  < IV, 
and if so ,  what can be said about  them?  And ,  th i rd ,  does  
the general nature o f  the structure impose a n y  limits on  the 
values o f  M and N ?  

In a sense, the  rest o f  the  paper provides some partial 
answers t o  these questions.  Aside f rom the  answer about  
the converse, none o f  these results is as complete as we 
would like. 

3 General results for numerical structures 

This section and the remainder o f  t he  paper will be 
largely concerned with structures that are isomorphic t o  a 
real structure defined on  an open  real interval. Rather  than 
state this formally, the  paper simply talks about  real 
structures.  

The  first result, due  to  F .  Rober ts  and proved in Luce 
and Narens (1983a) establishes one  clear link between the  
structure and the  degree o f  homogeneity.  

Theorem 3.1 

Suppose  R is a real ordered structure defined o n  the  real 
numbers ,  R e ,  ordered b y  >, and ' that  it is M-point  homo-  
geneous.  If  the  order  o f  each defining relation is G 12.1, then 
it is o f  scale type  (00, m) and it is an  ordinal scale. 

S o ,  for exa~mple ,  a structure ( R e ,  2, o ) ,  where  o is a 
binary operation and therefore is a relation o f  order  3 ,  can 
be  at  most '-point l lomogeneous if it is no t  t o  degenerate 
in to  an ordinal scalable structure.  In section 4 w e  will see a 
further l imitation o n  the  scale type  o f  such structures with 
a binary opera t ion.  

The  next  theorem combines major results d u e  t o  Narens 
(1981a,  b). 

Theorem 3.2 

Suppose  R is a real ordered relational structure with 
domain an open  interval o f  R e .  Then ,  

1 R is o f  scale type  (1 ,  1) iff it has  a real ratio scale 
representation. 

2 R is o f  scale type  (2 ,  2) iff it has a real interval scale 
representation. 

3 There are n o  real structures o f  t ype  (M,  M )  for M > 2. 

As will be seen, this result is very useful in characterising 
the possible classes o f  structures o f  scale types  (1 ,  1) and 
(2 ,  2). What are missing, and what have been found elusive, 
are results about  scale type ( M ,  N )  when M <  N .  Such 
groups  exist. For  example the  real mappings x +  o x P ,  
where o > 0 and p is generated f rom fixed k > 0 and all 
integers n by p = kn, is a group o f  type  (1,  2). This is 
referred t o  as the  discrete affine group. Although this is a 
subgroup o f  the  affine group and it includes the  similarity 
group,  it is no t  known,  in general, if a group o f  type  (IM, N )  
is a subgroup o f  type  ( N ,  N )  o r  if it includes a type  ( M ,  M )  
subgroup. T h e  following specific result o f  Luce and Narens 
(1983a) is, however,  o f  some use in studying specific classes 
o f  structures.  

Theorem 3.3 

Suppose  R is a real, ordered relational structure o n  Re '  
and its autonlorphisnl g roup  is o f  t ype  (1,  2) and it con-  
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tians a ( I ,  I )  subgroup X .  Then is isonlorphic to  a sub- 
group o f  the affine group and x is isomorphic to  all o f  the 
translations o f  the affine group.  

4 Real representations of homogeneous 
concatenation structures 
The concept  o f  a concatenation structure is a natural 

generalisation o f  tlie niodel used in physics for those quan-  
titites, such as mass, length, and t ime, that have an internal 
operation which is represented by addition. In such struc- 
tures,  which are called exrensive, the opera t ion o f  combina-  
t i ~ n ,  which is called a concatenatiot~ operafiotl. preserves 
tlie attr ibute being measured. Of  the usual axioms for 
exiensive measurement,  which theoretically capture the 
essential properties of physical concatenation, four are aban- 
doned and three maintained. Those abandoned are: associa- 
tivity, positivity. solvability, and Archimedean. Those niain- 
tairied are:  local definability and nionotonicity o f  tlie par- 
tial operation, and weak ordering. In addition, it is assumed 
tliat the ordering is non-trivial and that the partial opera- 
tion is, in fact ,  an  opera t ion.  T o  stress the latter assump- 
t ion,  such operations are referred t o  as closed. There is n o  
loss in assuming the ordering t o  be a total one ,  which 
amoun t s  t o  working wi th  the equivalence classes of  tlie 
weak ordering. 

Definition 4.1 

Let X be a non-empty  se t ,  2 a binary relation o n  X, and 
o a closed-binary opera t ion o n  X. Then  r: = (X, 2, o) is a 
closed concater~ation structure iff for all x ,  y ,  p ,  v in X ,  

1 2 is a total  ordering; 
2 for some x ,  y in X ,  x > y ;  
3 monotonic i ty :  x 2, y iff xou 2 you iff vox 2 vuy. 

The  structure is said t o  be idempotent, weakly positive, 
o r  weakly negative iff for all x in X, xox = >, or  < x ,  
respectively. It is dense iff for xoa > you, there existsv such 
that xou > you >you. It is solvable if given any three o f  
.K, v ,  u, v in X ,  the f o u r t l ~  exists such tliat xoy = uov. A 
solvable structure is Archirnedeatl iff any  sequence {x i }  for 
which xiuu = xi-,ov holds for some u, v in X ,  u f v, and 
what  is bounded has finitely many  ternis. 

Theorem 4.1 

Suppose x is a closed concatenation structure that is at  
least I-point homogeneous.  Then it is either idempotent ,  
weakly positive, o r  weakly negative. If for some positive 
integer N it is also N-po in t  unique, then either N = I o r  x is 
idempotent  and N = 2 .  

Thus,  for closed concatenation structures with I -po in t  
homogeneity and finite uniqueness, there are only  three 
possible scale types: (1 ,  I ) ,  ( 1 ,  2 ) ,  and (2 ,  2). Concatena- 
tion structures that are not  unique for any finite N appear 
to  be unlikely, although it is not  clear how t o  rule them ou t  
wi thout  further constraints. T h e  following is sufficent t o  d o  
SO. 

Theorem 4.2; 

If R = (Re' ,  2 ,  O )  is a closed concatenation structure 
such that o is o n  t o  Re' and continuous,  then the  structure 
is ?-point unique. 

If we now consider those concatenation structures that  
have a representation o n  to  Re' (see Theorem 4.4 for  a set 

of  sufficient conditions),  then,  by Theorem 3.7 ,  we know 
that for the  (1 ,  1) and (2 ,  2) cases there exist representa- 
tions that are, respectively, ratio and interval scales, i e ,  
the  automorpliisni groups are the similarity and affine 
groups.  This fact permits us t o  use the  following device to  
characterise these representations: the  numerical concatena- 
tion operation o can be thought  o f  as a real function F o n  
two variables, where F ( x ,  y )  = z iff z =xoy.  T h e n  F must 
satisfy the following functional equat ion:  for all au to -  
morphisms a and x ,  y in X, 

Since we know tlie groups corresponding t o  ( 1 ,  I )  and 
( 7 .  2), we need only solve this functional equat ion for these 
groups.  For  the ( I ,  2) case we have not  been able t o  charac- 
terise all o f  the  possible groups,  but  the discrete affine 
group is one  example .  T h e  next result sun1ma1-ises the 
solutions for these groups.  

Definition 4.2 

A real closed concatenation structure (Re',  2, o )  is said 
to  be a unit structure iff there exists f :  Re' -+Re' such that 

(i) f is strictly increasing, 
(ii) f/r, where  1 is the  identity funct ion,  isstrictly decreasing. 

(iii) for all x ,  y in Re'. 

Theorem 4.3 

Suppose R = (Re ' ,  2 ,  o )  is a real closed concatenation 
structure.  Then ,  

1 R is o f  scale type (1 ,  1) iff R is isomorphic t o  a unit  
structure wi th  the property that  if for all x > 0 and some 
P > 0 ,  

f ( x P >  = f ( x I P ,  . . . (3)  

then p = 1. 
2 R is o f  scale type (1 ,  2 )  with  a (1 ,  1) subgroup iff R is 

isomorphic to  a unit s t ructure  with the proper ty  that 
there is a unique k > 0 such that Eqrl (3)  holds iff p = 
kn ,  where 11 ranges over the integers. 

3 R is o f  scale type ( 2 ,  2 )  iff R is isomorpliic t o  a unit  
structure with the proper ty  that Eqri (3) holds for all 
p > 0 .  

Sta tement  (3)  may be rewritten in t w o  equivalent ways. 
First ,  there exist constants a ,  b ,  where O <  a, b < 1,  such 
that 

And second, by taking logarithms, the  representation can 
be placed o n  Re, which is customary in e c o n o n ~ i c s  and 
psychology, in which case o is represented as: for u, v in 
Re, 

a u + ( l - a ) v ,  if u > v ,  

if u = v ,  . . . (5) 
bu + (1-b)v,  if u < v .  

There are examples o f  all three types  o f  s t ructures ;  
however, the (1 ,  2) one  is t o o  lengthy t o  present here.  
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When the remaining ( 1 ,  2) groups,  if any,  are discovered, 
the same technique can be used to  achieve corresponding 
theorems about  all possible numerical representations. 

Given that we understand tlie possible representations 
o n  to  a real interval. tlie next question is the traditional 
one :  under what  conditions does a qualitative structure 
have such a representation'? Representations of  concatena- 
tion structures tliat are positive in the sense that for all 
x,  y ,  x o y  x ,  y were axiomatised in Narens and Luce 
(1976)  and studied further in Colien and Narens (1979),  
and both  M = 0 and /21= I cases were found.  The  latter 
was shown to  be equivalent to  the structural  condition 
that the 11-copy operators  defined by B , ( x ) = x  for n =  1 
and = 8 , - , (x )ox  for n > I are autornorphisms o f  the 
structure.  In  Narens and Luce (1976)  idenipotent structures 
were defined that  are very closely related to  positive con-  
catenation ones ,  but  in Luce and Narens (1983a)  these were 
shown to  be extremely special (see Luce and Narens (1 983b)  
for a summary o f  the results). Axiomatisations o f  bisym- 
metric structures,  such as that in section 6 .9  o f  Krantz  e t  a1 
(1971),  lead to  representations as  in part 3 o f  Theorem 4 .3  
but  wi th  the added restriction that a = b. 

The  following representation theorem,  although quite 
general, is distinct from the one  for positive concatenation 
structures in tliat it has a stronger solvability condition and 
a different Archiniedean one.  In addition, it would be 
desirable t o  have specific axioniatisations for the three unit  
structures o f  Theorem 4.3 .  

Theorem 4.4 

If x is a closed, dense,  solvable, Arcliimedean concatena- 
tion structure,  then x is isomorphic to  a real structure.  

The  proofs  o f  the results in this section are in Luce and 
Narens V 9 8 3 a ) .  

5 Application to choice under uncertainty 

Following the classic work o f  von Neumann and Morgen- 
stern (1947 ,  1953), 3 sizeable literature has  developed con-  
cerning choices among gambles. in which the ou tcome  
depends upon chance events whose probabilities may o r  
may not be known to  the decision maker .  T h e  major repre- 
sentation theorem has been that o f  (subjective) expected 
utility. According to  that representation, (i) preferences are 
ordered according to  a utility function having the property 
that the utility of  each gamble is given by the expected 
value o f  the utility o f  its components ,  where the  expecta- 
tion is taken relative t o  a (subjective) probability measure 
over the events;  and (ii) the  utility representation forms an 
interval scale. A substantial critical and empirical literature 
has cast considerable doub t  upon the  descriptive and per- 
haps  even the normative accuracy of  this model.  T o  a great 
ex ten t ,  the  difficulties have been attributed t o  a particular 
type  of  monotonic i ty  principle, which in this context  is 
of ten  called substi tutabili ty o r  the  ex tended  siire-thing 
principle. A useful survey is Fishburn (1982).  

I t  is desirable t o  question this conclusion by examining 
the class o f  representations that are compatible with such 
monotonicity principles and ,  o f  course,  transitivity o f  the 
preference ordering. T o  this end ,  we consider a structure 
having the following primitives. Let X  be a non-empty se t ,  
t a binary relation o n  X ,  4 a non-empty  set o f  subsets o f  a 
non-empty se t ,  and for each A in 4 let o~ be a closed 
binary operation. We interpret XOAY to  be tlie gamble in 
which x is the  ou tcome  if event A occurs and y if it fails t o  

occur .  In a gamble whose components  are also gambles,  we 
interpret  each gamble as an  independent ' exper iment '  in 
much  the same sense as one  means independence in a 
random sample.  

Theorem 5.1 

Suppose ( X ,  t, 4, { o A )  )A in 4 satisfies the following 
properties: for each A in 4, 
1 (,Y, 2 ,  oA ) is a closed, idenipotent concatenation struc- 

ture ;  
2 these concatenation structures have a common interval 

scale representation U o n  to  the  real numbers.  

Then ,  there exist functions P and Q from 4 in to  (0 .  I )  such 
tliat for all x ,  y in X  and A in 4, 

This obviously derives f rom part 3 o f  Theoscm 4 . 3  (see Eqn 
(5)). 

Corollary 1 

Under the condi t ions  o f  tlie theorem,  for all x ,  y and A ,  
B in 4 ,  

Corollary 2 

Under tlie conditions o f  tlie tlieorem and assuming that 
4 is closed under complementat ion,  for all A in 4 and all 
x ,  y in X ,  

x o ~ y  = y o - ~ x  . . . (8) 

iff 

P ( A )  + Q ( -  A )  = 1 .  . . . (9)  

Corollary 3 

Under tlie condi tons  o f  tlie t l ieorem, b isymmetry ,  i e ,  
for all x ,  y ,  u ,  v in X  and A in 4, 

iff 

T h e  main significance o f  tliese results is tliat there 
exist representations tliat have the following three proper-  
ties: they are consistent with both  transitivity and m o n o -  
tonicity principles; t o  a considerable degree they exhibit  
the usual subjective utility p rope r ty ;  and they are not  in- 
consistent with the classic counter-examples o f  Allais 
(195  1) and Ellsberg (1961).  T h e  main difference is t ha t ,  in 
general, P is not the  same as Q and these funct ions  d o  not 
necessarily satisfy al! o f  the  usual properties o f  probabili ty.  
It is really only  under tlie condi t ions  o f  Corollary 3 that the  
model exhibits the  properties that  fail t o  hold in these 
counter-examples.  ~ u r t h e r m o r e .  the model  can acconimo- 
date  all o f  the phenomena discussed by Kahnernan and 
Tversky (1979)  in motivating their prospect theory,  and 
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that theory (for at  least the ganibles it discusses) is a special 
case o f  Eqn (6). 

If we assume that a representation into a unit structure 
(Def 4.7_), then the  condi t ions  formulated in Eqns  (7) and 
(8) imply that / 'satisfies the  following functional equation: 
for all r > 0 ,  

This is satisfied by  Eqn (4), bu t  we d o  not  know if there are 
o ther  solutions. 

If we examine various relations, o f  which Eqn (7) is a 
simple example ,  in which logically the  two  sides are equiva- 
lenr, i t  turns  ou t  tliat idenipotence, Eqn (7 ) .  and Eqn (8),  
are tlie only  ones  tliat involve at most t w o  outcomes,  at  
most t w o  events, and at  most t w o  successive gambles. We 
have shown - in some cases, the argument is lengthy - 
tliat if one  either increases the number  o f  outcomes,  events,  
o r  stages beyond two ,  the bisymmetric case P =  Q is forced. 
So ,  in a very real sense, imposing just Eqns (7) and (8)  
consti tutes the unique model o f  'bounded rationality' 
within the  framework o f  binary concatenations o f  gambles, 
and Eqn (6) is the only  interval scale generalisation of  the  
traditional theory.  

The  results in this section are proved in Luce and Narens 
(1983a).  

6 Real representations of homogeneous conjoint 
structures 

A conjoint structure is simply an ordering o f  a Cartesian 
product o f  t w o  (or more) sets, in which case the  objects 
under consideration have factors each o f  which affects the  
attribute being measured. Although examples o f  this abound 
in physics - as is reflected in the  fact that some units o f  
measurement are products o f  powers o f  o ther  units - such 
structures were only axiomatised in the late 1950s (for a 
general survey as o f  1970  see chapters 6 and 1 0  o f  Krantz  
e t  a1 (1971)).  Again, we shall search for possible numerical 
conjoint representations that satisfy what appear t o  be the 
most important properties. 

Definition 6.1 

Suppose A and Y are sets, a. in A ,  po in P ,  and 2 a 
binary relation o n  A x P .  T = ( A  x P ,  2 )  is a conjoint struc- 
ture that  is A-solvable relative t o  a o p o  iff for all a,  b in A 
and p, q in P, 

1 Z is a weak ordering (transitive and connected) ;  
2 Z satisfies independence (monotonicity):  

up Z b p  iff aq  k bq  and up  Z aq  iff b p  k b q ;  
3 solvabiliry: there exists i ( a , p )  in A and n(a) in P such 

that :  
t (a ,  P)PO - UP and oon(a> -  PO; 

4 density:  if upo > bpo ,  then there exist p, q in P such 
that:  

upo > b p  > bpo  and upo > a q  > bp,. 

Obviously, a comparable definition o f  being P-solvable can 
be given. The  key role o f  t he  solvability assumption is t o  
define an operation *A o n  A :  for all a, b in A ,  let 

This  was first introduced in Holman (1871)  t o  s tudy 
additive conjoint structures,  b u t  it is also useful in the  non- 
additive case. Without being completely formal about  it, 
t he  following remarks sunimarise the  relations between con-  
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joint and concatenation structures for the  case where a o p o  
is a minimal element (see Theorems 2 ,  3 ,  and 5 o f  Luce 
and Cohen ( I  983) .  T h e  induced operation (Eqn (1 3)) o f  an 
A-solvable conjoint structure in which a o p o  is n~ in ima l .  
together with the  induced ordering arising from indepen- 
dence, f rom a positive concatenation structure (PCS) o n  
the set A .  A PCS is, in essence, the  type  o f  s t ructure  o n e  
obta ins  b y  abandoning associativity in the  usual extensive 
model.  This is the best possible result since for each PCS 
there is a conjoint s t ructure  for which the  induced PCS is 
isomorphic t o  the  given one. It can also be  shown that  a 
conjoint structure satisfies tlie Thonisen condition ( i e ,  fo r  
all a ,  b, j' in A and p, q ,  x in P, if a x  - fq a n d f p  - b x ,  then 
up - bq)  iff tlie induced operat ion tA is associative. These 
results generalise nicely when a o p o  is not  minimal,  but  t o  
state them requires an additional concept ,  called a to ta l  
concaterration strlcctltre, whose parts above and below a o p o  
are related PCSs (see Luce and Cohen (1983)).  

Our  primary concern here,  Iiowever, is t o  use the au to -  
morphisms o f  conjoint structures in ordel- t o  arrive at tlie 
possible numerical representations. This is slightly more  
complex than might first seem because,  as defined, tlie con-  
joint structure is not really in the  form o f  a relational struc- 
ture.  If we treat  C =  A x P as a se t ,  then we lose the  fact 
that it is a Cartesian product .  Rather ,  let X = A u P ,  where 
A n P =  0 ,  and for each a,  b, p, q in X define S t o  be the 
relation o f  order  4 o n  X such that 

S(a, p ,  b, q )  iff a p  k bq. . . . ( I 4 1  

Then x = ( X ,  S,  ao,  p o )  is a relational structure and the  con-  
cepts o f  weak order ,  independence, solvability, and density 
are all definable in terms o f  its primitives. Let a be  an au to -  
morphism o f  X ,  then for each a, b in A and p ,  q in P, 

a p  Z bq iff S(a, P, b. q )  

iff  s [ a ( a > ,  &(PI, a ( b ) ,  a ( q ) l  

iff a ( a ) a ( p )  k a ( b ) a ( q ) .  . . . (  15) 

Thus,  each automorpliism o f  x is an  automorphisni (order  
preserving mapping) o f  7 with  the  special property o f  being 
jactorisable into distinct mappings ( a A ,  a p )  o n  the  t w o  
components .  We shall confine o u r  attention t o  such factori- 
sable automorphisms. 

I t  is evident f rom Eqn (14) tha t  it is only  possible for x 
t o  exhibit 0 -po in t  homogeneity because there is n o  
mapping f rom A t o  P o r  f rom P t o  A .  Thus ,  we need a more  
restricted version o f  the  concept ,  one  tliat treats the  
components  separately. Such a definit ion can be found 
either in Luce and Narens (1983b)  o r  Luce and Cohen 
(1983),  bu t  it and the exact tlleorems are t o o  lengthy t o  
summarise there in detail. Suffice it t o  say that t w o  major 
cases arise. In the  one ,  there is an  element a o p o  that is an  
intrinsic zero in the  sense that  it maps in to  itself under all 
factorisable automorphisms.  Assuming a real conjoint struc- 
ture F o n  R e  x R e  that  is cont inuous  and strictly increasing 
in each variable, solvable relative t o  each pair in the  struc- 
ture ,  and has  an  intrinsic zero ,  then conditions called 1- 
po in t  componen t  homogenei ty  and I -po in t  componen t  
uniqueness are sufficient t o  show the existence o f  functions 
f+ from R e  o n  t o  [ I ,  m) and f- f rom R e  o n  t o  (-m, - 11 
such that f+ and - f- satisfy the  conditions (i) and (ii) o f  
Definition 4.2 and for all x ,  y in R e ,  

! Y~+(x /Y) .  Y > 0 ,  

F(x, Y) = x ,  Y = o ,  . . . (16) 

I Y l f-(x/l Y I), y < 0 .  
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For the case o f  n o  intrinsic zero,  various combinations 
o f  honlogeneity,  uniqueness, and smoothness (formulated 
as differentiability assunlptions about F )  lead to tlie con-  
clusion that F must be additive in the sense that there are 
functions f, f , ,  and f; such that  

The exact statement o f  these results can be found in 
Theorems 9 .4  and 9.5 of  Luce and Narens (1983b)  o r  as 
Theorems 13,  17-19 o f  Luce and Cohen (1983) ;  the 
proofs are in tlie second paper.  

O n e  of  the major conclusions o f  this work is that there is 
really not much  hope for a generalisation o f  dimensional 
analysis o f  non-additive conjoint structures. The  reason is 
that dimensional analysis depends  crucially o n  tlie existence 
o f  many factol-isable automorphisms - that  is how the 
condition o f  dimensional invariance is formulated - and,  
except when there is an intrinsic zero,  their existence 
together with some smoothness forces one  t o  the  classical, 
additive case. Of  course,  there remains open  the  possibility 
that something interesting will arise when we understand 
concatenation structures o f  scale type ( I ,  2), bu t  this is 
really the  only  possibility that  offers a possible generalisa- 
t ion. 
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