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1. INTRODUCTION 

There is a view of quantitative science which goes roughly as follows. In a 
first stage, data are collected. Next, these data are summarized and 
organized along the lines of a mathematical theory, which provides a 
temporary explanation. Such an explanation never fits the data perfectly. 
The discrepancies between theory and data suggest alternative theories, 
and further experiments. Science pursues its course towards an increas- 
ingly reliable description and explanation of the world. 

Such a view, even though certainly largely correct, only gives a 
simplified picture of the quantitative approach to science. In particular, 
there is a slow but steady recognition of the odd fact that the language 
itself which we use in our quantitative description of the world, con- 
ditions in a subtle way the image that we obtain. To establish with some 
hope of accuracy the relative importance in this image of our particular 
quantitative language, and of the data that it purports to explain, raises 
problems of considerable difficulty. 

Our paper aims at providing a specific contribution to that enterprise. 
It will be shown, through a detailed discussion of an important, 
exemplary case, that if we observe certain natural and plausible 
conventions regarding the interplay between changes of scale of the 
relevant empirical variables and the invariance of the (unknown) 
empirical law relating them, then the possible forms of the law are 
extremely limited. The precise formulation of this result suggests new 
ways of approaching empirical data and of formulating and testing 
mathematical models. In spirit at least, this program can be seen as 
bearing some resemblance to one enunciated by Luce in his influential 
1959 paper, "On the Possible Psychophysical Laws." 

We shall begin by the observation that, in quoting quantitative 
empirical laws, scientists frequently neglect to specify the various scales 
entering in the equations. Illustrations of this widespread habit abound in 
most scientific fields. For concreteness, a couple of examples are given 
below, chosen for their simplicity and diversity. 
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EXAMPLES. 1. (Electromagnetism.) 

The force in a homogeneous isotropic medium of infinite extent between two point charges 
is proportional to the product of their magnitude, divided by the square of the distance 
between them. (Coulomb's Law, quoted from the American lnsatute of Physics Handbook, 
1957). 

2. (Visual Perception.) 

A flash of light of short duration, presented to the eye in any condition of adaptation, 
provides a given effect (e.g., a brightness match against a standard) that can be achieved by 
the reciprocal manipulation of luminance and duration of the flash. This statement means 
that the given effect can be produced by a dim light that acts for a relatively long time, or by 
an intense flash that acts for a short time. Stated mathematically, L × t = C, where L is the 
light intensity, t is the duration of flash, and C is a constant. This relationship is sometimes 
known, for human vision, as Bloch's Law (1885), or, because of its applicability to many 
other photochemical systems, as the Bunsen-Roscoe Law. (Quoted from Graham 1965, p. 
77). 

In addition to considerably simplifying the life of the student in quan- 
titative science, such practice fortunately also makes good sense, in these 
and many otl~r similar examples. Indeed, the mathematical forms of the 
quoted laws are unaffected by transformations of the scales entering in 
the equations formalizing the laws, provided that such transformations 
are "admissible." (We shall be more specific in a moment.) Let us 
illustrate this remark in the case of Example 1. Each of the numerical 
assignments for the three variables involved in Coulomb's law, namely, 
force, magnitude of charge and distance is a so-called ratio-scale, that is, 
these assignments are only defined up to multiplications by positive 
constants. Such multiplications play here the role of the "admissible" 
transformations. Let us formalize Coulomb's Law by the expression 

Q1 Q2 
(1) F1,2 = c ~,2 

in which: F1,2 is the force acting on two point charges pl, p2; Q1, Q2, are 
the respective magnitudes of the charges; and c is the constant of 
proportionality. Let av, oto and aa be three positive constants. Then, 
obviously, Equation 1 holds if and only if 

ot~otFC × ( otoQ1)( otoO2) 
(2),  avFl"2= a ~  ozad~,2 

Actually, Equation 2 is simply a restatement of Coulomb's law with the 
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new assignments, and a different constant of proportionality. Clearly, 
specific properties of the mathematical form of Coloumb's law were 
essential in reaching our conclusions. Similar arguments could obviously 
be used in the case of Example 2. 

The reader should notice what will be shown to be an important 
difference between the two examples: in Coulomb's Law the numbers 
assigned to two of the variables, the charges, are manipulated by the 
same admissible transformations. Such a situation does not arise in  
Bloch's Law. We will see later that whether quantities entering into a law 
are manipulated by the same or by different admissible transformations 
will have a critical impact on the form of the law. 

To sum up, our discussion shows that the following three concepts are 
intimately interrelated: 

(i) the admissible transformations of the variables (scales) entering 
into an equation describing some empirical law; 

(ii) the mathematical expression of this equation; 
(iii) the invariance of this equation under the admissible transfor- 

mations of the variables. 
The approach taken in this paper is to assume that we are dealing with 

an empirical situation that is governed by an empirical law of which we 
know a little of its mathematical form and a little of its invariance 
properties, but a lot about the structure of the admissible transformations 
of its variables, and use this information to greatly delimit the possible 
equations that express this law. 

Invariance is an ill-understood but important and useful concept in 
mathematics and physics. In the philosophy of science it plays a critical 
role in the justification of certain routine scientific practices. In the 
theory of measurement, a particular form of invariance is often called 
"meaningfulness". Our notion of this concept is germane to the one in 
measurement, but differs from it in a critical manner, as we shall see. 
Both of these notions of 'meaningfulness" are very close to the notion of 
invariance in classical geometry, particularly in the sense of Klein in his 
famous Erlanger Program. Invariance also plays an important role in 
physics, and in particular the methods of dimensional analysis of physics 
can be viewed as a form of measurement-theoretic meaningfulness (Luce 
1978). Examples throughout the paper will illustrate the relationship 
between our use of this concept and these others. 

A basic concept in our developments is that of a measurement scale. 
This and related notions are defined in the next section. 
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2. S C A L E S ,  C O N J U G A T E  S C A L E  F A M I L I E S  

DEFINITION 1. We write Re for the set of real numbers, and Re+ for 
the set of positive real numbers. Let  I be any nonempty, real open 
interval. A strictly increasing continuous function mapping ! onto I will 
be called a scale on I. The identity scale x ~ x o n  I will be denoted by ~x. 
A set ~ of scales on I containing ~i will be called a scale family with 
domain I, or more briefly, a scale family on I. Any subset of a scale family 

containing the identity scale is a scale subfamily ofY~. A scale family 
on I satisfies n-point homogeneity iff for all pairs of sequences (xi), (Yi), 
1 ~< i ~< n, in I ,  such that x~ < xi+ 1 and Yi < Yi+l for 1 ~< i ~< n - 1, there 
exists k ~ ~ such that k(x~) = y~, 1 <~ i <<- n. When Yf satisfies 1-point 
homogeneity, we shall simply say that Yf is homogeneous. A scale family 
Yg on I satisfies n-point uniqueness, where n is a positive integer, iff 
for any k, k* e $/" we have k = k* whenever k(x~) = k*(x~), 1 <<- i <<- n, 
for some sequence of distinct points xl, x2 . . . .  , x, e I.  Clearly, if a 
scale family Yf satisfies n-point uniqueness, then any scale subfamily 
of $/" satisfies p-point uniqueness, for all p >t n. On the other hand, 
a scale subfamily of an homogeneous scale family is not necessarily 
homogeneous. A scale family ~ is called a scale group iff Yf is a group 
for the operation of composition of functions. A scale family ~ is com- 
mutative iff for any f,  k ~ ~ ,  we have f o k = k o f. (We write o for the 
composition of functions. Notice that we do not require that fo k, 
k o f e ~ . )  

REMARKS.  (1) For certain technical and philosophical reasons, it is 
convenient to restrict considerations to scales as mappings onto their 
own domain. Some rationale for this choice are discussed in Narens 
(1980). 

(2) It will be shown that the homogeneity and uniqueness conditions 
constitute important classification principles for scale families. In parti- 
cular, the most frequently used scales (see below) fall naturally in one or 
the other of the categories of these classifications. 

DEFINITION 2. A scale family K is called a 

ratio scale family, 
interval scale family, 
log interval scale family, 

iff, respectively, 
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5K = {kl k(x) = AkX, for some )tk e Re+, and all x ~ Re+}, 

= {k I k(x)  = AkX + Yk, for some /~k E Re+, Yk e Re, and all 
x ~ Re}, 

= {k I k(x)  = ykX ~ ,  for some Yk, )tk e Re+ and all x e Re+}. 

REMARKS.  (1) Notice that a ratio scale family satisfies one point 
uniqueness and one point homogeneity. Interval and log interval scale 
families satisfy 2-point uniqueness and 2-point homogeneity. 

(2) Any interval scale family has a ratio scale subfamily. 
Quite often the data, at an early stage of experimental research, are not 

coded in terms of ratio scale families or interval scale families. Effort is 
then exerted to recode the data in terms of such scales. The critical 
condition for a successful recoding is that the initial scaling shares certain 
basic structural properties with the intended final scaling. The next 
definition gives the general form of such recodings. 

DEFINITION 3. Two scale families Y/', ~ '  are called conjugate iff there 
exists a strictly increasing, continuous function u mapping the domain of 
Y( onto the domain of ~ such that 

= {hi h = u o k o u -1 ,  for some k e YO. 

In such a case, we shall say that ~ i s  the u-conjugate of Y/', and we shall 
write 

Clearly, X is then the u-l-conjugate of ~ .  Conjugation is thus a 
symmetric relation. It is obviously reflexive and it is also transitive since if 

is the v-conjugate of ~ ,  then 

= V~OV -1  

= v ( u Y f u - 1 ) v  - 1  

= (V o U ) ~ ( U  -1  o V -1)  

= ( v  o u ) ~ r ( v  o u)-l; 
that is, ~r is the (v o u)-conjugate of Y/'. We conclude that conjugation 
is an equivalence relation. A scale family is a quasiratio (respectively, in- 
terval) scale family if[ it is conjugate to a ratio (respectively, interval) 



292 J.  C .  F A L M A ( 3 N E  A N D  L.  N A R E N S  

scale family. Notice in passing that if a scale family $r is u-conjugate to 
some ratio scale family ~ ,  then for any constants )t, 0 such that ;t0 > 0, ~r 
is ()tu°)-conjugate to ~ .  

EXAMPLES.  3. Any log interval scale family X is conjugate to some 
interval scale family ~ .  Actually, ~ is the log-conjugate of ~ since 

log (yke xks) = log 7k + )tkS, 

for Yk, )tk ~ Re+ and s e R e .  More generally, a scale family ~ is 
u-conjugate to an interval scale family iff it is e"-conjugate to a log 
interval scale family. 

4. Define 

= ( k l  k(x) = [(x - 1) 3 +/3k] 1/3 + 1, 

for some /3k and all x in Re}. 

Then Y/" is an homogeneous, commutative, scale family satisfying 
one-point uniqueness. It is also a quasi ratio scale family. Indeed, with 

u(x) = e (x-1)3, )tk = e t3k, 

we have 

u~u-1 = {flf: x--->)tlx, for some )tr and all x in Re+}. 

5. Notice that a quasi ratio scale family is commutative. More 
generally, many important properties of scale families are preserved 
under conjugation. In particular: 

T H E O R E M  1. In scale families, the properties of n-point homogeneity, 
commut~itivity, and n-point uniqueness are preserved under con- 
jugation. 

Proof. Let I ,  J be the domains of two scale families ~0, ~ respec - 
tively, and suppose that ~ is the u-conjugate of ~ .  Thus u~u  -1 = ~ .  

(i) Assume that ~satisf ies n-point homogenity. Let (x~), (y~), 1 ~< i ~< n 
be two finite sequences in J such that both x~ < xi+l, y~ < y~+l for 
1 ~< i ~< n - 1. Then for 1 ~< i ~< n, successively, u-l(xi), u-l(y~) ~ I, 
h[u-l(xi)] = u-l(y~) for some h e ~ ;  this yields u{ h[ u-  l( x~) ]} = y~, and 
with k = u o h o u -1, we have k(x~) = y~ with k e ~ .  

(ii) Assume that ~ i s  commutative,  and take k, k* e ~ .  Then for some 
h,h*  ~ ~', 
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k o k* = (u o h o u -I) o (u o h* o//-1) 
= uo h o h*o u -1 

= uo h*o ho u -1 

-- k * o k .  

(iii) Assume that ~ satisfies n-point uniqueness, and that k ( x i ) - -  
k*(xi), 1 <~ i ~< n for some sequence xl, x2, . . . ,  xn of distinct points of J 
and some k, k* ~ Y/'. There  are h, h* ~ ~ such that k = u o h o u - l ,  
k* = u o h* o u -1. This entails 

u { h [ u - l ( x i ) ] }  = u{h*[u - l ( x i ) ] } ,  1 <~ i <~ n,  

yielding h = h* by the strict monotonici ty of u and the n-point 
uniqueness of ~ ,  and hence, k = k*. 

Q.E.D. 

For  example, any scale family conjugate to a ratio scale family satisfies 
one-point  uniqueness and commutativity. The  following result (Narens 
1981) captures the structure of quasi ratio scale families and quasi 
interval scale families in terms of their homogenei ty and uniqueness 
properties. 

T H E O R E M  2. Let  ~ be a scale group satisfying N-point  homogenei ty  
and N-point  uniqueness. Then  N ~  2. Moreover:  if N =  1, then Y/" is a 
quasi ratio scale family; if N = 2, then ~ is a quasi interval scale family. 

Thus in particular, in the case N = 1, ~ is commutat ive (cf. Blaschke 
and Bol, 1938; Aczel,  Belousof, and Hosszu, 1960; Levine,  1970). The  
impossibility of the existence of a case N > 2 in this Theorem may be part 
of the reason why so few scale families have arisen in science. 

In this paper, various conditions and results of Krantz et al. (1971) will 
be used. This reference will be abbreviated as F . M . I .  The  second, 
forthcoming volume of this work will be referred to as F.M. II. 

3.  M E A N I N G F U L ,  I S O T O N E  F A M I L I E S  O F  N U M E R I C A L  C O D E S  

We shall consider an empirical situation in which the data collected have 
been coded numerically in terms of two input quantities 

(a, x), 
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which are respectively evaluated in terms of two (input) scales 

yielding an output quantity P, a function of (a, x). However, in the 
course of determining P, the input scales f, g are used, and to allow for 
this dependence we will use the explicit notation 

Mt, g (a, x), 

to specify the output P. Thus Mt, g is a real valued function of two real 
variables. In the sequel such functions will be referred to as numerical 
codes. Even though such detailed notation may appear at first needlessly 
heavy, our development will show that it is fully justified, in fact, 
unavoidable. Clearly, the empirical situation is compatible with many 
numerical codes. To the extent that these numerical codes bear a "strong 
resemblance" to one another, one is tempted to describe the situation as 
"lawful" as is often done in practice. But what is the meaning of "strong 
resemblance"? The next and following definitions try to capture some 
important aspects of this slippery concept. 

DEFINITION 4. Let ~,  • be two scale families on A, X respectively, 
let R be a subset of ~r× ~, such that (tA, tX) ~ R. For any (f, g) ~ R, let 
Mr.g be a real valued, continuous function defined on A x X, strictly 
increasing in the first argument, and strictly monotonic in the second 
argument. Then 

= {~ ,g l  (f, g) c R} 

is a family of numerical codes. (Some remarks on the role of R will be 
macle shortly.) Each Mr, g e ,~ will be referred to as a numerical code. If 
~,  ~d are homogeneous, we shall say by extension that ~ is homo- 
geneous. Since R is technically a binary relation from ~ to ~, we shall 
often abbreviate (f, g) e R as fRg. Notice that, by definition 

M,o.,× e ~ .  

For simplicity, we shall adopt the abbreviation 

M-- M,A,,× • 

We shall occasionally refer to M as the initial code. We are now in a 
position to formulate a very general invariance property for families of 
numerical codes. 
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DEFINITION 5. A family d~={Mf, glfRg } of numerical codes is 
(one-to-one) meaningful iff whenever fRg, f*Rg*, then 

Mt, gLf(a), g(x)] = Mf,g[f(b), g(y)] 

(3) if[ 

Mv. g.[f*(a), g*(x)] = Mf.,g.[f*(b), g*(y)] 

for all points a, b in the domain of f, f*, and all points x, y in the domain 
of g, g*. For convenience, the specification "one-to-one" will be 
omitted in the sequel. The family d4 is called order- meaningful iff the two 
equations in the equivalence (3) are replaced by identical inequalities 
(say, ~<). By abuse of language, we shall sometimes say that a particular 
numerical code, or a particular numerical law, is (order-)meaningful, to 
signify that the corresponding family d~ of numerical codes, with a 
domain made clear by the context, is (order-) meaningful. A similar 
convention will be used freely throughout this paper for other properties 
of a family dg of numerical codes. 

REMARKS. (1) The relation R allows for a suitable generality in our 
definitions. In Bloch's Law, we have R = ~r × ~d: This law can be for- 
mulated for any choice of two scales, measuring light intensity and 
duration. In the case of Coulomb's Law, we have ~ = (9 and R is the 
identity function Of ~:  the magnitudes of the two charges are measured 
using the same scale. (Remember that the distance between the two 
points is assumed to remain consta,nt.) 

(2) We stress that, in one important respect, our definition of 
"meaningfulness" differs from that most frequently encountered in the 
measurement literature. A key feature of this definition is that it applies 
to a family of relations (the family of numerical codes), rather than to a 
single relation. We shall go back to this point in our discussion section. 

(3) Some reflection will probably convince that the concept of 
meaningfulness, as defined here, represents a rather minimal (yet 
essential) requirement for a family of numerical codes to be worthy of 
consideration for scientific purposes. This may not be obvious. The 
following remarks may help the reader's examination of this notion. 

Any numerical code M~,g is a translation, depending on the chosen 
scales f,g, of a collection of empirical facts. To be specific, to the 
Cartesian product A ×  X corresponds a set A°× X ° of empirical 
situations (inputs). Thus, (a, ~)e (A ° × X °) is an empirical situation 
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characterized by two aspects that are in general non-numerical. There is 
also an empirical set E ° (of outputs), and a mapping 

(Or, ~)--~ p ( a ,  ~) 

of A ° × X ° onto E °. The notation p(a, £) symbolizes the output in E ° 
generated by the input (a, 0-  We assume that some initial scaling has 
taken place, involving two real valued mappings 

a - - ,  a ,  

respectively of A ° onto A and X ° onto X. 
From an empirical viewpoint, the critical information is contained in 

the function p. This information should be preserved by any numerical 
translation. In particular, the fact that two inputs (a, ~), (/3, ~) generate 
the same output should be preserved no matter which numerical code 
M~,g is chosen. Symbolically, 

0 = p(/3, 0 

(4) iff 

MLg[f(~'), g(g)] = Mr,g[/(/3'), g(~')]. 

Clearly, this leads to the definition of meaningfulness of families of 
numerical codes adopted here. The definition of order-meaningfulness 
arises when there is a natural ordering on the set E ° of outputs. 

(4) Meaningfulness and order-meaningfulness of families of numeri- 
cal codes are conditions which are both weak and natural to postulate. 
Meaningfulness concepts in general (usually referred to by other names 
such as "invariance") have a long history in mathematics and science. 
These concepts are Concerned with the invariance of sets and relations 
under admissible classes of transformations. The following example from 
geometry illustrates this concept and its relationships to Definitions 4 
and 5. 

Let 11 be the results of an initial scaling of the plane, i.e., the points of 11 
are input quantities (x, y) where x and y are real numbers. Different 
geometries on 11 can be specified in many ways. For example, the 
Euclidean geometry is obtained by defining appropriate geometric 
entities in terms of the Euclidean distance function, 

D[(xl, Yl), (x2, Y2)] = [(xl - x2) 2 + (Yl - y2)2] 1/2, 

It follows that (11, D) can be considered as a formulation of the 
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Euclidean geometry on II. It can be shown that the set of transformations 
on II that leave D invariant are exactly those that are generated by the 
translations, rotations, and reflections of II. Call this set of transfor- 
mations the "Euclidean transformations (on I-I)". It turns out that 
Euclidean concepts, and therefore also the Euclidean geometry on II, 
can be specified directly in terms of these transformations: a concept 
about II is said to be "meaningful" for Euclidean geometry if and only if 
it is invariant under Euclidean transformations; thus line and circle are 
meaningful Euclidean concepts since Euclidean transformations map 
the class of lines onto itself and the class of circles onto itself. In addition, 
D itself is meaningful, and it can be shown that all meaningful distance 
functions (called technically, metrics) on 11 are of the form rD where/, is a 
positive real. Another geometry on l-I, and one more analogous to the 
situation described in this paper, is obtained by considering trans- 
formations on II resulting from positive linear transformations of 
coordinates of points of II, i.e., transformations of the form 

(5) (x,y)-->(rx+s, ty+u) r,s,t, ueRe, r>O,t>O. 

Let ~r be the set of transformations defined in (5). Suppose that ~ = ~r 
and R = ~r x ~r. Then we are in a setting covered by Definitions 4 and 5. 
Consider the set S of ellipses with an axis in the direction of the abscissa. 
In this ~ontext, $ is meaningful since the appropriate transformations are 
mappings of S onto itself. (Notice however that, unlike the Euclidean 
case, the concept of circle is not meaningful.) In the spirit of Definitions 4 
and 5, consider an empirical situation where the relationship between the 
two variables of interest has been initially scaled so that it can be 
expressed in II by x 2 + y2 = 1, the equation of the unit circle. (That this 
equation expresses a relation between x and y rather than a function, as 
in Definitions 4 and 5, is unimportant for this discussion.) We will 
describe this equation by E,,L where (~, ~) stands for, depending upon how 
one looks at it, the identity transformation or the result of the initial 
scaling of the relationship between the empirical variables. The notation 
Er, g will stand for the transformation of E~,~ by (f, g) e ~ × ~r. It is easy to 
verify that E¢,g is 

(6) (x - a) 2 ~- (y - b)2 = 1 
/.2 S 2 

for some a, b, r, s ~ Re, i.e., E¢.g is the equation of an ellipse with an axis 
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in the direction of the abscissa. The set of equations {Et, g] (f, g) ~ ~ × ~} 
Captures numerically the original relationship of the variables, and this 
set corresponds in a natural way to the set of ellipses. In practice, this set 
of equations is said to express the "numerical law" that connects the 
original two empirical variables. 

The following simple consequence of Definition 5 will be useful in the 
sequel. 

THEOREM 3. A family d~={M~,g[fRg} of numerical codes is 
meaningful (respectively, order-meaningful) iff for all (f, g) ~ R, there 
exists a one-to-one (respectively, strictly increasing, continuous) func- 
tion/-/t,g mapping the range of the initial code Monto  the range of Mr, g , 
such that 

(7) Hc, g[M(a, x)] = Mi, g[f(a), g(x)] 

whenever both members are defined. 
Indeed, if d~ is meaningful, it suffices to define /-/r,g by (7): the 

equivalence (6), with f* and g* as the two identity scales, ensures that 
/-/r,g is a well defined function and has the required properties. In the case 
of order-meaningfulness, the function /-/~,g is strictly increasing by 
definition, which implies by the continuity of the numerical codes M and 
M~,g, that/-/r,g is also continuous. The converse is clear. 

However obvious, the following consequence of this Theorem deser- 
ves explicit mention. 

COROLLARY. If a family gg={M~.glfRg } of numerical codes is 
order-meaningful and the range of each element of gg is the same 
nonempty open interval, then there exists a scale family ~ a n d  a function 
(f, g)-*/-/r,g from R onto ~ ,  such that Equation (7) holds. 

The generalization of Definitions 4, 5 to functions of more than two 
variables is certainly clear to the reader. It turns out then that practically 
all numerical laws of importance result from considering families of 
numerical codes which are meaningful in this generalized sense. It is not 
difficult, however, to manufacture examples of hypothetical "laws" 
which are not meaningful. 

EXAMPLE 6. (Psychophysical choice). Let x, y be numbers represent- 
ing the light intensities of two visual stimuli. We assume that the 
numerical assignments x, y involve a ratio scale family. Let P(x, y) be 
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the probability that x is judged as brighter than y by a subject. 
Suppose that 

(8) P(x, y) = F[(1 + x)/(1 + y)] 

where F is assumed to be a strictly increasing, continuous function. A 
critical piece of information is missing in the notation of the above 
equation: the particular scale used is not indicated. Thus, we rewrite (8) 
more explicitly as 

Px(x, y) = Fx[(1 + x)/(1 + y)] 

where A > 0 symbolizes the scale in the sense that x = Ax', y = Xy' with 
x', y' representing the initial scaling of the intensities. The family {Px} of 
numerical codes is easily shown not to be meaningful: It cannot be the 
case that 

Px(Ax, hy) = Px(Az, Aw) 

iff 

Px*(A*x, A 'y)  = Px*(A*z, A 'w)  

for all x, y, z, w, A, A* ~ (0, ~). 
The concepts introduced in the following definition will play a central 

role in subsequent developments.  

D E F I N I T I O N  6. Let  ~ ,  ~ be two scale families on A, X respectively; 
let d~ = {MLg[fRg } be a family of numerical codes, with R c ~rx ~. A 
numerical code Mi, g ~ dt is called dimensionally invariant iff whenever  
f* Rg *, then 

Mr, g[f*(a), g*(x)] ~ < Mi, g[f*(b), g*(y)] 

iff 

Mi.g(a, x) ~< My,g(b, y) 

for all a, b ~ A and x, y ~ X. The family dg is called dimensionally 
invariant iff all its numerical codes are dimensionally invariant. This 
definition generalizes the classical notion used in dimensional analysis 
(cf. Causey, 1969, or F.M.I.). Notice that a numerical code Ms,g ~ dg is 
dimensionally invariant iff for all f*Rg*, there exists a strictly increasing, 
continuous function Qf,  g; .f*,g* such that 
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Mr, g[f*(a), g*(x)] = Qt,g;t.,g.[Mtg(a, x)] 

whenever both members of this equation are defined. 
We shall say that dg is isotonically generated, or more simply, isotone, 

iff there exists a real valued function M*, defined on A × X such that 
whenever fRg,  then 

(9) Mt, g =mt,  g o M* 

for some strictly increasing, continuous function mc, g mapping the range 
of M* onto the range of M~,g. Notice that there is no loss of generality in 
assuming that M* = M. Indeed, we have by definition of isotonicity 

M = m i A , t  x o M ~ 

which yields for any (f, g) ~ R, 

M~,g = rnc, g o m-l,A,,,, o M, 

and the function rnt, g o rn?~,L,, is strictly increasing, continuous, and maps 
the range of Monto  the range of Mt, g. In other terms, if ag is isotone, then 
any numerical code Mt, g can be obtained by some strictly increasing, 
continuous transformation of M. 

A comparison of (7) and (9) (with M* = M), together with the 
definition of dimensional invariance may suggest that the conditions of 
order-meaningfulness, dimensional invariance, and isotonicity are re- 
lated. Actually, these three conditions are pairwise independent. 

In particular, it is readily checked that Example 6, in which isotonicity 
holds, fails to satisfy both order-meaningfulness and dimensional in- 
variance. The two Examples below establish the independence for the 
remaining cases. 

EXAMPLE 7. (Psychophysical choice revisited.) With the binary prob- 
abilities P~(x, y) having the same meaning as in Example 6, suppose that 

(10) P, dx  y) = Fx[(AK + x)/(AK + y)] 

for all x, y, )t > 0, where K > 0 is a constant and Fx is a strictly increasing, 
continuous function. Then (10) is order-meaningful, since for any x, y, z, 
w, A > 0, we have 

Px(Ax, Ay) ~< Px(Az, Aw) 

iff 
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F [(AK + Xx)/(XK + Xy)] F [(AK + Xz)/(XK + Xw)] 

iff 

(K + x)/(K + y) <~ (K + z)[(K + w). 

This last expression is independent of A. The reader can verify that the 
family of numerical codes defined by (10) is neither isotone, nor 
dimensionally invariant. 

8. Define 

. ~={MxlM~(x ,y )=x+Ay;  x, y, A >0}. 

The conventions regarding x, y and )t are as in Example 7: the quantities 
x and y are measured by an identical scale, denoted by A, in a ratio scale 
family. Clearly, the family d~ is dimensionally invariant, but neither 
isotone, nor order-meaningful. 

The interrelationship of these concepts is expressed in the following 
theorem, which also summarizes the above independence results. 

THEOREM 4. The property of order-meaningfulness, isotonicity and 
dimensional invariance are pairwise independent. However, any two of 
these conditions implies the third. 

Proof. Let dg= {lVlLg[fRg } be a family of numerical codes. 
(i) dimensional invariance and isotonicity imply order- meaningfulness. 

For any Mt, g ~ d~, using successively dimensional invariance and iso- 
tonicity, 

Mt, g[f(a), g(x)] = Ot, g,l,g[Mr, g(a, x)] 

= (OLg;Lg ° mLg)[M(a, x)] 

= Ht, g[M(a, x)], 

with/-/I,g = Ot, g ° mt, g strictly increasing and continuous. By Theorem 3, 
we conclude that ~ is order-meaningful. 

(ii) order-meaningfulness and isotonicity imply dimensional in- 
variance. Let d~ be an order-meaningful family of numerical codes. If 
Mt.g 6 rid, we have by Theorem 3, 

(11) Mt, g[f(a), g(x)] = Hm[M(a,  x)] 

where/-/t,g is a strictly increasing, continuous function. Assuming that d¢ 
is also isotone, we obtain 

(12) Mr, g[f(a), g(x)] =mt, g{M[f(a), g(x)]}, 
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with mC, g again a strictly increasing, continuous function. Using suc- 
cessively (12) and (11), we have 

M[[(a) ,  g(x)] = mT,~{Ms, g[[(a), g(x)]} 

= (m~Xgo I--It,g)[M(a, x)] 

--1 which implies that M is dimensionally invariant, since ms, g o/-/S,g is 
strictly increasing and continuous. 

It follows that any numerical code Ms, g ~ d~ is dimensionally invariant. 
Indeed, whenever  f*Rg*, 

Mt, g[]'*(a), g*(x)] = mt,g{M[[*(a), g*(x)]} (isotonicity) 

= Q f ,  g ; [ . , g . [ m [ , g ( a ,  x ) ] ,  

with strictly increasing and continuous 

Os, g;t*,g* = mt, g ° Q.~,r,g* o mT, lg, 

where of course by using the already established dimensional invariance 
of M, Q,,,, r,g* is defined by 

M(f*(a), g*(x)) = QL,,,S.g.[M(a, x)]. 

(iii) dimensional invariance and order meaning[ulness imply isotoni- 
city. It is sutficient to assume that M is dimensionally invariant. With 
Jf,  g = Q,,,;[,g, we have 

(13) J¢,g[M[J(a), g(x)] = M(a, x). 

Combining (11) and (13), we obtain 

MLg[/(a), g(x)] = (/-/Lg ° Jt, g){M[/(a), g(x)]} 

where n~,g =/-/S,g ° Js, g is strictly increasing and continuous. Since any 
point (b, y) in the common domain A × X of Mt, g and M can be written 
f(a) = b, g(x) = y for some a e A, x ~ X;  isotonicity follows. 

Q.E.D. 

R E M A R K .  Notice that, in part (iii) of this proof, the isotonicity of d~ 
followed from the assumption of order-meaningfulness and the dimen- 
sional invariance of the initial code M. 
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4. M U L T I P L I C A T I V E  R E P R E S E N T A T I O N S  

Suppose that the numerical codes Mt, g in a family d~ have multiplicative 
representations 

(14) Mf, g(a, x) = F*[u(a)h(x)] 

where the functions u, h and F* are real valued, with u, h > 0, and have 
appropriate continuity and monotonicity properties. In general, the 
functions u, h and F* may depend upon the choice of the scales f, g. For 
isotone families of numerical codes however,  it may be assumed that u, h 
do not depend on f, g. Indeed, with mc, g as in Definition 6, we have 

Mr,g(a, x) = mt, g[M(a, x)] 

= (mc, g o F)[u(a)h(x)], 

where 

yielding 

M(a, x) = F[u(a)h(x)] 

F* = n~.g o F.  

This remark justifies the following definition. 

D E F I N I T I O N  7. Let ~r, ~d be two scale families on A, X respectively; 
let d~ = {Mt, gl fRg}, R c ~ x ~, be an isotone family of numerical codes. 
Then (u, h) is a multiplicative representation of dt iff u, h are continuous 
functions taking values in the positive reals and defined on A, X 
respectively, such that for all a ~ A, x e X, 

M( a, x) = F[ u( a)h(x)] 

where F is a strictly increasing, continuous function. Thus, u is strictly 
increasing, and h is strictly monotonic. Occasionally, when an isotone 
family d~ of numerical codes has a multiplicative representation, we shall 
simply say that d~ is multiplicative. 

T H E O R E M  5. Let ~r, q3 be scale families of A, X respect ively and 
suppose that d / =  {M/ ,g l f  E ~ir, g E ~} is an isotone family of numerical 
codes. Then, any two of the following three conditions implies the third: 

(i) d~ is order-meaningful; 
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(ii) d /ha s  a multiplicative representation u °, h a where 0 > 0 and ~ 0 
are constants, and both u and h are strictly increasing; 

(iii) ~r, ~ are respectively u-conjugate and h-conjugate to ratio scale 
families. 

The kinds of interconnections between variables captured in Theorem 
5 and its Corollary are fundamental throughout much of science. The 
characterizations presented here are immediate consequences of Section 
4 of Narens (1981), although the methods of proof developed here 
appear to us to be more straightforward and likely to lead to fruitful 
generalizations. Other characterizations have been presented in the 
literature (Narens and Luce 1976; Narens 1981) for cases where 
naturally defined operations exist on the variables. 

In the sequel, we write Ran(f) for the range of any function f. 
Proof. (i), (ii) imply (iii). Since by Theorem 4, dg is dimensionally 

invariant, we can assert the existence, for any f s ~r and g ~ qd, of a 
strictly increasing continuous function Kr.g such that 

M ( a ,  x) = K¢,g{M[f(a),  g(x)]}, 

for all a e A and x e X. Since by hypothesis, (u °, h a) is a multiplicative 
representation of d~, we have a continuous, strictly increasing function F 
such that 

(15) F[u°(a)h~(x)]  = (K~,g oF){u°[f(a)]hS[g(x)]},  

for all a e A, x ~ X,  f ~ ~r and g ~ qd. Let  us assume (temporarily) that M 
is strictly increasing in the second variable. Then, 6 > 0. In fact since, as 
mentioned earlier, ~r, qd are respectively u-conjugate and h-conjugate 
to ratio scale families iff they are respectively u°-conjugate and 
ha-conjugate to ratio scale families, we may as well assume 0 = 6 = 1. 
Fixing f, g in (15) and writing 

/_¢,g = F -1 o KT,~ o F 

~ =  uo f o  u -1, hg = ho go  h -1 

and 
u(a) = s, h(x) = t, 

(15) is transformed into 

(16) Lc, g(st) = uc(s)hg(t). 
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Without loss of generality, we may assume 

1 e Ran(u)  f'l Ran(h),  

where as indicated earlier, Ran denotes the range of the functions. 
Notice that all three functions/_¢,g, u¢ and hg in (16) are measurable. 
Using standard functional equation results (Acze11966) we obtain for all 
s ~ Ran(u)  f3 Ran(h),  

(17) /_4.g(S) =/3tVgS'~t.~, 

(18) uf(s) 
(19) hg(s) = VgS%, 

for some constants/3t, %, at.g > 0 which however may depend on the 
choice of scales f e ~ and g e c8 as suggested by our notation. The results 
in (17), (18) and (19) are readily extended to the whole domain of the 
function. (We leave it to the reader to check this.) Since the left members  
of (18), (19) do not depend upon g, f respectively, the same property 
applies to the right members,  which yields 

O~f,g = {3[, 

a constant, for all f ~  ~ and g ~ ~d. We obtain for (18) 

(u o fo u-1)(s) =/3 s 

with in particular, since eA e ~r, 

S = [3~A Sa,  

which gives/3~ A = a = 1. This establishes the fact that u$;u -1 is a ratio 
scale family. A similar argument, using Equation (19) shows that h~h -1 
is also a ratio scale family. In the case where M is strictly decreasing in 
the second variable, we have 8 < 0 and a ratio representation 

M( a, x) = F[ u°( a)[ h-8 ( x) ]. 

We assume 0 = - 8  = 1, which leads to 

I.¢,g(S/ t) = uc(s)/ hg( t), 

replacing (16), with a practically identical development.  We leave the 
details to the reader. 

(ii), (iii) imply (i). Using successively isotonicity (Mr, g = rn~,g o M, mr,g 
strictly increasing and continuous), (ii) and (iii), we have for all f ~ ~r, 
g ~ d , a , b ~ A a n d x ,  y, ~ X ,  
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Mf, g[f(a), g(x)] ~< My, g[f(b), g(y)] 

iff 

mc.g{M[f(a), g(x)]} ~< mc, g{M[f(b), g(y)]} 

iff 

(20) (rnr,g o F){uO[f(a)]hS[g(x)]} <~ (rnt, g o F){uO[f(b)]h~[g(y)]} 

iff 

(21) u°(a)~?hn(x)~/~ <~ u°(b)~]hn(y)y~g 

iff 

u°(a)hS(x) <~ u°(b)hS(y), 

which is independent of f, g. In (20), (21) we use the fact that, in view of 
(iii), any f ~ ~ and g ~ ~O are of the form 

(u o fo  u- ' ) ( s )  =  ts, t3r > o 

(h o g o h-1)(s) = ygS, yg > 0. 

This establishes the order-meaningfulness of de. 
(i), (iii) imply (ii). As a first step, we show that M satisfies Double 

Cancellation (F .M. I .p .  256); namely 

M(a, x) <~ M(b, y) 

M(b, z) <~ M(c, x) 

(22) 

(23) 

imply 

(24) M(a, z) <<- M(c, y) 

for all a, b, c s A and x, y, z ~ X. Because • is conjugate to a ratio scale 
family, it is homogeneous.  There  are thus g, g* s ~ satisfying g(x) = z, 
g*(z) = g(y). Since d~ satisfies isotonicity and order-meaningfulness it is 
dimensionally invariant by Theorem 4; in particular, M is dimensionally 
invariant. This implies the existence of strictly increasing continuous 
functions ~g ,  ~g .  such that successively, using (22), (23), 

M(a, z) = M[a ,  g(x)] = ~g [ M (a ,  x)] <~ ~g[M(b,  y)] 

= M[b, g*(z)] = ~g*[M(b, z)] ~< ~g. [M(c ,  x)] 

= M[c,  g*(x)] = M(c, y). 



S C A L E S  A N D  M E A N I N G F U L N E S S  307 

Indeed, from the commutativity of @ (which follows from the fact that d/ 
is conjugate to a ratio family) we have 

g*(x) = (g* o g-1)(z) = (g*o g-1 o g , -1  o g)(y) = y. 

We conclude that (22), (23) imply (24); that is, Double  Cancellation 
holds. In view of the isotonicity and continuity properties of M, we can 
assert, using standard measurement results (F.M.I.) ,  the existence of a 
multiplicative representation (v, p) satisfying 

(25) M(a,  x) = F[v(a)p(x)] 

for some strictly increasing, continuous function F and all a ~ A, x ~ X. 
Using the result that (i)and (ii) imply (iii), which we established earlier, it 
follows that ~r, @ are respectively v-conjugate and p-conjugate  to ratio 
scale families. We obtain in particular for each f ~ ~r, the existence of 
constants ~¢,/3 r > 0 such that 

v[f(a)] = ~¢v(a), 

u[y( a) =/3ru(a), 
which yields 

v-l[~fv( a)] = u-l[/3fu( a)] 

with 

5,A =/3,,, = 1. 

Or letting u ( a ) =  s and noticing that /3~--)~ r is a strictly increasing 
continuous function, 

(V o U--1)(/3S) = ~(/3)(V o U--1)(S) 

for all positive /3. Using the homogeneity of ~r and the fact that the 
functions v o u -1 and/3 --~ g(/3) are measurable and defined on an interval 
containing 1, we get 

(v  o u - 1 ) ( s )  = Ts 

that is 

(26) v(a) = ru°(a) 
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for some constant z, B > 0. A similar argument, applied to the scale 
family (9 yields the equation 

(27) p(x)  = ~'*h~(x), 

with ~-*, ~ ~ 0. Substituting v, p in (25) by their expression in terms of u, h 
in (26), (27), we obtain 

M( a, x) = F['ru°( a)'r* hS( x)] 

= G[u°(a)h~(x)],  
with 

G(t) = F ( ~ * t ) .  

This completes the proof of Theorem 5. 
Q.E.D. 

C O R O L L A R Y .  Let  ~r, qd be two ratio scale families, and suppose that 
d~ = {Mc, glf  ~ ~r, g ~ qd} is an isotone, order-meaningful family of num- 
erical codes. Then, there exist constants 0 > 0 and 8 ~ 0 such that for all 
a e  A and x ~ X, 

M(a ,  x) = G(a°xS),  

where G is a strictly increasing, continuous function. 
Indeed, this is an application of the case "(i), (iii) implies (ii)" in 

Theorem 5, in which u, h are identity functions. 
We now turn to the case in which a family d~ = {Me, g} of numerical 

codes involves identical scales for the two components;  namely Ms, g e d~ 
implies f = g. Our results which are formulated in Theorems 6 and 7 are 
somewhat weaker,  as we shall see. 

T H E O R E M  6. Let  ~rbe  a scale family, and let d~ = {M~,¢[f e ~'} be an 
isotone, order-meaningful, multiplicative family of numerical codes. 
Then ~r is a quasi interval scale family. In particular, if (u °, h a) is a 
multiplicative representation of rig, with h a strictly increasing function 
and 0 > 0 and 8 ~ 0, then both u~u  -1 and h~h  -1 are log interval scale 
families. 

Obviously, ~r may be a quasi ratio scale family. Coulomb's  Law is an 
example of the situation described in the Theorem (the distance between 
the points being kept constant) in which ~; is actually a ratio scale family. 

Proof. Since the arguments are similar to those used to establish that 
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(i), (ii) imply (iii) in Theorem 5, only a sketch of the proof will be given. 
Let  A be the domain of ~ and let (u  °, h 8) be the multiplicative 
representation of dL As in the proof of Theorem 5, we obtain by 
Theorem 4 and dimensional invariance, the equation 

M ( a ,  b) = K t {M[ f (a ) ,  f(b)]} 

leading to 

(28) F[u° (a )ha(b ) ]  = (Kf o F){uO[f(a)]hS[f(b)]} 

for all a, b c A and f ~ F.  Fixing f, and defining 

l _ q = F - l o f o F  

u¢ = u ° o fo  (uO) -1, hf = h a o fo  (ha) -1, 

u° (a)  = s, ha(b) = t, 

we rewrite (28) as 

I (sO = ugs)h ( t), 

which yields 

ur(s)  =  rs r, 

=  rs r, 

for some constants a t , /3t ,  ~,t > O. More explicitly, we have 

( u  o f o = 

(h o fo  h - 1 ) ( $ )  = y~/nsC~, ' 

thus, both u ~ u  -~ and h~k'h -1 are log interval scale families, That  is, ~ris a 
quasi interval scale family. 

Q.E.D. 
We have a converse of this Theorem. 

T H E O R E M  7. Let  ~ be a scale family, and let Jff = {Mf,fl f ~ ~} be an 
isotone family of numerical codes, with a multiplicative representation 
(u  °, ha), 0 > 0, ~ ~ 0. Then ~ is order-meaningful if either 

(i) ~ is both u-conjugate and h-conjugate to a ratio scale family; 
o r  

(ii) h -- u and ~ is u-conjugate to a log interval scale family. 
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Moreover,  these are the only two possibilities. 
Proof. Let A be the domain of ~; and suppose that ~ is both 

u-conjugate and h-conjugate to a log interval scale family; that is f ~ 
implies 

u[f( a)] = ~¢u( a) ~` 

h[f(a)] = 7th(a)~t 

for some constants /3r, at, 3% ~'¢ > 0 and all a e A. Notice that this 
assumption is compatible with both (i) and (ii). We write for simplicity 

L=LA, Mf=M~,..f, and mr=  mr,c, 

where mr. I is the strictly increasing, continuous function of Definition 4. 
Successively, for all a, b, c, d ~ A and f ~  ~r, 

M~[f(a), f(b)] ~< Mr[f(c), f(d)]  

iff 

mf{M[/(a), f(b)]} ~< mf{M[f(c), f(d)]} 

iff 

u°[f( a)]h~[f( b ) ] <~ u°[f( c)]h~[f( d)] 

iff 

[ flru( a )~f ]°[ ych( b )~r ] ~ ~ [13ru( c )~, ]°[ vlh( d)~r ]8 

iff 

(29) u(a)~¢°h(b)~r s <. u(c)~°h(d)~P. 

In case (i), a t = 1" r = 1, and order-meaningfulness follows since (29) 
does not depend on f. 

In case (ii), (29) becomes 

[ u( a)°u( b )a] ~', <. [ u( c)°u( d)~] ~, 

which is equivalent to 

(30) u(a)°u(b) 8 <- u(c)°u(d) 8 

with the same conclusion. 
To  show that ( i ) and  (ii) are the only possibilities, notice that as a 

consequence of Theorem 6, d( is order-meaningful only if (29) is inde- 
pendent  of f. In particular, we may take f = ~, which implies with 



S C A L E S  A N D  M E A N I N G F U L N E S S  311 

a, = z, = 1, that (29) holds iff (30) holds, or equivalently, 

(31) ~r[u (a ) °h (b )  ~] = u(a)'~f°h(b) ~r~, 

for some strictly increasing function ~r.  With s .= u( a) °, t = h(b) ~, (31) 
yields 

s t )  = 

from which we derive easily a¢ = ~'r for all f ~ ~r, and either (i) or (ii) 
follows. 

Q.E.D. 

We remark that each of Theorems 6 and 7 constitutes one of the three 
implications obtained in Theorem 5. In the case of a family dg of 
numerical codes involving only one input scale, say dg = {M~,tlf ~ ~r}, 
we cannot derive the third implication, namely: for isotone families, 
order-meaningfulness and ratio scalability implies multiplicativity. A 
counterexample is given below. 

E X A M P L E  9. Define 

d~ = {M~I Mx(a, b) = Fx[a + b + (ab)l/2]; a, b, A > 0} 

where the index A denotes the scale a ~ Aa, and for all A > 0, Fa is some 
strictly increasing and continuous function. The verification is left to the 
reader. 

We now strengthen the assumptions regarding the scale family ~r in 
Theorem 7, and derive the corresponding possible forms for the multi- 
plicative representation of the family ,,g of numerical codes. 

T H E O R E M  8. Let  ~r be a scale family, and let dg = {My,y I f ~ ~ be an 
isotone, order-meaningful, multiplicative family of numerical codes. 
Then: 

(i) if ~r is a ratio scale family, then one of the two forms 

(32) M ( a ,  b) = F(a°b~),  0 > O, ~ ~ 0 

(33) M ( a ,  b) = F(1"a ° + ~b°), T, 0 > O, ~ ~ 0 

must hold, with F,  a strictly increasing continuous function, 

(ii) if ~ i s  a log interval scale family, then (32) is the only possible form; 

(iii) if ~r is an interval scale family, then we must have 
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(34) M ( a , b ) = F ( ' r a + ~ b ) ,  - r>0 ,  ~ # 0 ,  

with F a strictly increasing, continuous function. 
Proof. Let ~r, dg be as in the hypothesis of the Theorem, and let (u, h) 

be the multiplicative representation of rig. Since d~ is isotone and 
order-meaningful, it is dimensionally invariant by Theorem 4 - whether 
in case (i), (ii), or (iii) of the Theorem to be proved - and thus 

(35). M(Aa ,  Ab) = K x [ M ( a ,  b)], 

for some strictly increasing, continuous function Kx. Note that A varies 
in an interval containing 1, since ~ contains the identity scale. In turn 
(35) gives, using multiplicativity, 

(36) H[u(Aa)h (Ab)]  = (Kx o H)[u(a )h (b ) ] ,  

with H strictly increasing and continuous. Setting s = u(a),  t = h(b), we 
rewrite (36) as 

u[Au- l ( s ) ]h[Ah- l (  t)] = ( H - l  o Kx o H)(st) .  

Fixing A and using familiar functional equation arguments, this leads to 

u[Xu-l(s)] = 

h[Ah- l (s )]  = T(A)s ~(x), 
with 

> o. 

These functional equations are well known, and have two solutions (cf. 
Aczel, 1966). 

C A S E  1. ot is constant; thus a(A) = 1 for all A. Then 

u(a)  = ra ° O, z > 0 

h(a)  = ~a ~ !~ > O, ~ # 0 

yielding 

with 

M ( a ,  b) = H(l"a°~b ~) 

= F(aOb 8) 

F(c )  = H ( ~ c ) .  
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CASE 2. a is not constant. Then we obtain the forms 

u(a)  = ~'* exp (~'a°), 

h (a )  = ~* exp (~aS), 

yielding 

M (  a, b) = H [  ~-* exp  ( ra°)  ~ * exp (~ba)] 

= F(~-a ° + ~bS). 

Using (35), we obtain 

~()ta) o + !~Otb) ~ = ( F  -1 o Kx o F)(~a o + ~bS), 

that is, with s = ra °, t = ~b ~ and Fx = F -1  o KK o F ,  

A°s + A~t = Fx(s + t) = Fx( t+  s) = ) t° t+ A~s. 

T h u s ,  

s ( ; t  0 - ;t 8) = t ( X  o - X~),  
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~-(Aa~) ° + ~(Ab~') ° = Fx.~,(~-a ° + ~b°), 

which leads easily to 3' = 1. 
Finally, in the case where ~r is an interval scale family, Equation 

(32) is easy to eliminate, while (33), again with the same argument, 
leads to 

~-(ha + y)0 + ~(Aa + y)0 = Fx.g(~.a o + !~bO), 

yielding 0 = 1 without difficulty. 

A summary of some of ou r  results is given in Table I. 

Q.E.D. 

yielding 0 = 8, and (33) follows. On the other hand, it is easy to check 
tha~ (32), (33) are compatible with the hypotheses of the Theorem, in 
particular, ~ is a ratio scale family. 

Equation (32) is also compatible with the assumption that ~r is a log 
interval scale, but (33) is not. Indeed, using the above argument, we 
would have with obvious notation, the form 
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TABLE I 
Representations for isotone families of numerical codes 

Case 1: two distinct input scales 

={Mf,,I/e ~, ge ~} 

(Corollary to Theorem 5) 

~ ,  ~, homogeneous quasi ratio scale families 

M(a, x) = G(a°x s) 0 > 0, 8 ~s 0 

Case 2: two identical input scales 

(Theorem 8) 

a homogeneous scale family 

log interval > M(a, b) = F(a°b s) O > O, ~ ¢ 0 

ratio >M(a,b)=F(-mO+~b °) % 0 > 0 , ~ 0  

interval >M(a, b)=F(¢a+~b) ~'>0, ~ 0 .  

5. A N  A P P L I C A T I O N  

Our results can be used to narrow down the class of numerical functions 
which are candidates for a description of a body of data. Such application 
is illustrated here  by a brief discussion of an experiment of Pavel (1980; 
Iverson and Pavel, 1981). 

In a psychoacoustic experiment,  a subject was required to detect  a 
stimulus, a faint click, embedded or preceded by a burst of white noise. 
Three  independent  variables were considered: the intensities of the click 
and the noise, and the delay ~" between the end of the noise and the click 
(thus, ~- can be negative). A basic notion in the analysis of the data is a 
probability 

P(x ,  n, I") 

that a click of intensity x is detected over  a masking noise of intensity n, 
with a delay -r. The  empirical results support the assumption that, over  
some intervals, P(x ,  n, "r) is strictly increasing in x, ~" and strictly 
decreasing in n. The  data are also consistent with the condition 
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P(x, n, ~') <~ P(x', n', r) 

(37) iff 

P(  Xx, ~n,  ~') <~ P(  ;tx', ~n',  ~'). 

To frame this situation in the language developed in this paper, we 
shall fix ~- (temporarily), and assume that P(x ,  n, ~') - and abbreviation of 
P~,.~×(x, n, ~') - is the initial code of a family ~ of numerical codes. The 
numbers x, n are ratio scale measurements of physical intensities. 
Equation (37) states that the initial code is dimensionally invariant. 
Making also the reasonable assumption that ~ is order-meaningful, we 
conclude, using the remark after Theorem 4, that • is isotone. In view of 
the ratio scale character of the physical intensities, our knowledge of the 
possible forms for P(x ,  n, "r) is now considerable. We have however two 
cases to examine. 

CASE 1. The intensities of the click and the noise are measured by 
distinct ratio scales. This means that the admissible transformations 
of the numbers x, n in P(x ,  n, "r) are unrelated. Applying the Corollary 
to Theorem 5, (or consulting Table I), we obtain as the only possible 
form: 

(38) P(x ,  n, ~') = F~.[x/n~('~)], 

in which F~ is a continuous, strictly increasing function. Interestingly, 
further analysis of Pavel's data leads him to postulate a form identical to 
(38) except that the function F does not depend on I-: 

(39) P(x ,  n, z) = F[xln~(~)]. 

Notice however that (39), together with the assumption that P varies 
with ~', contradicts order-meaningfulness. To see this, we fix x and 
consider two admissible transformations n---> An, ~----~ Oz. Equation (39) 
becomes 

Px,o(x, n, ~') = Fx,o[x/nS~.o(')], 

where )t, O denote the scales used to measure n, ~'. Using order- 
meaningfulness, we obtain via Theorem 3, 

Px,o(x, An, Or) = (nx,0 o F)[x/n  a<')] 

= Fx,o[x/(An) 8<~)] 
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for some strictly increasing, continuous function HA,o, which yields, with 
x = l  and 

GA,o(S ) = -1 o [Fx,o o Hx,o F)(l/s)] ~ ,  

(40) (An) ~(°~) = Gx,o[n~(~')]. 

Setting n = 1 in (40) gives 

(41) A ~(°~) = Gx,0(1). 

Since the right member of (41) does not depend upon z, it follows that ~ is 
a constant function. This conclusion is not supported by the data (cf. Fig. 
1). We conclude that if an order-meaningful expression is to be chosen to 
describe Pavel's empirical results, it must be of the form (38), with the 
function F, effectively depending on ~-. In fact, (38) is consistent with the 
data, some of which is displayed in Figure 1. 
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Fig. 1 Pavel's data. The straight lines are least square fit of Equation 
46, plotted in decibel units. 

Let us demonstrate this. Applying F~ 1 on both sides of (38), we get 

(42) F-~l[p(x, n, ~-)] = x/n a('). 

setting 

e(x ,  n, ,r) = 7r, y('r, 7) = F~l(cr) 
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and solving for x in (42), we obtain the form 

(43) x ( x ,  ~', 1r) = 31('r, 7r)n ~<~), 

or in decibel units, taking logs on both sides of (43), with obvious 
notation, 

(44) x * ( n ,  "r, ¢r) = V*('r, 7r) + ,~('r)n*. 

Thus, for any fixed values of ~r, -r, this predicts a linear relationship 
between the intensity of the click and that of th e masking noise, both of 
these quantities being evaluated in decibel units. As indicated by the data 
in Figure 1, this is exactly what was observed by Pavel. Moreover, a 
fixed point property is apparent in Figure 1, which is expressed by the 
equation: 

(45) x[n0(1r), ~-, ~] = x[no(~r), ~-', ¢r] 

for some no(~'). In words: no(Tr) is the intensity value of the noise at which 
the delay r has no effect on the intensity of the stimulus. This indicates 
that the parameters of the linear equation (44) are linked by a constraint 
of the form 

V*(~', -tr) = K*(~ ' ) -  6(T)n*(~'), 

for some constants n*(1r) and K*(70 independent of r. Going back to the 
initial units, this gives us 

FTl(~r) = K(Tr) 
no( W) = 

yielding, as a special case of (43), 

(46) x ( n ,  ~', ~') = K(~r)[n/no(1r)] 8~'~). 

We point out that, for order-meaningfulness to hold, no(or) must 
effectively vary with ~r. Otherwise, as the reader can easily check, (46) 
becomes equivalent to (39), which is not order-meaningful. 

CASE 2. The quantities x and n are physical quantities measured by the 
same ratio scale. That is, the admissible transformations x ~ ",/x, n ~ On 
are linked: we must have 3, = 0. Meaningfulness arguments similar to 
those used for Case 1 (we omit the details), gives us two possible forms: 

(47) P ( x ,  n,  "r) = F.~[x/n~<'~)], 
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(48) P(x,  n, z) = F,[x ~¢'0 + ~(7)na(')]. 

Equation (47) was analyzed in Case 1. With, as before, y(r, , r )= 
F~-l(cr), (48) gives 

(49) x(n,  7, ,r) = [Y(~', ,r) - ~(~-)na<')] a/8~,). 

A result for which the linearity in the data of Figure 1 will create dif- 
ficulties. 

Much more could be said about Pavel's empirical results, which are 
quite extensive and analyzed in great depth in his dissertation. Our 
purpose here was only to illustrate, by discussing this example, the impact 
of considerations of meaningfulness on the search for a suitable model 
for a body of data. 

One may ask at this point why (or whether) forms of meaningfulness 
should be taken as required features for a family of numerical codes. 
After all, a family of numerical codes purports to be a descript ~ of some 
empirical phenomenon. Science is concerned with what is, not with what 
should be. We shall turn to this and other issues in the following dis- 
cussion section. 

6. DISCUSSION 

As mentioned before, the motivation of our work is similar to thaf of 
a paper by Luce (1959). There are, however, important differences 
between Luce's developments and ours. 

No  attempt was made by Luce at that time to define the concept of 
"meaningfulness". Instead, central to his 1959 paper is a "Principle of 
Theory Construction": 

A substantive theory relating two or more variables and the measurement theories for these 
variables should be such that: 

1. (Consistency of substantive and measurement theories) Admissible transformations 
of one or more of the independent variables shall lead, via the substantive theory, only to 
admissible transformations of the dependent variables. 

2. (Invariance of the substantive theory) Except for the numerical values of the 
parameters that reflect the effect on the dependent variables of admissible transformations 
of the independent variables, the mathematical structure of the substantive theory shall be 
independent of admissible transformations of the independent variables. 

Certainly, there is no obvious conflict between the definition of 
"meaningfulness" proposed here and Luce's "Principle". However, as 
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pointed out by Rozeboom (1962), and recognized by Luce (1962), the 
"Principle" is somewhat ambiguous. In particular, it is by no means clear 
that "meaningfulness" in our sense must be regarded as the formal inter- 
pretation of Luce's "Principle". 

Another difference is that the bulk of Luce's results concerns a relation 
between one independent variable and one dependent variable, while, 
through our definition of a family of numerical codes, we are dealing here 
with a relation between two independent variables and one dependent 
variable. This may seem like a technical detail. However, a major focus 
of our paper (all of Sec. 4) is on the understanding of the relationship 
between a multiplicative form of a numerical code, and meaningfulness. 
For obvious reasons, such a topic has no place in Luce's 1959 paper. 

The rest of this section will be devoted to a discussion of various 
concepts of meaningfulness currently in use. 

Concepts of Meaningfulness 

The most widely accepted usage of the word "meaningful" is that given 
by the following informal definition: "A statement involving (numeriCal) 
scales is meaningful if and only if its truth or falsity is unchanged under 
admissible transformations of all the scales in question" (Roberts 1979, 
p. 59). 

EXAMPLE 10. The sentence 

A: The ratio of Stendhal's weight to Jane Austen's on July 3, 
1914 was 1.42. 

has been called "meaningful" since its truth value is the same for 
whatever scale is used to measure weight. A difficulty with the definition 
is that the expression "involving numerical scales" is unclear. The fact is 
that scales can be "involved" in more than one way in a numerical 
statement. In A for instance, a particular scale has been used to measure 
the weights of Jane Austen and Stendhal. However, that scale is not 
mentioned in the statement. Can a Scale be "involved" without being 
mentioned? To illustrate the ambiguity, it is useful to contrast two 
interpretations of A, both of which make use of a ratio scale family ~rfor 
the measurement of weight. For concreteness, we shall suppose that the 
initial scaling has been made so that the identity scale ,. is the pound scale. 
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First interpretation. The sentence A implicitly defines a numerical rela- 
tion T such that: 

T(a, x) iff a is Stendhal's weight, x is Jane Austen's weight, 
and a/x = 1.42. 

The relation T could be regarded as meaningful in the sense of the 
definition of Roberts (1979) quoted above since for all f c ~r and a, 
x ~ Re+ 

T(a, x) ill T[f(a), f(x)]. 

Second interpretation. In the spirit of the language developed in this 
paper, consider the following family of relations, where f ~ ~r: 

Tt(a, x) iff a, x are respectively Stendhal and Jane Austen's 
weights, measured on scale [; moreover, a/x = 1.42. 

If we write T'(f, a, x) for Tt(a, x), then it becomes clear that this relation 
is different from T above: T is a first order relation between numbers 
whereas T' is a higher order relation between functions of numbers and 
pairs of numbers. 

Since ~r is a ratio scale family, it follows that 

(50) Tt[f(a),/(x)] ill Tt.[f*(a), if(x)] 

for all a, x e Re+ and all f, f* 6 ~r. Note the strong resemblance between 
(50) and the defining property of a meaningful family of numerical codes. 
Natural generalizations of our Definitions 4 and 5 would lead us to 
consider as meaningful the family of relations 

(Such generalizations will be given in Definition 8.) In this interpretation, 
calling A meaningful may be regarded as a harmless abuse of language. 

In this example, it does not matter which of the two interpretations is 
adopted since both lead to "meaningful" A with the same truth value. 
This might suggest that there is no essential discrepancy between the two 
concepts of "meaningfulness". Such a conclusion, however, would over- 
look an essential difference between the two interpretations, which in 
other situations could lead to serious misunderstandings. The defini- 
tion below, which generalizes the notions of dimensional invariance, 
(order-) meaningfulness and isotonicity, emphasizes the distinction. 
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DEFINITION 8. For 1 ~< i ~< n, let ~rl be a scale family with domain Ai; 
let R c ~r 1 × . .  • x ~ r ;  for any f ix , . . . ,  fn) ~ R, let Trl,...,r " c A1 x .  • • × 
A ,  be an n-ary relation. Let  

~r=  {Tr,,...,rol(5 . . . . .  f , )  ~ R} 

be the family of all such relations. 
Any Tf,,...,t " ~ ~ris called meaningful in the first sense, or 1-meaningful, 

(with respect to R) iff 

Tf,,...,f,(al,...,a,) iff Wfi,...,f,[f~l(a0 . . . . .  f~,(a,)], 

for all ( ~ , . . . ,  ~ )  ~ R and ai ~ Ai, 1 ~< i ~ n. By extension, the family 
is said to be meaningful in the first sense, or 1-meaningful, iff all its 
relations are 1-meaningful. 

The family ~" is called meaningful in the second sense, or 2-mean- 
ingful, iff 

Tf,,...,~,[fl(a0 . . . . .  f , (a , ) ]  iff WrT,...,n[~l(al ) . . . .  , ~ ( a , ) ]  

for all (fl, • • •, f ,) ,  (~1 . . . .  , f*,) ~ R and a /~  Ai, 1 ~< i <~ n. 
Finally, the family f f  is called degenerate iff 

Tfi,...,r,(al . . . . .  a,) iff Tn,...,F(al . . . . .  a,) 

for all ( f l , . . . , f n ) ,  ( ~  . . . . .  ~ ) ~ R ,  and ai~Ai,  l<~i<~n, or 
equivalently, iff 

Tr,,...,r " = TF.,...,F., 

for all ( f l , . . . ,  f .) ,  ( ~ , . . . ,  f*,) ~ R. 
We have the following result, generalizing Theorem 4. 

T H E O R E M  9. The three properties of 1-meaningfulness, 2-meaning- 
fulness and degeneracy are pairwise independent. However, any two of 
these three properties implies the third one. 

The proofs of the three implications in the last part of the Theorem are 
simple, and left to the reader. To establish the independence results, we 
rely on Theorem 4. Let ~r, ~ be two scale families, with respective 
domains A, X;  let R c ~r× ~; let d~ ={Mf, glfRg} be a family of nu- 
merical codes. Define a family ~ of quaternary relations Tt,g,r,g , with 
fRg, by: 

T~,g,r,g(a, x, b, y) iff Mf, g(a, x) ~ M~,g(b, y), 



322 J .  C .  F A L M A G N E  A N D  L .  N A R E N S  

for all a, b e A, x, y e X and fRg .  The following three equivalences 
clearly hold. 

(i) ~Y is 1-meaningful iff dg is dimensionally invariant; 
(ii) ~r is 2-meaningful iff dg is order-meaningful; 
(iii) ~r is degenerate iff d~ is isotone. 
An application of Theorem 4 completes the proof. As a by-product 

of the above argument, notice in passing that, for quantitative laws, 
1-meaningfulness corresponds to what we have called dimensional in- 
variance. 

We suspect that most measurement theorists would choose 1-mean- 
ingfulness as the natural interpretation of Roberts' definition. This 
particular version of the concept of "meaningfulness" certainly 
dominates the literature. As an illustration, one important example is 
discussed below. 

When measurement theory is approached from a qualitative view- 
point, (e.g. most of F.M. I, II), meaningfulness is sometimes defined in 
terms of the automorphisms of the embedding real structure. To describe 
this idea with precision, we introduce the notion of a qualitative structure 
_,= i.e. a formal system of relations on a set A ° of (empirical) objects. 
Measurements, or (numerical) representations of ~,, are assignments of 
numbers to the elements of A °. However, not all assignments will do. In 
measurement theory, the general idea is that the assignments should be 
"structure preserving"; that is, there should be some predetermined 
structure F of relations defined on Re+ such that the representations of =_ 
are homomorphisms into F. For concreteness, we shall suppose that the 
relations in F are defined on Re+. We shall als6 assume, to simplify our 
discussion, that all the representatmns of _ are lsomorphlsms onto F. Let 
p be a representation of ~. For each representation 0 of E let fo be the 
function from Re+ onto Re+ such that 

fo(r) = (0 o p-1)(r) 

for each r ~ Re+. Let 

= {f01 0 is a representation of N}. 

Then it is easy to show that ~ is a group under the composition of 
functions, with identity fo- In fact, ~ is the group of automorphisms of F. 
In this context, we shall define a numerical relation as meaningful in the 
third sense, or 3-meaningful,  (with respect to $z), iff it is invariant under 
the automorphisms of F. It is immediately apparent that, when ~ is a 
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scale group (in the sense of our Definition 1), then 1 and 3-meaningful- 
ness are very close. The only difference is that, in the latter case, some 
pain is taken to specify the origin of the scale family. 

The importance of this concept - under the guise of 1-meaningfulness, 
3-meaningfulness or dimensional invariance - is widely recognized by 
measurement theorists (see in particular Luce 1978) and will not be 
denied here. Whether it completely captures the notion of "meaningful- 
ness" is less clear, and we shall argue that it does not. 

Two features of 2-meaningfulness as a general "meaningfulness" 
concept are especially worthy of note in this connection. 

1. In the form of one-to-one or order-meaningfulness for families of 
numerical codes, it provides a constraint which is strong and yet very 
reasonable (in fact practically unescapable, as shown in our remarks in 
Section 3). 

2. In the same context, this concept permits the consideration of 
empirical laws of the form 

(51) Mx.~,(a, x) = Fx,~,[(a + Ako)t3(x +/zkl)8], 

in which Fx,~, is a strictly increasing function, a, x ~ Re+ are variables,/3, 
ko, kl e Re+ and 8 ~ 0 are numerical constants, and A,/x e Re+ denote 
the scales. (The conventions are as in Examples 6-9.) 

In particular, notice that Equation (51) does not satisfy dimensional 
invariance, nor any immediate natural generalization of this concept. 
As far as we know, this type of law has not been analyzed from a 
measurement viewpoint. Its main interest lies in the special role played 
by the additive "dimensional" constant ko and kl in the equation. A 
preliminary investigation of such laws, using and extending the tech- 
niques of this paper, indicates that a satisfactory analysis is possible. A 
paper discussing these issues is in progress. 

To our knowledge, no one has provided a satisfying definition of 
"numerical law" for a general scientific context. There seems to be some 
agreement that laws should be "meaningful" in a sense close to the one 
used in this paper. Almost all the laws one encounters in science are 
instances of meaningful families of numerical codes. Thus, a natural 
strategy is to identify "law" with "meaningful families of numerical 
codes". We would feel uneasy about an uncritical endorsement of such 
strategy at this stage, since we do not fully understand the exact role of 
"meaningfulness" in scientific formulation, deduction and communi- 
cation. Presumably, the strong liking for laws that are meaningful in 
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the sense of this paper is due to a mixture of interrelated practical and 
theoretical reasons. On the practical side, it is clear that the adoption of a 
substantial number of nonmeaningful "laws", the form of which would 
depend on the scale(s) used, would quickly create a scientific Tower of 
Babel. On the theoretical side, meaningfulness appears to favor "coher- 
ent" systems (of quantitative notation of scientific facts) over "incoherent" 
ones. Here we are thinking about such aspects of a "scientific law" 
as those emphasized by Luce (1959) in his Principle of Theory 
Construction. 
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