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1. INTRODUCTION 

The role of mathematics in empirical science is puzzling, mysterious, and in 
my opinion has defied rational explanation. Why mathematics should be so 
enormously productive and effective in the handling of empirical phenomena 
is clearly an important foundational problem in science, but one for the most 
part that has been ignored. This is somewhat surprising given the rich theory 
and the abundance of results that have been developed in the philosophy and 
foupdations of mathematics. While there have been and still are great debates 
about the acceptability of the use of certain inf'mitistic and nonconstructive 
procedures in mathematical proofs, very little of these concerns have spilled 
over into science. The empirical sciences seem to have accepted without 
question the validity of the Platonic/Cantorian development of mathematics, 
and freely employ infinitistic and nonconstructive methods in their modeling 
of empirical phenomena. What is particularly surprising about this is that 
most empirically oriented scientists shy away from strong metaphysical 
commitments, and at the foundational level of their science usually promulgate 
the use of rather conservative methodologies. 

There are obviously many ways of approaching the problem of explaining 
the role of mathematics in empirical science. The one employed in this paper, 
which falls under an interdisciplinary branch of science generally known as 
measurement theory, tries to explicate the underlying assumptions for the 
proper assignment of numbers to empirical variables. While this is only one 
aspect of justifying mathematical procedures, it is an important and necessary 
first step. However, depending upon one's philosophy of science and math- 
ematics, even this restricted problem has a variety of approaches. 

The approach I take is heavily colored by a vision I have of what a good 
theory of measurement would look like. The part that is relevant to this 
paper goes as follows: I see the empirical world as a finite collection of 
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objects with visible empirical relations holding among them. Mathematically, 
various parts of this situation of interest can be represented as relational 
structures whose domains of discourse are subsets of empirical objects. 
However, most of these structures that are of importance to science have a 

large finite number of elements, and large finite structures tend to be very 
complicated mathematically with measurement-theoretic properties that are 
usually very difficult to describe. Paradoxically, infinite structures that are 

idealizations of complicated finite settings are often uncomplicated and easily 
describable. Since most of the serious mathematics used in science is based on 

infinite structures, infinite idealizations are a natural step in the mathematical 

modeling of empirical phenomena. What is needed to justify this step are 
theorems that show the process of 'idealization' to be harmless, i.e., that show 

empirical inferences drawn from the infinite idealization are 'approximately' 
valid for large finite structures. While a few such results exist at this time for 

some types of measurement situations, this area lacks a good theoretical 
foundation and more research is needed. Given that infinite idealizations are 

wanted, the finding of appropriate idealizations becomes a problem. Here I 
am quite conservative: I believe that only denumerable models should be 
considered as idealizations of finite empirical situations. This rules out most 

of the idealizations that are commonly used in empirical science (e.g., ones 
that have dense ordering relations that are Dedekind complete). However, 
for many of these situations, theorems can be established that allow for the 
extension and preservation of measurement-theoretic properties from their 
natural denumerable idealization to their conventional nondenumerable 
idealization. An example of this type of program is carried out in Section 2 
of this paper. 

Conventional mathematics makes ontological commitments to the exist- 
ence of infinite sets and to the validity of certain nonconstructive procedures 
(e.g., the Axiom of Choice). These commitments allow certain results that are 
otherwise not derivable to be derived which have empirical import through 
the conventional mathematical modeling procedures. It is my view that these 
kinds of results should not be taken as results about empirical phenomema 
but as empirical propositions that are consistent with the observations and 
assumptions that we make about the empirical phenomena or its idealization. 
I hesitate to estimate how many results of mathematical science falls into this 
category, but I judge it would be a significant amount. Deciding which 
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concepts in a mathematical model are to be treated as mathematical as 

opposed to empirical is often difficult. I think in certain cases concepts of 
meaningfulness (as developed in Section 3) might prove useful in this regard. 

Empirical science often proceeds by assigning numbers to empirical 
entities. These assignments are called scales and in most applications they are 
ordered by the usual ordering of the real numbers. Three types of scales are 

in wide use: ordinal, ratio, and interval. These types are characterized by the 
permissible transformations f that can be performed on them to produce 

another scale of the same type: for ordinal, f is any monotonic transfor- 
mation; for ratio, f is multiplication by any positive real; and for interval,f is 
any linear transformation of the form f ( x )  = ax + b where a, b are reals and 
a > 0. Specifications of underlying variables of mathematical models to these 
scale types often impose strong conditions as to the form of the model (Luce, 
1959, 1962; Falmagne and Narens, in preparation) and thus are implicitly 
making strong assumptions as to the nature of the empirical phenomena. Just 
what these assumptions are have not been very well worked out except the 

rather special case of ordinal scalability, where there is very little structure to 
preserve. In this case, the assumptions correspond to the conditions of an 

ordinal structure (Definition 1.1.). Special cases of ratio scalability have 
been worked out. The early versions of these were for the measurement of 

physical variables, and these axiomatizations resemble the conditions for an 
Archimedean ordered group. These axiomatizations have been greatly general- 
ized and simplified over time and find their modern form in the axioms for an 

extensive structure (Definition 1.3.). The key axiom for this form of ratio 
scalability is associativity, (x oy )  o z = x o (y o z), and its assumption yields 

ratio scales in which addition has intrinsic significance. Until recently, these 
associative structures or their equivalents were the only qualitative models of 
ratio scales. The recent exception is Cohen and Narens' (1979) work on 

positive concatennation structures, where it is shown that for many situations 

the assumption of associativity in extensive structures may be deleted. In 
Section 2, a generalization and extension of Cohen and Narens' results is given. 
The research on the qualitative assumptions underlying interval scalability has 
been limited in the literature to models that are ultimately determined by 
extensive structures. However, Narens (in preparation) has a very general 
qualitative description of interval scalability. 
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The concept of invariance plays an important role in mathematics and 

physics. One kind of invariance that is particularly important to science is 
the invariance of the results of a mathematical argument under different 

proper numerical assignments to the empirical variables. In measurement 

theory, this kind of invariance is called meaningfulness. To date, the theory 
of meaningfulness is not very well developed, and it is not even clear what is 

the proper definition of meaningfulness. In Section 3, various concepts of 

meaningfulness are presented and some of their interrelationships are worked 

out, and the connection between these concepts and similar ones developed 

in geometry, especially Klein's 'Erlanger Program', are noted. 

One important application of meaningfulness occurs in conjoint measure- 

ment. Luce (1978) has shown a commonly used, powerful technique of 

physics called dimensional analysis is really a meaningfulness argument for 

the conjoint structure of physical units. In Section 4, results concerning ratio 
scalability in conjoint structures are given, and the technical basis for the 

generalization of dimensional analysis and the structure of physical units is 

presented. 

CONVENTION. Throughout this paper the following conventions and 

definitions will hold: 
Re will denote the real numbers, Re + the positive reals, I the integers, and 

I + the positive integers. 

A function o: Y x Z -+ X is said to be a partial (binary) operation on X if 

Y and Z are subsets of X, and a closed (binary) operation (or just operation) 
if Y = Z = X. If  o is a partial operation, then x o y is said to be defined if (x, y )  
is in the domain of o, and otherwise x o y  is said to be undeJ~ned. As usual, 

lx = x and if (nx) o x is defined for some n in I+, then (n + 1)x = (nx) o x. 
A binary relation ~ on the set X is said to be a weak ordering if and only if 
is a transitive and connected relation. Suppose ~ is a weak ordering on X. 

Define the binary relations >" and ~ on X as follows: for eachx,y  in X, 

x >- y i f a n d  on ly i fx  ~ y and no ty  ~ x, 
and 

x ~ y if and only i fx  ~ y a n d y  E x. 

Then it is easy to show that ~ is an equivalence relation on X. If  in addition 

to being a weak ordering, ~ is such that for each x, y in X, 
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x ~ y  iff x = y ,  

then ~ is said to be a total ordering. 
A weak ordering relation ~ on X is said to be dense if and only if for each 

x, y in X, i fx  >-y  then for some z in X, x >- z > ' y .  

2~ = (X, R 1, R2 . . . . .  FI , / ;2 . . . .  ) is said to be a relational structure if 

and only if X is a nonempty set, R1, R2 . . . .  are relations on X, F1 is a nl-ary 

function on X for some nl ,F2 is a n2-ary function on X for some n2 . . . . .  

The set X is said to be the domain of  discourse of ~ ' .  Suppose ~?~ is a 

relational structure. Then there is an appropriate language .W of the first 

order predicate calculus that describes ~c ~'. Any relation (or n-ary function 

for some n) on X that is expressible in terms of  S is said to be a first order 

definable relation (or function). The relations R1 , R 2 , . . .  and functions F1, 

F2 . . . .  are called the primitives of ~ .  

Suppose f is a function on the set X. Then f(X) = {f(x)[x E X}. Suppose 

R is a n-ary relation on X. Then f (R)  is the n-ary relation R '  on f (X)  such 

that for each xl  . . . .  , x ,  in X, 

R ( x l , . . . , x n )  iff R'[ f (x l )  . . . . .  f(Xn)]. 

Suppose F is a n-ary function on X. Then f (F )  is the n-ary function F '  on 

F(X) such that for eachxl  . . . . .  xn in X, 

F'  V ( x l )  . . . . .  f ( x . ) l  = f [ f ( x  1 . . . . .  x . )] .  

Suppose ~ =  (X, R1 ,R2  . . . . .  F1 ,F2 . . . .  ) is a relational structure. Then 

f ( ~ " )  is the relational structure ( f(X), f(R1),  f ( R 2 ) , . . . ,  f ( f l ) ,  f ( f 2 ) , . . .  ). 
Suppose ~2~" = (X, R1, R 2 . . . . .  F1, F2 . . . .  ) and Y/ = ( Y, R'I , R'2 . . . . .  

t ! F 1 , F  2 . . . .  ) are relational structures such that for i = 1, 2 , . . . ,  R i and R~ 

are nrary relations for some ni, and for / = 1,2 . . . .  Fj and Fj  are mj-ary 

functions for some m/. Then ~ is said to be a homomorphism of ~ into 

;?/if and only if ~: X --> Y and for each Xx . . . .  , Xni and each ul . . . . .  urn/in 

X, 
Ri(xl  . . . .  ,x .~)  i f f  R~[~(x,)  . . . .  ,~(x.~)l  

and 

~ ( u ,  . . . . .  urn i) = ~ ' [~ (~1)  . . . . .  ~ ( u @ l .  

~b is said to be an isomorphism of  ~ into Y~ if and only if 4> is a homomor- 

phism of  ~ "  into Y/and  ~ is a one-to-one function. I f  ~ is an isomorphism of  
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into ~' then 0 ( ~ )  is said to be an isomorphic imbedding of ~ into 2/. 
9~ and ~ are said to be isomorphic if and only if there exists an isomorphism 

of ~ onto 2/. ~ is said to be an endomorphism of ~ if and only if ~ = 
and ~ is a homomorphism of ~ into 2/. ~ is said to be an automorphism of 
S if and only if r is an endomorphism of ~ ,  ~(X) = X, and ~b is a one-to- 
one function. 

Suppose ~b and ff are arbitrary endomorphisms of ~ =  (X, R1 . . . .  , 

F1, � 9  L Define the function ~ * ~ on X as follows: for each x in X, 
�9 if(x) = r162 Then it easily follows that r * ~ is an endomorphism of 

~ .  Suppose E is the set of endomorphisms of ~,~. Then it is easy to show 

that * is an associative operation on E. Suppose A is the set ofautomorphisms 
of ~ .  Then it is easy to show that (A, ,) is a group. (A, *) is called the group 
of automorphisms of ~ .  L will denote the identity automorphism of (A, *). 

For each endomorphism ~ of ~ ,  ~1 = r r = ~ ,  ~, r = ~b �9 ~ �9 ~, etc., and 
if ~b is one-to-one, ~-1 will denote the inverse of r and for each n in I +, 
r will denote (r 

Throughout this paper, elements of the Cartesian product X x P will often 
be expressed in the form xp. 

The mathematical convention of using the same symbol for the extension 
or restriction of an operation or relation will often be employed, e.g., as in 
the case of using + for the addition of reals in the relational structure (Re, +) 
and for the addition of integers in the relational structure (I, +). 

DEFINITION 1.1. (X, ~)  is said to be an ordinal structure if and only if X 
is a nonempty set and the following two conditions hold: 

(i) ~ is a weak ordering on X; 

(ii) there exists a countable subset Y of X such that for each x, y in 
X, i f x ~ y ,  thenforsomezin Y,x ~ z ~ y.E] 

In theoretical work in measurement, the empirical objects (or their idealiz- 
ations) are assumed to form a relational structure. This relational structure 
is often called the qualitative structure. Measurement proceeds by assigning 

numbers (i.e., forming scales). This process of assignment should preserve 
the relations of the qualitative structure, i.e., should be a homomorphism 
into some numerically based relational structure. Such a numerically based 



THEORY OF RATIO SCALABILITY 7 

structure is called the quantitative structure, and such homomorphisms are 

called representations. 

DEFINITION 1.2. Suppose ~ = (X, ~> is an ordinal structure. Then rep- 
resentations of ~ ' a r e  homomorphisms of ~ ' i n t o  (Re +, >~). [] 

The following theorem characterizes the representations of an ordinal 

structure: 

THEOREM 1.1. Suppose ~ is an ordinal structure. Then O) there exists a 
representation for ~ ,  and Oi) for all representations r ~ of  S ,  there exists 
a strictly monotonic function fon  Re + such that r = f ( ~ ) .  

Proof. See Theorem 2 on page 40 and Theorem 3 on page 42 of Krantz 

etal. (1971). [] 
The problem with ordinal structures for measurement purposes is that 

they allow too many representations: As is easily verified, each strictly 

monotonic function from Re + into Re + applied to a representation of an 

ordinal structure produces another representation. The next definition charac- 

terizes an important class of structures that have a much more restrictive set 

of representations. 

DEFINITION 1.3. Let X be a nonempty set, ~ a binary relation on X, and 

o a partial binary operation on X. The structure ~2 ~  (X, ~ ,  o) is an extensive 
structure if and only if the following eight conditions hold for all w, x, y,  z 
inX: 

0) 

(iii) 

Weak ordering: ~ is a weak ordering. 

Nontriviality: there exist u, v in Xsuch that u~" v. 

Local definability: if x o y  is defined, x ~ w ,  and y ~ z ,  then 
w o z is defined. 

Monotonicity: ( 1 ) i f x  o z  andy o z are defined, then 

x ~ y  iff x o z ~ y  o z ,  

and (2) if z o x and z o y are defined, then 

x ~ y  iff z o x  ~ o y .  
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(v) Restricted solvability: if x ~ ' y ,  then there exists u such that 
x ~ y o u .  

(vi) Positivity: i fx  o y  is defined, thenx oy>-x  andx oy>-y .  

(vii) Archimedean: there exists n E I + such that either nx is not 

defined or nx ~ y .  

(viii) Associativity: if x o ( y o z )  and ( x o y ) o z  are defined, then 

x oOe o z ) - ( x  oy)oz. 

I f  o is an operation, then ~ is said to be an extensive structure with a closed 
operation. 

Suppose X ~  <X,~, o) is an extensive structure. Then an additive rep- 
resentation for ~ is a homomorphism of ~9 ~ into (Re*, >>-, +>. [] 

THEOREM 1.2. Suppose ~. is an extensive structure. Then O)an additive 
representation of  X ~ exists, and (ii) for all additive representations %, ~ of  
ag", there exists r in Re + such that % = r~. 

Proof. See Theorem 3 on page 85 of Krantz et al. (1971). [] 

Extensive structures resemble Archimedean ordered groups. The following 

two well-known theorems about ordered groups are used in this paper: 

THEOREM 1.3. (H61der's Theorem). Each Archirnedean totally ordered 

group is isomorphic to a subgroup of(Re +, >i, " ). [] 

THEOREM 1.4. Each Dedekind complete, totally ordered group is isomorphk 
to<Re + ,>>-,.>. [] 

The next definition provides an important generalization of extensive 

structures that will be discussed throughout the paper: 

DEFINITION 1.4. X" is said to be a positive concatenation structure if and 

only if ~ satisfies conditions (i) through (vii) of the definition of extensive 

structure (Definition 1.3.). [] 

Some of the proofs of theorems of this paper rely heavily on material not 

presented in the paper, and thus to enhance readability, these proofs will be 
given at the end of the paper. 
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2. SCALAR STRUCTURES 

CONVENTION. Throughout the rest of this section, unless explicitly stated 
otherwise, let 

= (X,>' ,F ,R)  

where X is a nonempty set, -->" is a total ordering on X, F is a function from 
X • X into X (i.e., is a binary operation on X), and R is a ternary relation 
on X. [] 

Most of the results about ~ in this paper naturally extend to structures 
of the form 

(X,>',F, R1,R2 . . . . .  Ri . . . .  ) 

where R i is some ni-ary relation on X. They also naturally generalize to 
cases where >" is assumed to be a weak ordering (i.e., a transitive and connected 

relation) rather than a total ordering. The particular case (X, ~,  F, R) has 
been chosen to simplify notation throughout. Many of the results of this 

paper also hold in a little more general setting where F need not be a function 
on X x X but some relation on X. 

DEFINITION 2.1. r is ~aid to be a ~Ar-representation for ~ i f  and only i f~ 
is an isomorphic imbedding of S into ~ =  (N, ~>, F',  R') where N C--Re+. [] 

A ~V'-representation for S is a quantification of the structure ~,~. The 
next theorem gives necessary and sufficient conditions for such a quantifi- 
cation to exist: 

THEOREM 2.1. The following two statements are equivalent: O)there 

exists a ~4/'-representation for ~ for some dY'; (ii) there exists a countable 
subset Y o f  X such that for each x, z in X, i f  x>'z ,  then for some y in Y, 
x > ' y ~ z .  

Proof (i) implies (ii) by elementary properties of real numbers. 
Assume Oi). Then by a theorem of Cantor's (as stated in Theorem 2, 

page 40, of Krantz etal. 1971), let ~ be an isomorphic imbedding of (X,~)  
into (Re +, >1). Then by letting ~ ' =  (q$(X),/>, ~(F), q~(R)), (i) follows. [] 

Quantification of qualitative structures is a useful technique in science, 
since through quantification the enormous resources of mathematical analysis 
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can be brought to bear on empirical problems. However, for such a process 
to be effective, the results of a particular quantification should be independent 
of the particularities of its form. For our purposes, quantification consists in 
giving a JK'-representation for some ~ and thus in specifying two entities: 
(i) the numerical imbedding structure, JK', and (ii)the particular M / ~ - r e p  - 

resentati0n. Unfortunately, not much research effort has gone into justifying 
the choice of one type of numerical imbedding structure over another, 
although this is generally recognized as an important problem. A scattered set 
of proposed solutions for this type of problem for certain specific empirically 
generated situations exist in the fiterature; however, these kinds of solutions 
usually appeal to considerations outside of the measurement-theoretic context, 
e.g., to particular scientific theories that encompass a particular empirical 
phenomena. However, once for whatever reasons, the imbedding structure 
J~has  been chosen, there seems to be great consensus about the selection of 
the f-representation for quantification: any ~&representation will do. This 
follows from the well agreed upon rule for quantification: if the quantification 
based upon a particular ~r is effective to begin with, then any 
other J/2representation should produce just as an effective quantification, or 
to put it another way, the final results of the analysis should be independent 
of the particular f-representation chosen. This suggests that there should be 
some match-up between the qualitative structure ~ and the numerical 
structure dK. But the nature of this match-up is not at all obvious. 

The first fact to note is the obvious but important one that f-represen- 
tations of isomorphic structures are naturally related, i.e., that if ~ and 

have ~P-representations ~b and 0 respectively and f is an isomorphism of 
~ o n t o  ~/, then 0 induces a J-representation q~' on 2?'by 

( ( x )  = 0V(x)]. 

Thus, if ~ and ~/ are isomorphic and ~/has  a ~/~-representation 0, then 
~"  has a jU-representation that takes on exactly the same values as 0. 

The most obvious and straightforward way to make JU-representations 
equivalent is to require that they are transformable into one another, and 
the minimal condition for doing this is given in the following definition: 

DEFINITION 2.2. Let S/~= (N, ~>, F', R'). Then f is said to be minimally 
compatible with • if and only if (i) there exists a ~/Lrepresentation for 
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~ "  and (ii) for all JU-representations ~ and ff of ~ ,  there exists a function 
g such that for all x in X, 

(2.1) if(x) = g[C(x)]. [] 

If a JU-representation exists for X ~, then JK'is minimally compatible with 
~ 's ince Equation (2.1) gives a method for defining a function that satisfies 
condition (ii) of Definition 2.2. The domain and codomain of the function g 
mentioned in Equation (2.1) are not specified. It follows from this equation 
that the domain ofg  must contain r and the codomain ~(X). Let g' be the 
restriction of g to ~b(X). Then g' satisfies Equation (2.1), and for each u, v in X, 

g'(F'[(~(u), r = g'(r v)]) 

= ~[F' (u ,v)]  

= F'[r  ~(v)] 

= F'(g' [q~(u)], g' [r 

i.e., g' preserves the numerical function F ' .  Similarly, g' preserves the numeri- 
cal relation R'. Thus g is an automorphism of #Uifone imposes the additional 
condition that it has domain and codomain N. This latter condition seems 
reasonable for measurement, and it provides lots of symmetry between 
Jg'-representations. These considerations give rise to the following definition: 

DEFINITION 2.3. ~A ~ is said to be compatible with 2~if  and only if ~;rep- 
resentations for ~*' exist and for all JZ-representations r and ~ for ~ there 
exists an automorphismg of JUsuch that for each x in X, ~(x) = g[C(x)]. [] 

Automorphisms will play a central role in the development presented in 
this section. Others (Luce, 1979, Krantz etal.,  in preparation) consider 
endomorphisms to be the central concept for invariance since there are 
important measurement structures that have only the identity automorphism 
but many endomorphisms. The extensive structure g/= (U, ~>, @), where 
U = (0, 1) and @ is defined by 

x @ y  = z iff x , y , z  E U and x + y  = z, 

is a good example of such a structure. However, in many of the important 
cases in measurement theory, these structures can be extended to ones where 
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the endomorphisms extend to automorphisms, e.g., g/extends to (Re +, ~>, +). 
The following theorem shows that such extensions are often possible: 

THEOREM 2.2. Suppose ~/ is a relational structure and S is a set o f  one-to- 

one endomorphisms of  ~ that commute with one another, i.e., at3 = ~a for 

all a, ~ in S. Then there exists an extension 2/' of  ~" such that each endo- 

morphism orS extends to an automorphism of  ~/'. 
Proof. See Theorem 5.1. [] 

(The method of proof of Theorem 2.2. constructs a i f '  that is a sub- 
structure of an extension *,?/ of f f  that has exactly the same relational 
properties as 3'. Thus this construction yields a ~/' and ~ that look very 
similar algebraically.) 

An important concept in measurement that often goes under the rubic 
'meaningfulness' is concerned with the invariance of certain classes of 
quantitative statements. As an example, let's first simplify the structure 
2~ by requiring F(x ,y)  = x  and R(x ,y ,  z) holding for all x, y,  z in X. This 
basically reduces ~ to a totally ordered set. Let ,4/'= (Re +, >~, F', R') where 
F'(r, s) = r and R'(r, s, t) holds for all r, s, t in Re +. Then the aatomorphisms 
of ~A ~ are the order preserving functions from Re + onto Re +. Suppose ~ '  has 
a J:-representation. Then ~ and J ~  are compatible. Let m(rl, r2, r3, sx, 

s2, s3) hold if and only if rl ,  r2, r3, sx, s2, s3 are positive reals and the 
median of {rl, r2, r3} is less than the median of {sl, s2, s3 }. Then for all 
x 1, x2, x 3, Y 1, Y2, Y3 in X and all f-representations r and qJ for ~ ,  

m [~b(x x), q~(x2), 4~(x3), ~b(y x), ~(Y2), ~(Y3)] 

(2.2) iff m[~(xl), ~,(x~), O(x3), OCvl), O(y=), ~(y3)l. 

Equation (2.2) says that comparisons of medians of X-representations of 
triplets of elements of X are independent of the particular jU-representation 
chosen, and the relation m is said to be 'meaningful' in this measurement 
context. This is a quantitative form of meaningfulness that goes back to at 
least Stevens (1946) and has been extensively developed by Adams, Fagot, 
and Robinson (1965). 

DEFINITION 2.4. Let ~ = (N,>~, F',R').  Then a n-ary relation S on N is 
said to be quantitatively M:-meaningful for ~ if and only if for all JK'- 
representation ~b, qJ for ~:,  
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s [ r  . . . .  , r  iff  s [ ~ ( x l )  . . . .  , ~ (x . ) ]  

for a l l x x , . . . , X n  inX. [] 

The following theorem is an immediate consequence of Definitions 2.3 
and 2.4: 

THEOREM 2.3. Suppose ~ and ~ are compatible, ~/" = (N, ~>, F',  R'), 

and S is a n-ary relation on N. Then i f  S is invariant under automorphisms 

of  f (i.e., for each rl . . . . .  r n in N and each automorphism ~ o f  ~/', 

S [r l ,  � 9  r~] iff S [a(rl), �9 � 9  ~(r~)] ), then S is quart titatively ~/:-meaningful 
for S .  [] 

Let r be a f-representat ion for ~ .  Then r  is a substructure of 
jU, and for each automorphism a of ~ ,  r is an automorphism of r  

and all automorphisms of r  are C-images of automorphisms of ~ .  
Suppose f is compatible with ~9 ~ Let/3 be an automorphism of S .  Then 
r = r is a AP-representation of S that is onto r and from this it 
follows that r is an automorphism of r  By compatibility, let g be 
an automorphism of X s u c h  that for each x in X, 

g[r  = r  = r  

i.e., g is an extension of r Thus each automorphism of  r  extends to 

an automorphism of  

Suppose (X, ~ )  satisfies the foUowing two conditions: 

1. (X, ~--) has no maximal or minimal element. 

2. There exists a countable subset Y of X such that for each x, z in 
X, if x >- z then for some y in Y, x >-y >-z. 

Then it is easy to show that (X, -----} is extendable to a Dedekind complete, 
totally ordered set without endpoints O(, -----1) such that for each u, v in )7, if 
u >'1 v then for some x in X, u >'1 x >'l v. It also follows ()7, ~1) is unique 

up to isomorphism, and for this reason (1[, ~1 } is called the Dedekind comple- 
tion of (X, ~ ) .  However, in general, the structure ~ h a s  many non-isomorphic 
Dedekind completions since any relational structure of the form ~ =  
(X, ~1, F, R), where ff and K are any extensions of F and R respectively, 

will do for a 'Dedekind completion' of S .  In measurement, one often 



14 LOUIS NARENS 

takes representations of • into a Dedekind complete numerical structure, 
.,4 p= (Re +, >t, F',R'), and since a A/'-representation of ~ is an isomorphic 
imbedding of ~ ' ,  these numerical representing structures are in essence 
Dedekind completion s of ~ ' .  (And similarly, all Dedekind completions of 

are isomorphic to some Dedekind complete numerical structure since in 
the current context, (J(, ~ l )  has what G. Cantor called 'order type 0', and 
thus by a well-known theorem of his has an isomorphism h onto (Re § >~), and 
thus h is a representation of ~ onto (Re*, >~, h(F), h(/~)).) The best case for 
measurement is where various measurement considerations lead to a unique 
(up to isomorphism) Dedekind completion of ~ ;  the other case, having 
many nonisomorphic Dedekind completions, greatly compounds-and 
perhaps makes insolvable - the problem of finding the appropriate numerical 
representing structure. One natural condition for limiting the set of Dedekind 
completions of ~ is to interpret the compatibility condition for represen- 
tations (Definition 2.3.) solely in terms of the structure ~ i.e., to require 
that Dedekind completions ~ of ~"  satisfy the following condition: each 
automorphism a of ~"  extends to an automorphism ~ of ~ .  Unfortunately, 
this condition by itself is in general not enough to insure the existence of a 
unique Dedekind completion. 

Ratio scalings of ~ ' ,  if they exist, are generally into structures of the form 
JK'=(N,>~,F',R') where NC-Re § Since for such situations, rr is a rep- 
resentation for each jK'-representation q~ and each r in Re § N must be Re § 
that is, .,4/" must be Dedekind complete. Some of the following definitions 
will give additional conditions on ~ sufficient for the existence of ratio 
scales for ~*', and some of the following theorems will show that for struc- 
tures satisfying these conditions, the best possible results in terms of the 
above discussion also apply for extensions of automorphisms and Dedekind 
completions of ~**'. 

DEFINITION 2.5. ~ is said to be a scalar structure if and only if the follow- 
ing three conditions hold: 

(i) Density: for each x , y  in X, if x ~ y  then for some z in X, 
x ~ ' z > ' y :  



(iii) 
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Homogeneity: for each x , y  in X, there is an automorphism a 
of ~ '  such that a(x) = y;  

Automorphism commutivity: for all automorphisms a,/3 of 

~ ' , a  */3 = /3 .  a. [] 

CONVENTION: Throughout the rest of this section let A be the set of 
automorphisms of ~ 9~ and let t be the identity automorphism of S .  [] 

The conditions for a scalar structure allow a lot of interaction between 
the relations of ~ and the set of automorphisms A, as is shown in the 
next definition and three lemmas: 

DEFINITION 2.6. Let ~ be a scalar structure. Define the binary relation 
--- on A as follows: for each a,/3 in A, 

a >" /3 iff for somexinX,  a(x) >'t3(x). [] 

LEMMA 2.1. Suppose ~ is a scalar structure. Then for each a,/3 in A, 

a >"/3 i f f  foral ly  in X, aCe) >"/3ce). 

Proof Suppose for ally in X, ace) ---/3(y). Then by Definition 2.6., a >"/3. 
Suppose a ~/3. By Definition 2.6. let x in X be such that a(x) ~/3(x). Let 

y be an arbitrary element of X. By homogeneity, let 7 in A be such that 
3'ce) = x .  Then a[7(y)] ~/317(Y)], which by automorphism commutivity 

yields 7[a(y)] ~ 7[/3ce)], and thus ace) -----/3ce). [] 

LEMMA 2.2. Suppose S is a scalar structure. Then ~ is a total ordering 
on A. 

Proof Let x be an arbitrary element of X and a,/3, 3' be arbitrary elements 
ofA. 

To show >'-- is transitive, suppose a ~/3 and/3 >" 7. Then a(x) >"/3(x) and 
/3(x) ~ 7(x), and since ~ is a total ordering on X, it follows that a(x) ~-- 7(x). 
Thus a >" 7. 
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>" is connected since either a(x) >"/3(x) or j3(x)k a(x) and thus either 

a >'/3 or /3~ 3'. 
Now suppose a>'/3 and /3~a .  Then by Lemma 2.1., for ally inX, o~0,) ~ 

/3(y) and/3(y) ~ a(y), which since ~ is a total ordering on X yields a(y) =/3(y). 
Thusa=/3.  [] 

LEMMA 2.3. Suppose ~ is a scalar structure. Then ~ =  {A, ~,  *) is a 
(totally) ordered abelian group. 

Proof. It is well-known and easily established that (A, *} is a group. It 
is commutative by assumption. 

Let ~,/3, 3' be arbitrary elements of A and let x be an element of X. Then 
by Lemma 2.1., 

a >'/3 iff or(x) >'/3(x) 

iff 3'[~(x)] ~_ 3'[/3(x)] 

iff 3 '*~  >" 7*/3. [] 

CONVENTION. Throughout the rest of this section, when ~ is a scalar 
structure let 4 =  (A,-~, *) be the (totally) ordered group of automorphisms 

of ~ .  [] 

DEFINITION 2.7. Let ~ be a scalar structure. Then a in A is said to be 
positive if and only if a >- t. [] 

DEFINITION 2.8. Let ~ be a scalar structure. Then c~ is said t o  be 
Archimedean if and only if for each positive a,/3 in A, there exists n in I + 
such that a n ~-/3. 

Note that it follows from l_emma 2.1. that the following two statements 
are equivalent: 

(i) ~ is Archimedean; 

(ii) for each a,/3 in A, if for some x in X, a(x)>'x,  then for some n 
inI*,a"(x)~-/3(x). [] 
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THEOREM 2.4. Suppose ~ is a Dedekind complete scalar structure. Then 
~" is Archimedean. 

Proof. Suppose cj is not Archimedian. A contradiction will be shown. 

Let ~,/3 be positive dements of A such that for all n in I +,/3 >" ~n. Let x be an 
element of X. Then/3(x) >" an(x) for all n in I § Thus by Dedekind complete- 
ness of ~ ' ,  let 

y = 1.u.b {an(x) In EI+}. 

Let m in I § be such that 

y ~" ~m * l (x)~- o~ra(x) ~. ol-l ot). 

Then it immediately follows that 

y > - ~ m §  = y ,  

which is impossible. [] 

Since features of the qualitative relations of ~ (and not features of 
the automorphisms of oc .~) are what are usualy empirically observed, for 
measurement-theoretic purposes it is quite desirable to try to express 
important automorphism properties of S as directly as possible in terms of 
the relations of ~ .  Theorem 2.4. does this somewhat by showing the 

Archimedeanness of ~" is derivable from the Dedekind completeness of 

~*'. A better result from a measurement theoretic point of view would be 
to give an 'Archimedean condition' in terms of the relations of ~ that 

would be equivalent to ~ being Archimedean. This approach will be pursued 
later in this section. 

A simple but important result that is closely related to Theorem 2.4. is 
given in the following theorem: 

THEOREM 2.5. Suppose ~" is a Dedekind complete scalar structure. Then 
is Dedekind complete. 
Proof. Let S be a nonempty subset of A and/3 in A be such that/3 >" 

for each a in S. Let x be an element of X. Then/3(x) ~ a(x) for each a in S. 
By the Dedekind completeness of ~ ' ,  let y =l.u.b {a(x) laES}.  By 

homogeneity, let 7 in A be such that 7(x) = y .  Let 8 be an arbitrary element 
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of A that is an upper bound of S, i.e., 8 EA and 8 >'~ for all a in S. Then 
for all a in S, 

8(x) >-y = 3'(x) >- 

from which it follows that 8 >" 3'. Since 8 is an arbitrary upper bound of S, 
it follows that 3' is the 1.u.b of S. [] 

The next main result will be that Dedekind complete scalar structures are 

ratio scalable. The proof is complex and is based on a method of Cohen and 
Narens (1979) for constructing an isomorphism between ~ and a structure 
based upon the automorphisms of ~ .  

DEFINITION 2.9. Define the function/~ and the relation/~ on A as follows: 
for each e~,/3, 3" in A,  P(a,/3) is the function from X into X defined by 

F(a,/3)(x) = F[a(x),/3(x)] for all x in X, 

and/~ is defined by 

-R(a,/3, 3') iff for allx in X, R lot(x),/3(x), 3'(x)]. [] 

LEMMA 2.4. Suppose ~ is a scalar structure and a,/3 are arbitrary elements 

o f  A. Then if(a,/3) is an element o f  A. 
Proof. Let a be a fixed element of X. By homogeneity in ~ ,  let 3' be an 

dement of A such that 

~/(a) = F[a(a),/3(a)] = F(a,/3)(a). 

It will be shown that 3' =/~(c~,/3), and hence that F(ct,/3) is in A. Let x be 
an arbitrary element of X. By homogeneity in ~ ,  let 0 in A be such that 
0(a) = x. Then by commutativity of automorphisms of A, 

3'(x) = V[0(a)] 

= 0 [3'(a)] 

= O(F[t~(a),/3(a)] 
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= F(O [a(a)], 0 [/3(a)]) 

= F(a[O(a)],/3[0(a)]) 

= F[a(x),/3(x)] 

= [ ]  

19 

LEMMA 2.5. Suppose ~ is a scalar structure and or /3, ? are arbitrary 
elements of  A. Then 

R(a,/3, T) i f f  for some a in X, R [a(a),/3(a), y(a)]. 

Proof. Suppose R(ot,/3, 7). Then by Def'mition 2.9., R [a(a),/3(a), 7(a)] for 
some a in X. 

Suppose a in X is such that R [a(a),/3(a), 7(a)]. Let x be an arbitrary 
element of X. By homogeneity in ~ ,  let 0 in A be such that O(a) = x. Then 

R [a(a),/3(a), 7(a)] iff R(O [a(a)], 0 [/3(a)l, 0 ['r(a)]) 

iff R(a[O(a)],/3[O(a)], T[O(a)]) 

iff R [a(x),/3(x), T(x)], 

and thus since x is an arbitrary element of X,/~(a,/3, 3') holds. [] 

LEMMA 2.6. Suppose ~F is a scalar structure, a is an element of  X, and f is 
the function from A into X such that for each a in A, f(a) = a(a). Then f is 
an isomorphism from (A, >', 16,1~) onto Y. = (X, ~, F, R). 

Proof. It immediately follows from the definition of f and Lemma 2.1. 
that for each a,/3 in A, 

(2.3) a >" t3 iff f(a) ~ f(fl). 

Let a,/3, 7 be arbitrary elements of A and suppose 16(a,/3) = T. Then by 
Definition 2.9., F[a(a),/3(a)] = 7(a), or in other words, 

(2.4) f(T) = F[f(a),f(/~)]. 

Let a,/3, T be arbitrary elements of A. Then by Lemma 2.5., 
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(2.5) /~(a, 3, 7) iff R [a(a),/3(a), 7(a)] 

iff R If(a), f(3),f(7)] .  

It follows from Equation (2.3) that f is one-to-one. To showfis  also onto 
X, let x be an arbitrary element of X. By homogeneity in ~?~, let 0 be an 
element of A such that O(a) = x. Then, f(O) = x. Thus by Equations (2.3), 
(2.4), and (2.5), f is an isomorphism. [] 

LEMMA 2.7. Suppose ~ is a scalar structure. Then for each a, 3, 7, ~ in A, 

and 

R(3,7,8) iff R(a*3,~*7,~*~)- 

Proof. Let a, 3, 7, 6 be arbitrary elements of A. Then for eachx in X, 

[~ * P0~, v)] (x)  = ~[P03, 7 ) (x ) ]  

= ~ ( F [ 3 ( x ) ,  7(x)]) 

= F [ ~  �9 3(x) ,  ~ * 7(x)]  

= P (~  * 3,,~ * 7 ) (x ) ,  

and thus a */7(3, 7) = F(a * 3, a * 7). Also, 

/~(3,7,6) iff for all x in X,  R [3(x ), 7(x ), ~ (x ) ] 

iff for all x in X, R [a * 3(x), a * 7(x), a * ~ (x)] 

iff /~(a*3,  a * % a * ~ i ) .  [] 

THEOREM 2.6. Suppose ~ is a Dedekind complete scalar structure. Then 
there exists a numerical structure ~r such that the following five statements 

are true: 

1. 

2. 

3. 

f is isomorphic to ~ ; 

the set o f  automorphisms o f f  is the set of  all multiplications by 

positive reals; 

there exists a J-representation for ~ ;  
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4. i f  $ is an arbitrary J-representation for aW and r is an arbitrary 
positive real, then r$ is a f-representation for a~; 

5. i f  ~ and ~ are arbitrary f-representations for ~ that are onto 
f ,  then for some s in Re +, s$ = 4. 

Proof. It follows from Lemma 2.6. that (A, ~)  is Dedekind complete and 
dense. It is well-known that all Dedekind complete, densely ordered groups 
are isomorphic to the ordered multiplicative group of positive reals, (Re +, 
~>, "). Let g be an isomorphism from ~ onto ire§ "L Let F'  =g(/~), 
R '=g(/~) ,  and M/'= (Re+, ~>, . ,F ' ,R ' ) .  Then (A, >', * ,P,  G) and ~ are 
isomorphic by g. 

1. By Lemma 2.6. and the above construction, f i s  isomorphic to S .  
2. We will first show that all multiplications by positive reals are auto- 

morphisms of f .  Let r be an arbitrary element of Re § and let g be the 
isomorphism of the above construction. Then by using Lemma 2.7. it follows 
that for each r~, r2, r3 in Re*, 

r .  F'(r~, r2, r3) = 

and 
R'(r l ,  r2,r3) 

g[g-'(r)] �9 g[g-x [F'(rl,  r2, r3)]] 

g[g-' (r) * g-1 [F' (r , , r2 , r3)] ] 

= g[g-1(r) �9 P[g-1(rl),g-l(r2),g-1(r3)]] 

= g[F[g-l(r) . g - l ( r l ) , g - l ( r  ) *g-l(r2) , 

g- '(r) * g-l(r3)] ] 

= F'(g[g-l(r) *g- l (r l )] ,g[g- l (r  ) *g-i(r2)], 

g[g-l(r) * 

= F'(r �9 r l , r "  r2,r  " r3), 

iff [{(g-i(rl),g-l(r2),g-l(r3) ) 

iff /~[g-l(r) * g- l (r l ) ,g- l ( r  ) * g-l(r2) , 

�9 

iff R'(g[g-l(r) * g-l(rl)] ,g[g-l(r  ) , g-l(r2)], 

g[g-l(r) �9 g-l(r3)]) 

iff R'(r �9 r l , r  �9 r2,r  �9 ra), 
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and thus multiplication by r is an automorphism of J r  since it also preserves 
the ordering I>. To show all automorphisms of ~r are multiplications by 
positive reals, let ct be an arbitrary automorphism of J and s = a(1). By 
the above, let o~ s denote the automorphism of J that is multiplication 
by s. Then a(1) = as(1 ), and thus by Lemma 2.1., a = a s. 

3. The isomorphism established in Part 1 is a ~/:representation for ~ .  
4. Suppose r is a ~--representation for ~ and r is in Re +. Then by Part 2, 

for each x ,y ,  z in X, 

x ~ y  iff 

F(x , y )  = z 

and 
R ( x , y , z )  

O(x) I> Cry) iff r~(x)/> rO(v), 

iff F ' [ r162 = r 

iff rF'[r ~fy)] = r~(z) 

iff F'[rr = re(z), 

iff R'[q)(x), r ~b(z)] 

iff  R'[r~(x), rr162 

from which it follows that re is a f-representation. 
5. Suppose r and ~ are ~P-representations for ~ that are onto ~5. Since 

q~ and ~ are one-to-one and onto Re +, r -1 is an automorphism of ~ and 
thus by Part 2, let r in Re + be such that ~b~ -1 is multiplication by r. Then for 

each x in X, 

~(x) = r = r$(x). [] 

Let S be a Dedekind complete scalar structure. Theorem 2.6. establishes 
the existence of what is commonly called a 'ratio scaling' of X a. In our setup, 
this 'ratio scaling' is precisely defined as an ordered pair (r/,~/') where r/is 
a J{P-representation of ~ '  and J//'satisfies Statements 1 to 5 of Theorem 2.6. 
Thus two ratio scalings (r/, f )  and 0?1, f l )  of ~ '  can differ either in terms 
of their numerical imbeddings (r/ee ~1) or in terms of their representing 
structures ( . /K' t  f l ) .  

Suppose ~ is a Dedekind complete scalar structure and j U =  (Re +, ~>, 
F', R') and ~ = (Re +, >t, F1, R1) satisfy Statements 1 and 2 of Theorem 
2.6. Consider .Xr (Re +, >~, F ' ,R ' ,  .) and J/'l = ( Re+, t>, F1 ,R1, "). Then 
both ,.Z/and ~ are isomorphic to (A, >',/~,/~, *), and thus .X/and ~ are 
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themselves isomorphic. Let g be an isomorphism of ~X/onto ~/1. Then g is 
an automorphism of (Re +, >~, "), and thus we can let r in Re + be such that 
g(w) = w r for each w in Re +. Then for each t, u, v in Re +, 

F ' ( t , u )  = v iff F l ( t  r,u r) = v r, 

and 

R ' ( t , u , v )  iff Rl(tr ,  ur, vr). 

Suppose ~ and ff are respectively J / ' and  ~ representations for ~ that are 
onto Re +. Then for each x, y,  z in X, 

F(x , y )  = z iff F'[C(x),r = r 

iff  F 1 [r r, O(y)r] = ~fl(z)r. 

R ( x , y , z )  iff R'[~(x),~(y),C(z)] 

iff R,[~(xf, q~(y)r, r 

and 

X>'-y iff ~(x)~>~b(y) iff r162 r. 

Thus r is a ~-representation for X and, j r  is onto ~//~1. Therefore by 
Statement 5 of Theorem 2.6 (which is a consequence of Statements 1 and 2), 
for some s in Re +, ~ = s~ r. 

Suppose ~ is a Dedekind complete scalar structure and jU=  (Re +, >', 
F', R'} satisfies Statements 1 and 2 of Theorem 2.6. Let u, v be arbitrary 
elements of Re* and rl = ur v. Then r/(X) = Re*. Let F2 = r/(F), R2 = ~?(R), 
and .X/= (Re +, ~ ,  F2, R2}. Then ~ is a ~/-representation for X and 77 is onto 
-g/. Let h be the function from Re* onto Re + such that h(t) = ut v for all t in 
Re +. Then each automorphism of r of the form h(a) where a is some 
automorphism of J~. Let ap(t) =pt ,  p > 0, be an arbitrary automorphism of 
~4 r. Let ~ = h (ap ). Then for each t in Re +, 

~[h(t)] = h[up(t)], 

and thus 

~(ue') = u(pt)L 

and letting q = pV and w = ut v, this latter equation yields 

O(w) = q w  
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for all w in Re +. Thus ~ '  has multiplications by the positive reals as its 
automorphisms. 

The above results are summarized in the following theorem: 

THEOREM 2.7. Suppose a~" is a Dedekind complete scalar structure, J / '=  
(Re*, >1, F', R'), ~/~1 = ( Re+, >1, F1, R1), and (~ and t) are respectively ~4/~and 
J/'l-representations for • that are onto Re + and have their automorphisms 
coinciding with multiplications by the positive reals. Then there exists r, s in 
Re + such that the following four statements hoM for all x in X and all u, v, w 
in Re+: 

1. F'(u, v) = Fx (u r, vr)l/r; 

2. R ' (u , v ,w)  iff Rl(ur, vr, wr); 

3. ~(x) = s~(x)r; 

4. there exists J "  such that u49 v is a ~dc'-representation for ~ that is 
onto Jr'and has multiplications by the positive reals as its auto- 
morphisms. 

Proof. Statements 1,2, 3, and 4 follow the above discussion. 

Often in science, phenomena are assumed to be ratio scalable without 
giving consideration to the qualitative assumption underlying such scalings. 
The commonly used method is to assume that a ratio scaling r exists and that 
any other ratio scaling ff is of the form s~b for some positive real s. However, 
from Theorem 2.7 it seems to follow that 'any ratio scaling qJ' should be of 
the form sO r which, by taking logarithms, yields a family of representations 
of the form r log (4) + log s, which is the familiar form of interval scalability. 
In this case, the automorphisms of the qualitative (scalar) structure have 
quite different properties than those of the family of representations. To my 
knowledge, no one has investigated the measurement-theoretic properties of 
this more general form of 'ratio scalability'. 

In the above development of scalar structures, the critical use of the 
Dedekind completeness of S was in the establishment of the isomorphism 
of (A, ~,  *) onto (Re +, >t, ') .  This was done by first showing that (,4, >') 
is Dedekind complete (Theorem 2.5.), and then using the well-known 
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theorem that all Dedekind complete, totally ordered groups are isomorphic 

to (Re +, ~>, -). A weaker assumption to the Dedekind completeness of ~ is 

that c~ is Archimedean (Theorem 2.4.). If instead of the Dedekind complete- 

ness of ~ ,  the Archimedeanness of ~ is assumed, then by another well- 
known theorem - H61der's Theorem - there exists an isomorphic imbedding 
of (A, -----, * } into <Re +, >i, �9 ). Using this result and making some minor modifi- 

cations in the proofs, theorems analogous to Theorems 2.6. and 2.7. go 
through with the Archimedeanness of ~ replacing the hypothesis of the 

Dedekind completeness of ~ .  (In the statement of Theorem 2.6.,Statement 2 
should read "The set of automorphisms of J/P is a subset of the set of all 

multiplications by positive reals", and Statement 4 should be deleted. In the 

statement of Theorem 2.7., the domains of discourse for X a n d  ~11 should 
be changed from Re + to N and N1 respectively, where N and N1 are subsets 

�9 of  Re  § and the range of the variables u, v, and w should be changed from Re + 

to N, and Statement 4 should be deleted.) 
We will now give sufficient conditions on ~ that allow it to extend nicely 

to a Dedekind complete scalar structure. These conditions will identify F and 
R (so that ~ i s  essentially a structure of the form (X, ~ ,  F)) and require that 
F be strictly increasing in each variable. Because of the additional structure 

this latter condition brings, some of the automorphism conditions for a scalar 
structure can be weakened. 

DEFINITION 2.10. S is said to be a monotonic prescalar structure if and 

only if the following conditions hold for each x,  y ,  z in ~ :  

O) F ( x , y )  = z  iff R ( x , y , z ) ;  

(ii) automorphism density: if x >-y, then for some a in A, x > 
~(z)>y; 

(iii) automorphism ordering: for each a in A, if a(u) >- u for some u 
in X, then or(v) >- v for all v in X; 

(iv) monotonic#y: x ~ y iff F ( x , z )  > 'F(y , z )  

iff F ( z , x ) ~ F ( z , y ) ;  

(v) A-Archimedean: for each a in A, if ct(x)~-x, then for some n in 
I+, OZn (X ) >- y .  [] 
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Let X be a monotonic prescalar structure. By automorphism ordering, a 
relation >" can be defined on A in a manner analogous to Definition 2.6., 
and can be shown to be a total ordering in a manner similar to Lemma 2.2. 
It also easily follows that ~: = b  t ,  >', *) is a totally ordered group. Using 
A-Archimedean, it then follows that ~" is Archimedean. It is a consequence 
of H61der's theorem that all Archimedean, totally ordered groups are 
commutative. Thus the automorphisms of ~ commute. It follows from 
automorphism density that >-- is a dense ordering on X. Thus a~' looks very 

much like a scalar structure except that it satisfies the condition auto- 
morphism density, which is analogous to but weaker than homogeneity. 
The following example shows that monotonic prescalar structures need not 

be scalar structures: 

EXAMPLE 2.1. Let Ra + be the positive rationals, rr a positive transcendental 
real number, and 

X = { x r r + y [ x E R a  +tO{O} and yERa+}.  

For each x , y ,  z in X, let F(x ,y)  = z and R(x ,y ,  z) if and only i fx  + y  = z. 

Then it can be shown that ~ .  = (X, >, F, R) is a prescalar structure. ~ is 
not a scalar structure since it is not homogeneous: there is no automorphism 

a of ~"  such that a(1) = rr. [] 

THEOREM 2.8. Suppose ~"  is a monotonic prescalar structure. Then ~ has 

an extension ~ - ~'' = (X, - - ,  F, R) that has the following five properties: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

/'roof. 

is Dedekind complete; 

~"  is homogeneous, i.e., for each x, y in X there exists an auto- 

morphism a o f  ~" such that a(x) = y; 

the extension f f  san'sfies monotonicity (Definition 2.10.); 

each automorphism of  ~ extends to an automorphism of  ~ ' ;  

X is dense in (X, -- ), i.e., for each x, y in X, i f x  ~-'y, then there 
exists z in X such that x ~-' z >2 y. 

See Theorem 5.2. [] 
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Let ~ '  be a scalar structure. In the above development of the ratio 

scalability of ~ ,  automorphisms of ~ play a very important role. Although 
the concept 'automorphism of ~ '  cannot be defined in an appropriate first 

order language for ~ ,  this does not mean that individual automorphisms 
are not expressible in such a language: the indentity automorphism, L, is 

expressible in such a language, and if a and/3 are first order expressible then 

so is the automorphism F(a,/3) (see Definition 2.9. and Lemma 2.4.). Except 
for degenerate cases, tz(a,/3) will be different from a and/3, and it is usually 

the case that infinitely many automorphisms of ~ are def'mable in this 
manner. This method is very general, for if D ( x l , . . .  ,Xn) is any first order 

definable (in terms of , ~ )n - a ry  function from X into X, then analogously to 
DeFinition 2.9. and Lemma 2.4. , / )  can be defined a n d / ) ( a l , . . . ,  an) can 
be shown to be an automorphism of ~ for all a ,  . . . . .  an in A. The existence 
of lots of definable automorphisms make it feasible to axiomatize certain 
scalar and monotonic prescalar structures in a manner in which auto- 
morphisms are not directly mentioned. 

Write x O y  for F(x ,y)  and suppose that F(x,y)  = z iff R(x ,y ,  z) for all 

x, y,  z in X. Then ~ is essentially the structure (X, ~, O). Suppose 
satisfies the axioms for a positive concatenation structure (Definition 1.4.). 
From results of Cohen and Narens (1979) it follows that ~ satisfies all the 

conditions for a monotonic prescalar structure except possibly for auto- 
morphism density. However, it also follows from results of Cohen and Narens 
(1979) that if 

n(x O y )  = (nx) 0 (ny) 

for each n in I + and each x in X -  a condition that is expressible by an 

infinite set of first order axioms - then automorphism density is also satisfied. 
Cohen and Narens (1979) also showed that positive concatenation struc- 

tures ~ that satisfies automorphism density are extendable to positive 
concatenation structures that are Dedekind complete scalar structures. The 

methods developed in their paper can be extended to show the following 
two theorems: 

THEOREM 2.9. Let ~ = (X, >', F, R) = (X, ~,  (2)) be a positive concat- 
enation structure in the sense described in the previous two paragraphs. Then 
the following three conditions are equivalent: 
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0) 

0u) 
Proof. 
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satisfies automorphism density (Definition 2.10.); 

for each x, y in X, i f  x ~ y, then for some a in A, x >- a~y)~ y ; 

for each n in I § and each x, y in X, n(x O y)  = (nx) O (ny). 

See Theorem 5.3. [] 

THEOREM 2.10. Let ~ 9~ be as in Theorem 2.9. Suppose ~ satisfies auto- 

morphism density. Then the following three statements are true: 

1. ~ is extendable to a positive concatenation structure that is a 
Dedekind complete scalar structure (Cohen & Narens). 

2. All Dedekind completions o f  ~ that are positive concatenation 
structures are isomorphic. 

3. I f  ~a is a Dedekind completion o f  ~ that is a positive concat- 

enation structure, then each automorphism a o f  a~ extends to an 

automorphism of  ~ .  

Proof. See Theorem 5.4. [] 

It easily follows from the axioms for a monotonic prescalar structure 

that a natural ordering >" can be defined on A so that c~= (A, >', *} is an 

Archimedean totally ordered group, and these properties of ~ play a critical 
role in the development of monotonic prescalar structures. As in positive 

concatenation structures, these assumptions about A in some cases can be 
replaced by axioms involving the relations of ~9~; in other cases - as the next 

theorem shows - they can be replaced by assumptions concerning numerical 
representations of o~9~: 

DEFINITION 2.11. A set of automorphisms H of~gais said to satisfy 1-point 

uniqueness if and only if for each a,/3 in H, if a(x) =/3(x) for some x in X, 
then a =/~. 

is said to satisfy 1-point JP-uniqueness if and only if (i) there exists a 
At-representation for ~ ,  and (ii) for all X-representations ~, ~k of ~ ,  if 
~(x) --- ~(x) for some x in X, then ~ = ~. [] 
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THEOREM 

1. 

. 

2.11. The following two propositions are true: 

Suppose ~ satisfies 1-point ~r Then A .satisfies 
1-point uniqueness. 

Suppose A satisfied 1-point uniqueness and (X, ~)  is Dedekind 
complete and satisfies density (Definition 2.5.) Let >" be the 
binary relation on A that is defined as follows: for each ~, ~ in A, 

a ~-- ~ i f f  for some x in X, a(x) ~ ~(x). 

Then eft= (A, ~,  *) is a totally ordered group that is Archimedean 
and commutative. 

Proof. 1. Suppose a,/3 are elements of A, x is in X, and a(x) = ~(x). By 

1-point A/'-uniqueness, let r and A p be such that ~ is a ~r for 

~ .  Then Ca and ~b~ are also ~4/'-representations of ~ and ~a(x) = q~/3(x). 

Thus by 1-point J .uniqueness,  ~a = q~/3. Since ~b, a, and/3 are one-to-one, 

Ot=~. 

2. We first show the conclusion of Lemma 2.1., that for all y in X, 

a >"/3 iff or(y) ~/3(v). If a(v) ~ ~(y) for all y in X, then it is immediate that 

a >'/3. Suppose a >"/3. Let x in X be such that a(x) ~" ~(x). Let y be an 

arbitrary element of X. To show Proposition 2, we need only show that 
a(y)-</3(y) leads to a contradiction. Suppose a(y)-</3(y). Then x q=y. Let 

r =/3-1 a. Then r(y) '*(y and r ( x ) ~ x .  Since (X, >') is dense and Dedekind 

complete, it is isomorphic to (Re +, >~), and since r is one-to-one, onto, and 
order preserving, the image of r under this isomorphism is a continuous 
function on Re*. Thus by isomorphism and the intermediate value theorem 

of calculus, let z in X be such that r(z) = z. Since the identity, L, is in A and 
t(z) = z, by 1-point uniqueness r = L, which contradicts r(y)~( y.  

To show that --- is a total ordering onA, we use the proof of Lemma 2.2., 
which requires only the conclusion of /_emma 2.1. and that -~ is a total 
ordering on X. 

To show that 4 = (A, >', *) is Archimedean, observe that either A = 
{t} or A ~ {L}. In the first case, A is immediately Archimedean, and in the 
second we use the proof of Theorem 2.4. 

~ i s  commutative since it is well-known that all Archimedean totally 

ordered groups are commutative. [] 
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Much of the development of scalar structures can be generalized to the 
case where a subgroup H of automorphisms of o~'(rather than the group A of 
automorphisms of ,z9 ~) satisfy homogeneity and automorphism commutativity 
(or their equivalents). The resulting theorem about ratio scalability for this 
generalization yields representations onto a numerical structure ~ / '=  (Re +, 
~>, F', R') where automorphisms in H correspond to automorphisms o f f  
that are multiplications by positive reals. The next definition and theorem 
gives an explicit statement of this result. 

DEFINITION 2.12. H is said to be a scalar subgroup of A if and only i f H  
is a subgroup of A that satisfies the following two conditions: 

O) H-homogeneity: for each x, y in X there exists t~ in H such that 
~(x) =y ;  

(ii) 1-point uniqueness: for each a,/3 in H if a(x) =/3(x) for some x, 
thena=/3.  [] 

THEOREM2.12. Suppose (~,~--)  is Dedekind complete and satisfies 
density (Definition 2.5.) and H is a scalar subgroup of  A. Then there exists 
a numerical structure f =  (Re +, ~--, F', R') and a function ~ from X onto 
Re + such that the following three statements are true: 

1. r is a f-representation for a~a; 

2. for each a in H, (~(a) is an automorphism o f  ~/" that is multipli- 
cation by a positive real; and 

3. each multiplication by a positive real is an automorphism /3 o f  
JY~such that (~-1 (/3) is in H. 

Proof. Define >" on H as follows: for each a, 13 in H, a ~/3 if and only if 
for some x in X, a(x)~/3(x).  By arguments very similar to the proof of 
Theorems 2.11. and 2.5, it follows that (H,~,  *) is a Dedekind complete, 
totally ordered group. (Since all Dedekind complete, totally ordered groups are 
commutative, H is also commutative.) Statements 1, 2 and 3 then follow by 
modifying the proof of Statements 1 and 2 of Theorem 2.6. by replacing in 
that proof 'A' by 'H' and 'automorphism of X '  by 'element of H '  and 'auto, 
morphism of f '  by 'element of ~b(H) for the f-representation ~b of X'. [] 
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It should be noted that the results about ~ up to Definition 2.10. do 

not depend in any essential way on the nature of F and R, and will hold for 
any other pair of n-ary and m-ary functions and relations. The proof of 
Theorem 2.8. about Dedekind complete extensions of monotonic prescalar 

is quite general and easily extends to monotonic prescalar-like structures 
with any number of functions that are strictly increasing in each argument. 

3. QUALITATIVE MEANINGFULNESS 

Qualitative meaningfulness is a term used to describe relations and concepts 
that are relevant to the underlying measurement situation. 'Relevant' here is 
used loosely since no one has really described what properties a satisfactory 

meaningfulness concept should have. What has happened is that various 

researchers have invoked various meaningfulness concepts for particular 

measurement contexts. In this paper, I will take 'meaningfulness' to refer to 

those properties and concepts that are consistent with the particular under- 
lying measurement situation, where by 'consistent' I mean that the relevant 

qualitative properties and concepts are incorporatable into the qualitative 

structure without changing the underlying measurement situation. For 
example, one might consider the relation T on Y to be meaningful for the 
structure (Y, P, Q) if and only if ( Y, P, Q) and ( Y, P, Q, T) satisfy the same 

measurement processes, where 'measurement processes' for one kind of 
meaningfulness may be taken as the set of JY'-representations for a particular 
A r, and for another kind of meaningfulness as the set of automorphisms of 

~/, etc. 

CONVENTION: Throughout the rest of this section, let f f  = ( Y, R1, R2 . . . .  ) 
be a relational structure, where for each i, R i is a ni-ary relation on Y. (Note 
that we do not require R1 to be an ordering relation on Y.) [] 

DEFINITION 3.1. ~ is said to be a f - r e p r e s e n t a t i o n  for ~ if and only if 
is a homomorphism from .?/into f . .  [] 

In Definition 3.1., ~Pis  not required to be a numerical structure since 
all the proofs in this section hold in this more general context. 

Pfanzagl (1968) has investigated a qualitative form of meaningfulness 
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that bears a strong resemblance to quantitative meaningfulness as given in 
Def'mition 2.4. This qualitative type of meaningfulness is given in the following 
def'mition: 

DEFINITION 3.2. A n-ary relation S on Y is said to be qualitatively J -  

meaningful  if and only if there exists a n-ary relation T on the domain of 
discourse, N, of J such that for all ~r ~b of ~/ and all 

Y l  , �9 �9 �9 ,Yn  in Y, 

S(Yl . . . . .  Yn) iff T[r . . . . .  ~(Yn)]. [] 

Note that the relation T in Definition 3.2., if it exists, has the property 
that for ally1 . . . .  ,yn in Yand all J-representations ~, ~ of g/, 

T[~(y 1) . . . . .  q~(Y n)] iff T[~(y 1) . . . . .  qJ(Yn)], 

so that for the case of 2 /=  ~ = ( X , ~ , F , R )  and ~ r  and 
N C_ R e  +, T is quantitatively jY'-meaningful for 2/ (Definition 2.4.). Thus 
qualitative J-meaningfulness is the natural corresponding qualitative 

concept to quantitative A/~-meaningfulness. 
Suppose ~b is a jlP-representation of ~/that  is one-to-one and onto A/~, i.e., 

~b is an isomorphism from ~/onto ~ Then in a natural way all J-represen- 
tations of 2/ correspond to endomorphisms of ~/and visa versa. Thus in this 
case, qualitative J-meaningfulness of relations on Y becomes invariance 
under endomorphisms of 2/. This suggests taking invariance under endo- 
morphisms as a definition of meaningfulness, and this approach has been 
taken by Krantz et  al. (in preparation) and Luce (1979). It should be noted 
that such an approach is purely qualitative and makes no reference to a repre- 
senting structure. 

DEFINITION 3.3. A n-ary relation S on Y is said to be endomorphism 

meaningful  if and only if for each endomorphism 3' of 2/and each Y l . . . . .  Yn 

in Y, 

S ( Y l , . . . , Y n )  iff S[3'(Vl) . . . . .  3'(Yn)]. [] 

Another purely qualitative approach to meaningfulness is to consider 
invariance of relations on Y under automorphisms of 2/: 
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DEFINITION 3.4. A n-ary relation S on Y is said to be automorphism 

meaningful if and only if for each automorphism 3̀  of 3/and eachy~ . . . . .  Yn 
in Y, 

S(y, . . . . .  Yn) iff S[7(y~) . . . . .  3`(Yn)]. [] 

The following theorem describes the logical relationships of the above 
three types of meaningfulness: 

THEOREM 3.1. Let S be a n-ary relation on Y. Then the following two 
statements are true: 

1. I f  for some ~,,  a rig'-representation exists and S is qualitatively 

~P-meaningful, tL: ~ S is endomorphism meaningful. 

2. I f  S is endomorphism meaningful, then S is automorphism 

meaningful 

Proof. 1. Suppose q~ is a JK'-representation for ~/, 3' is an arbitrary endo- 
morphism of 3/, and T is a n-ary relation on the domain of discourse of 
f such that ,*'or all f--representations ff of 3/and ally1 . . . .  ,Yn in Y, 

S(Vl . . . . .  y~) iff r[~Cv 0 . . . . .  ~6v,)]. 

But q~'= ~b3̀  is also a ~P-representation for 3/, and thus by the qualitative 
J-meaningfulness of S, for eachy~ . . . .  ,Yn in Y, 

S(y 1 . . . .  ,Yn) iff 

iff 

iff 

r [ ~ ' f y l )  . . . . .  ~ ' 6vn) l  

T[q~3`(y 1), �9 �9 � 9  t.b3`0'n)] 

i f f  s [ 3 ` ( y l ) , . . . ,  3 ` (y , ) ] .  

Thus since 3, is an arbitrary endomorphism of ~/, the endomorphism meaning- 
fulness of S has been shown/ 

2. Since all automorphisms of 3/are endomorphisms of ~/, it immediately 
follows that the endomorphism meaningfulness of S implies the automorphism 
meaningfulness of S. [] 

The following two examples show that the converses of statements 1 and 2 
of Theorem 3.1. need not hold: 
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EXAMPLE 3.1. Let Z = {1, 2, 3}. Then .~T = (Z,/>) has only the identity 
endomorphism, t, and thus every relation on Z is endomorphism meaningful. 
In particular, the 1-ary relation S on Z, where for each z in Z ,  S(z )  holds if 

and only if z = 2, is endomorphism meaningful. Let f =  (Re  +, >~). Then 
the identity map on Z, t, is a ~r for X. We will show by 

contradiction that S is not qualitatively ~r Suppose S were 
qualitatively ~/~-meaningful. Let T be a 1-ary relation on R e  § such that for 

all A'~-representation ~b of ~,  

S(z)  iff T[~(z)] 

for all z in Z. Let ~ be the following -r for Z: ~ (1 )=  1, 

~(2) = 3, r = 4. Then since t is a A/~-representation for .~, 

(3.1) S(3) iff r(3). 

Since ~ is a JP-representation for W, 

(3.2) S(2) iff T(3). 

Thus from Expressions (3.1) and (3.2), S(3) iff S(2), which is impossible. [] 

The next example shows that automorphism meaningfulness and endo- 
morphism meaningfulness need not coincide - even for positive concatenation 

structures with dense automorphism groups: 

EXAMPLE 3.2. Let rr be a positive transcendental real number and P = 
{1, rr, zr 2 , zr 3, . . .  }. Let R be the intersection of all sets Q such that 

(i) pC_ Q, 

(ii) if r is a positive rational, then ry E Q, and 

(iii) i f  y , z @ Q , then y + z E Q. 

Then (R, ~>, +) is an extensive structure. For each positive real r, let ar be the 
function from R into R e  + defined by at(y) = ry. Then, by construction, for 

each positive rational r, ar is an automorphism of (R, ~>, +). From this it 
follows that (R, ~>, +) has a dense automorphism group. Now aTr is an endo- 
morphism of (R, ~>, +) that is not an automorphism of(R,  ~>, +)since there 

is no element y of R such that %(y)  = 1. Let Ra  § be the set of positive 
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rationals. Ra § will be shown automorphism meaningful by showing all auto- 

morphisms of (R,/>, +} are multiplications by positive rationals. Suppose ar 

is an automorphism of(R,  ~>, +). Then a t ( l )  = r E R .  Thus by the method of 
construction of R it follows that r = p(Tr) where p(x)  is a polynomial in x 
with positive rational coefficients. Since a r is an automorphism, 41 is also an 

automorphism, and ar I (1) = 1/r = q (70, where q (x) is a polynomial in x with 
positive rational coefficients. However, since p (n )q (n )  = 1 and rr is transcen- 
dental, p and q must be polynomials of degree 0, i.e., r is a positive rational. 

Since it can be shown using Theorem 1.2. that all automorphisms of (R,/>, +) 
are of the form a r for some r, it follows that Ra § is automorphism meaningful. 
Ra § is not endomorphism meaningful since 1 ERa § and aTr(1) = 1 ~ Ra § [] 

THEOREM 3.2. Suppose ~/  and ~r the following three conditions: 

(i) Existence: There exists a ~r for  2/. 

(ii) Uniqueness: For all ~r r ~ o f  ~ ,  i f  for  some y 

in Y, ~)(y) = ~0'), then ~) = 4. 

(iii) ,?,,-homogeneity: For each y ,  z in Y there exists an automorphism 

a o f : ~  such that a(y) = z. 

Then the concepts o f  automorphism meaningfulness, endomorphism mean- 

ingfulness, and ~--qualitative meaningfulness coincide. 

Proof. Let S be a n-ary relation on Y. By Theorem 3.1., to show the 

theorem we need only show the automorphism meaningfulness of S implies 
the ~4/Z-qualitative meaningfulness of S. (Note Theorem 3.1. assumesexistence.) 

Suppose S is automorphism meaningful. For each ~P-representation ~ of ~,  
let S~ be the relation on the domain of discourse of JK'defmed by: for each 

Yl . . . .  ,Yn in Y, 

(3.3) S~[r . . . . .  r iff S(y~ . . . .  ,Yn). 

Let ~ = {r I~ is a J/P-representation for ~/ }. By existence ~ is non- 
empty. Let 

T = U  

Let rl be an arbitrary ~#~-representation o f ~  and Ya . . . . .  y,, be arbitrary 
elements of Y. To show S is qualitatively f-meaningful ,  we need only show 
that 
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s ly ,  . . . . .  y . )  iff r [ n f y l )  . . . .  , n 0 ' . ) l .  

Suppose S(y l , . . .  ,Yn). Then by definition of T, T [ r / ( y l ) , . . . ,  ~7(Yn)]. Now 
suppose T[r~(yl) . . . . .  r/(yn) ] . Let r be a f - representa t ion  for 3` such 
that S~[~/(yl) . . . . .  r/(.vn) ]. Then for some zl in Y, r / (v l )=~(zl ) .  By3`- 

homogeneity, let a be an automorphism of ~, such that a(yl)  = zl .  Then q~a 
is a A/i-representation for g/, and q~a(yl) = r/(vl). By uniqueness, ~a = 7. Thus 

S~ [r 1) . . . .  , ~/~a(y n)], which by Equation (3.3) yields S [a(y 1),-- �9 a(y n)], 
which by the automorphism meaningfulness of S yields S(vl , . . .  ,yn). [] 

In our development, the qualitative structure ~/is intended to represent 

some empirical phenomena, and as such its primitive relations and functions 

represent observable phenomena and are to be thought of as empirical entities. 

But what of the measurement process, can it be thought of as 'empirical'? 
Since measurement processes generally involve mathematical entities, they 
generally have nonempirical components. But as we have seen, many import- 

ant measurement concepts have corresponding concepts formulated in terms 
of automorphisms (or endomorphisms) of the qualitative structure, and so it 

seems reasonable to first approach this problem qualitatively and ask, "Can 
automorphisms of empirical structures be thought of as empirical processes?" 
If they can, then they can be added to the empirical structure 3 '  to produce 

a closely related empirical structure 3`'. Obviously in this case the measure- 
ment process for 3/ '  will be more restrictive or just as restrictive as for3 '  
since 3 "  has more structure to be preserved than 3`. If we take 'measurement 
process' and 'meaningfulness' as intuitive concepts, then in line with our 
development we would expect the following condition to be necessary for the 
coincidence of the measurement processes for 3` and 3`': All automorphisms 
of 3` are meaningful. Let's consider these matters in a more concrete setting. 

Consider physical measurement. Here we are dealing with a system ulti- 
mately reducible to interactions of certain basic structures called "units" 
which are ratio scalable. Length is one of the unit structures, and theoretically 
it can be considered as a closed extensive structure .oq4= (L, ~, C)). Clearly 
the primitives L,---, and �9 are to be treated as physical, and it can easily be 

argued that certain concepts that are simply defined in terms of the primitives 
of -~, e.g., a2 where ot2(y) = y  O y  for all y in L, are also physical, and thus 
(by the discussion following Theorem 2.8.) certain automorphisms of 
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.Ware to be treated as physical. However, there are automorphisms o f f  

that are not deFmable in the appropriate first order language for .W. What 

of these automorphisms? Are they in any way to be considered as physical 

entities? In general, answers to questions like these depend on the level of 
abstraction one allows in the empirical formulation. However, in the present 
case as well as in others, the following question is a better one to ask: Will 

it get us into trouble if we assume all automorphisms of .W are physical 
entities? I believe the answer to this latter question to be definitely 'No': 

As we will soon see, all automorphisms of .W are meaningful relations of 

.W, and as such can be added to .W without changing the nature of quantifi- 

cation of .W, and thus their assumption as physical entities cannot change any 

numerically based physical law. This is not always the case: as we will see, 
this is not true for automorphisms of qualitative structures that are interval 

scalable. 
Let 3' be an endomorphism of ~,'. Then 7 can be considered as a relation 

on Y, and as such, 7 is automorphism meaningful if and only if for each 

automorphism a of ~ ,  

a[~(v)] = 7[~(v)] 

for all y in Y, i.e., if and only if 3' commutes with each automorphism of ~/. 

Similarly, 7 is endomorphism meaningful if and only if it commutes with 

each endomorphism of g/. Thus it is only in special circumstances such 

as scalar or monotonic prescalar structures that all automorphisms are 

automorphism meaningful. 
Let S(x ,y ,u ,v )  hold if and only i f x , y , u , v  are in Re and x - y  ~>u - v. 

Then it is not difficult to show that all automorphisms of (Re, S) are of the 

form a(z) = rz + s for some r in Re + and some s in Re, i.e., that (Re, S~ is 

interval scalable. Now, the only automorphism of (Re,S) that commutes 

with every other automorphism is the identity, ~, and thus L is the only auto- 

morphism meaningful automorphism of (Re, S>. 
It is easy to show that all relations on Y that are definable in an appro- 

priate first order language for g/ are automorphism meaningful. Thus for 
the structure (Re, S) of the above paragraph, the identity automorphism ~ is 

the only first order definable automorphism. 

These considerations are summarized in the following theorem: 
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THEOREM 3.3. The following five statements are true: 

1. Each primitive relation of ~/ is endomorphism meaningful. 

2. Each relation on Y that is first order definable in terms of the 
primitives of  g/ is au tomorphism meaningful. 

3. An automorphism of  ~ that does not commute with every other 
automorphism of ~/ is not first order definable in terms of  the 
primitives of  ~. 

4. An endomorphism of ~/ is endomorphism meaningful if and only 
if it commutes with every endomorphism of  ~/. 

5. An automorphism of ~/ is automorphism meaningful if and only 
if it commutes with every automorphism of ~/. 

Although some individual automorphisms of $/ may not be meaningful, 
the concept of automorphism may still be meaningful. This is possible since 

the concept of automorphism is at a different level of abstraction than 
individual automorphisms: 

Each individual automorphism of f f  is a relation on Y and thus a 'first order 
concept', while the set of automorphisms of ~ / -  i.e., the concept of auto- 
morphism of ~ / -  is at a higher and more abstract level and is a 'second order 
concept'. For the measurement of length, a somewhat analogous situation 
arises: In the extensive structure for length, (L, ~>, Q), the set of lengths L is 
a first order concept and is automorphism meaningful, while any particular 
member of L, say the meter rod in Paris that is used as the basis for the 
metric measure of length, is at a less abstract level (a 'zeroth order concept') 

and is not automorphism meaningful. 

DEFINITION 3.5. Let ~9 ~ be a set of relations of Y. Then Y is said to be 
automorphism meaningful if and only if for each relation R on Y and each 
automorphism a of ~', R is in Y if and only if a(R) is in S '~. g is said to be 
endomorphism meaningful if and only if for each relation R on Y and each 

endomorphism 3' of if, R is in Y if and only if 7(R) is in g .  [] 

THEOREM 3.4. The set of  automorphisms and endomorphisms of  ~/ are 
automorphism meaningful but may not be endomorphism meaningful. 
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Proof. It is easy to show that for all automorphisms a and 3 of 3, and 
endomorphisms 3  ̀ of 3 / t h a t  fl(a) is an automorphism of 3 / a n d  3(3') is an 
endomorphism of 3/, and thus that the sets of automorphisms and endo- 
morphisms of ~/are automorphism meaningful. 

If all endomorphisms of 3/ are automorphisms of 3 / t hen  the sets of 
automorphisms and endomorphisms of ~, are endomorphism meaningful. 

However, if 3' is an endomorphism of 3 / tha t  is not an automorphism, then 
3'(0 is not an endomorphism since the domain of 3'(0 is not Y, and thus in 
this case, sets of automorphisms and endomorphisms of 3 /a re  not endo- 
morphism meaningful. [] 

Theorem 3.4. indicates that endomorphism meaningfulness is probably 

not the correct way of formulating the invariance condition for relations on 
Y. However, a variety of families of transformations can agree with endo- 

morphism meaningfulness on (the first order) relations on Y but yet disagree 

on higher order relations. Methods for constructing some of these will now be 
considered. 

CONVENTION. Let 3' be a function from a subset of Y into Y, and let S be 
a n-ary relation on Y for some n. Then, by definition, 7(S) is the n-ary 
relation T on 3'(Y) such that for each y l  . . . . .  Yn in the domain of 3', 

S@I . . . . .  Yn) iff T[3'Cvl) . . . . .  3'0'n)]. 

Let 3 be a function from a subset of Y into Y. Then 3 can be regarded as 
binary relation, and as such the 3'(3) is defined by the above. It is easy to 

show that (i) 3'(3) is a function from a subset of Y into Y, and (ii) an element 
y of Y is in the domain of 3'(3) if and only if 3(3') and y are in the domain 
of 3'. It should be noted that (ii) occurs since we consider 3 as a relation, and 
that this differs from the usual mathematical use of the notation, 3`(fl) which 
does not require y to be in the domain of 3 .̀ Throughout the rest of this 

section, the notation 3,(3) will be interpreted in the former sense with 3 
considered as a relation. 

Throughout the rest of this section, we will also extend the notation for 
the composition of functions, *, as follows: Let f ,  g be arbitrary functions and 
let A = domain f and B = domain g. Then, by definition, f * g is the function 
hwithdomainA Ng(B)suchthatforeachyinA Cqg(B),h(y)=f[g(y)]. [] 
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DEFINITION3.6.  /3 is said to be partial endomorphism of 2/  = ( Y ,  R1, 
R2 . . . .  ) if and only if/3 is a function from a subset (possibly empty),  of 

Yinto Y such that for eachy l  . . . . .  yni in the domain of/3, 

Ri(y 1 . . . . .  ynl ) iff Ri[/3(yl) . . . . .  /30'ni)] 

for all i. 
A partial automorphism of :?,, is a partial endomorphism of 2 / t h a t  is a 

one-to-one function. 
Note that if fi is a partial automorphism of  2/, then /3-1 is a partial 

automorphism of :?/. Also note by this definition that the empty partial 

endomorphism (the one with empty domain) is a partial automorphism. 
/~ is said to be a partial identity of ~ if and only if/3 is the restriction of  

the identity automorphism t of ~ to a subset of  Y. 
Note that if/3 is a partial identity of ~ ,  then in general,/3 */3-1 :t=/3-1 ,/3 

since/3 */3-1 and/3-1 ,/3 may have different domains. 
Let E be a set of partial endomorphisms of ~'. E is said to be closed 

under * if  and only if for each ~,/3 in E,  ot * t3 is in E. E is said to be closed 

under E if and only if for each ~,/3 in E, ~(/3) is in E. Let E1 = E, and for 

i E I  +, let Ei+ 1 = {c~ */3 I ~, /3EE/},  and let F =  Uiei*Ei. Then F is called 
the *-closure of E. Let E 1 = E  and for i E 1  +, let E/+1 = {a(/3) I a , /3EE/}  

and let H = t31~ x § Ei. Then H is called the E-closure of E. 
Let E be a set of partial endomorphisms, S be a n-ary relation on Y, and 

S z be a set of  relations on Y. Then S is said to be E-meaningful if and only if 

for each a in E and each y x . . . . .  Yn the domain of a, 

S(yI . . . .  ,Yn) iff S[~(y , )  . . . . .  o~(yn)], 

and .9~is said to be E-meaningful if and only if for each relation T on Y, 

T E  S "~ iff o~(T)ESz. 

Let E be a set of  endomorphisms of :~. Then the partial closure of E is 

the set E '  where 

E '  = {~x I ~ is a partial endomorphism that is the restriction of 
/3 to Z for some 13 in E and some Z C_ y}. [] 

LEMMA 3.1. Let E be a nonempty set of  endomorphisms o f  &', E' be the 
closure o r e  under *, S be a n-ary relation on Y, and • be a nonempty set 
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of relations on y/. Then S is E-meaningful i f  and only i f  it is E'-meaningful, 

and ~9 ~ is E-meaningful i f  and only i f  it is E'-meaningful. 
Proof. Since E' D_ E, E'-meaningfulness implies E-meaningfulness. 

Let 3' be an element of  E'.  Then 3' =/3k*/3k-1 * . . .  */31 for some 

/31 . . . . .  /3k in E and k in/+. 

Suppose S is E-meaningful. Then for eachy~ . . . . .  Yn in the domain of 7, 

S ( y  l , . . .  , Y n)  

and thus S is E 'meaningful ,  

iff 

iff 

iff 

iff 

S[/31(~1) , - - - , /31(Yn)]  

S[/32 */31021) . . . . .  /32 * ~lCvn)] 

S[/3k * - .  -*/310;1) . . . . .  /3k * . . . *  /310;n)] 

S [')'(,v 1) . . . . .  '~0;n)], 

Suppose ~9 ~ is E-meaningful. Then for each relation T on Y, 

T C  ~9 ~ iff j 3 1 ( T ) E ~  

iff /32 */31(T) E ,_~ 

iff /3k * . . . */3x(T) E ~5 -'~ 

iff 7(T) E ~ ,  

and thus ~'~is E'-meaningful. [] 

LEMMA 3.2. Suppose E is a nonempty set of  endomorphisms of  Y, E' is 
the partial closure orE, and S is a n-ary relation on Y. Then S is E-meaningful 
i f  and only i f  it is E'-meaningful. 

Proof Suppose S is E-meaningful. Let 7 be an arbitrary element o r E ' .  Let 

/3 in E be such that 3' is a restriction of/3. Then for eachya  . . . . .  y,, in the 

domain of 7, 

S(v, . . . . .  Yn) iff S[/30'1) . . . . .  /3(Y,)] 

iff S [7(Y 1) . . . . .  7(Yn)], 

and thus S is E'-meaningful. Now suppose S is E'-meaningful. Since E' ~- E, it 
follows that S is E-meaningful. [] 
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THEOREM 3.5. Suppose E is a set of  partial endomorphisms o f  Y that 
contains the identity automorphism, t, oral .  Let F be the E-closure orE. 

Then E-meaningfulness and F-meaningfulness agree on relations o f  Y, and 

F is a F-meaningful set of  relations o f  Y. 

Proof. Let E' be the * closure of E. Then by Lemma 3.1., E-meaningful- 
ness and E '  meaningfulness agree on relations of Y. Let E" be the partial 

closure of E'. Then it follows from Lemma 3.2. that E and E" meaningfulness 
agree on relations of Y. Since for each a, fl in E, a(fl) is a restriction of a * fl, 
it is easy to show that each member of F is a restriction of a member of E '  
(since E'  is closed under *). Thus E ''~- F D- E, and from this and the agree- 
ment of E and E"-meaningfulness on relations on Y, it immediately follows 

that E and F-meaningfulness agree on relations of Y. Now to show that F 

is a F-meaningful set of relations, we let T be an arbitrary relation on Y. If 
T is in F, then a(T) is in F for each a in F since F is the E-closure of E. And 

if a(T) is in F for each a in F, then in particular, l(T) = T is in F. [] 

Applying Theorem 3.5. to the set o f  endomorphisms of ~/, we see that 

this set can be extended to a reasonable set of F of partial endomorphisms 
that is meaningful with respect to itself and agrees with endomorphism 

meaningfulness on relations of Y. This seems to suggest to me that in this 
case F-meaningfulness is probably a superior measurement-theoretic concept 

to endomorphism meaningfulness, especially if one is considering meaningful- 

ness of higher order concepts. 
There are other ways of extending sets of partial endomorphisms without 

altering the meaningfulness of relations on Y. The following lemma gives an 

important one: 

LEMMA 3.3. Suppose B is a nonempty set o f  partial automorphisms o f  ~/ 
and S is a n-ary relation on Y and ~ is a nonempty set of  relations on g/. 
Let C = B  td {a-1 I o~EB}. Then S. is B-meaningful i f  and only i f  it is C- 

meaningful, and ~9 ~ is B-meaningful i f  and only if  it is C meaningful. 
Proof. Suppose S is C-meaningful. Since C ~-B, it immediately follows 

that S is B-meaningful. Now suppose S is B-meaningful. Let a be an arbitrary 
element of C. We need only show that for ally1 . . . . .  Yn in the domain of a, 

S(yl . . . . .  y , )  iff S[afyl)  . . . . .  a(y,)] .  
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If a EB,  this immediately follows from B-meaningfulness. If a q~B, then 
a -I is in B and by B-meaningfulness, for each xl  . . . . .  xn in the domain 

of a -I , 

(3.4) S(x, . . . . .  Xn) iff S[a- l (xx ) , . . . , a - l (xn)] ,  

and letting Yl = a - l ( x l ) ,  .- .,Yn=~ we see that Equation(3.4) 

becomes 

(3.5) S[a(vl) . . . .  , a0'n)] iff 8(121 . . . . .  Yn), 

and Equation (3.5) holds for each z i that is a-l(ui) for some ul in the domain 
of a-1. Thus we have shown S to be C-meaningful. 

If S ~ is C-meaningful, it immediately follows it is B-meaningful. Suppose 

S,~is B-meaningful. Then for all relations T on X and all o~ in B, 

T E  ~ iff a * a - l ( T ) E . ~  

iff a-l(T)~ ~ .  [] 

DEFINITION 3.7. (B, *) is said to be a pseudo-group of  partial auto- 
morphisms of ~, if and only if B is a nonempty set of partial automorphisms 
of &" such that for each a,/3 in B, a */3 and a -1 are in B. If (B, *) is a pseudo- 

group of automorphisms of 3", (B, *) is said to be meaningful if and only if 
t is in B and if a,/3 are in B, then a(/3) is in B. 

Let C be a nonempty set of partial automorphisms. (B, *) is said to be the 

pseudo-group generated by C if and only if (i) (B, *) is a pseudo-group and 
B _D C, and (ii) for each pseudo-group (D, *), if D D_ C, then D D-B. The 
analogous definition for meaningful pseudo-group generated by C is given in 
the obvious way. [] 

Let C be a nonempty set of partial automorphisms of g/. Then it easily 
follows that the pseudo-group generated by C and the meaningful pseudo- 

group generated by C exist. 

LEMMA 3.4. Let B be a nonempty set of  partial automorphisms of ;~, 
(B', *) the pseudo-group generated by B, S a n-ary relation on Y, and 
a nonempty set of  relations on Y. Suppose B is closed under *. Then S 
is B-meaningful i f  and only i f  it is if-meaningful, and ~ is B-meaningful 
i f  and only i f  it is B' meaningful. 
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Proof Let B1 = B  and C1 = {a -1 IcxEB1}. Suppose i is an element of 
I § and Bi and Ct have been defined. Let Bi+ 1 be the *-closure ofBi U Ci and 
Ci+l = {~-I laEB/+I  }. Then it easily follows from Lemmas 3.3. and 3.1. 
that S and S" are Bi+a-meaningful if and only if they are Bi-meaningful. 
Thus for each i in I § S and .9" are Brmeaningful if and only if they are 
B-meaningful. From this and B' = t..JiEl+Bi, it then follows that S a n d s  ~" 
are B-meaningful if and only if they are B'-meaningful. [] 

THEOREM 3.6. Suppose B is a nonempty set of  partial automorphisms of 
~', S is an arbitrary n-ary relation on Y, and S~ an arbitrary nonempty set of  
relations on Y. Let (B', *) be the pseudogroup generated by B and (B", *) 

the meaningful pseudo-group generated by B. Then (i) B and if-meaningful- 
ness coincide for S and ,_9", and (ii) B and B"-meaningfulness coincide for S, 
and if  B contains an automorphism of  Y/, then B" is B"-meaningful. 

Proof. (i) follows from Lemma 3.4. and 0i) by an argument similar to the 
proof of Theorem 3.5. [] 

The following example illustrates the usefulness of the above concepts. 

EXAMPLE 3.3. Let ~ t  = (R e+, >~, +)- Then it can be shown that multipli- 
cations by positive reals are the automorphisms of ~r and that all endo- 
morphisms of ~2, are automorphisms. 

Let ~r = ((0, 1), ~>, +), where '(0, 1)' denotes the open interval of the 
reals with end points 0 and 1. Then it can be shown that the identity is the 
only automorphism of ~r and that multiplications by positive reals ~< 1 
are the endomorphisms of JP2. Let E be the set of endomorphisms of ~r 
Then each element of E is a partial automorphism of ~P2. Let E' be the 
pseudo group generated by E. Then it can be shown that 

E ' =  {a [there exists r in (0, 1) such that (0, r ) =  domain a 
and for all x in (0, r), a(x) = sx for some s in Re + such 
that sr < 1 .} 

Furthermore, it can also be shown that E'  is also the meaningful pseudo 
group generated by E. 

Let #P3 = ((2, 10), ~>, +). Then it can be shown that the identity is the 
only endomorphism (and therefore the only automorphism) of ~3-  For 
each r in (1/5, 5), let ar be the following function: 
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(2/r, 10) i f r  is in (1/5, 1] 

domain a = (2, lO/r) i f r  is in [1, 5) 

and a t ( x )  = r x  for each x in the domain of oL r. Let B = {0~ r ] r is in ( 1 / 5 ,  5)}. 
Then for each a in B, a -1 is in B, and in fact, a -1 = % / r  where r is such that 

a = ar .  However, B is not a pseudo group since it is not closed under *. (This 

can be seen by example: a l l  4 * a3 has domain (8/3, 10/3) and is therefore 
not in B.) It also can be shown that the pseudo group generated by B coincides 

with the meaningful pseudo group generated by B. [] 

The concept of meaningfulness arose in measurement theory through 
concerns about the justifications of certain statistical procedures; later 

(Lute, 1978) it was modified to more clearly explicate certain procedures 

in dimensional analysis. But the basic idea that invariants under natural sets 

of transformations have a special status goes back much further to a very 

famous and influential paper by Felix Klein, "Vergleichende Betrachtungen 

tiber neuere geometrische Forschungen", published at Eflangen in 1872. Klein 
proposed that geometrical properties were exactly those that were left 
invafiant by the automorphisms of the geometrical space. Subsequently, 

Klein and his followers were able to describe all the known geometries in 
terms of this automorphism invariance concept. This method of dealing with 
geometry became known as the Erlanger Program. And for a time when new 
geometries, such as the space-time geometry inherent in Einstein's theory of 
special relativity, were introduced into mathematics, the Erlanger Program 

Was extended to encompass these as well. However, the Erlanger Program was 
not able to encompass the space-time geometry inherent in Einstein's general 
theory of relativity since space-time in this geometry has the identity as its 
only automorphism. Some attempts were made by followers of Klein to save 
the Erlanger Program by considering other invariance concepts (which by my 
reading of the literature appears to be invariance under something like a 

pseudogroup of partial automorphisms, but I have been unable to find an 
absolutely clear statement of this), but these attempts have had very little 

influence, perhaps in part because of a shift in emphasis in mathematics to a 
more algebraic approach to geometry. 

In this section, a number of concepts of qualitative meaningfulness have 
been presented, and the problem remains of deciding which, if any, is the 

'correct' concept. It is my view that there is no single correct concept of 
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meaningfulness. I believe that in the final analysis the choice of the 'correct' 

invariance concept for a structure will not be determined solely by the 
structure, but in general will depend upon features of the intended measure- 

ment application. What we have today are a handful of successful appli- 

cations of the various meaningfulness concepts; what is still lacking is a 

general theory of invariance and inference based upon invariance. The 

meaningfulness concepts presented above are attempts to abstract the 
common core of this handful of successful invariance applications, and are 
not based upon any detailed philosophical analysis, and thus their usefulness 
and generality are somewhat in doubt. Hopefully in the future someone will 
find a more direct and comprehensive approach to this important problem. 

Of the invariance concepts considered in this section, automorphism 

meaningfulness has the greatest applicability, mainly because the most 
important structures that appear in measurement have an abundance of 
automorphisms. Endomorphism and qualitative ~-~-meaningfulness, when 
they do not coincide with automorphism meaningfulness, thus far have had 
far fewer applications. I also believe that these latter two concepts have 

inherent difficulties, which arise from the fact that representations of the 
qualitative structure are only required to be into (rather than onto) the 
representing structure. Interesting enough, it is this 'into' property of 

representations that make endomorphism and qualitative ~4/~-meaningfulness 
natural concepts for measurement. (This can be seen by considering the case 

of qualitative structure ~ / tha t  has a one-to-one endomorphism that is not an 

automorphism. Then if for some q~, ~ and or, if q~ is a ~/'-representation 
for ~ /and  ~ is a one-to-one endomorphism of ~ that is not an automorphism, 

then 4~c~ is a ~r of ~," that is into but not onto J~..) However, 

to my knowledge, the practice of using 'into' representations for the general 
measurement case has never been philosophically justified. The situations 
where 'into' representations have been useful are rather special and are 
characterized by conditions similar to comparability (Definition 2.3.), or as 
I prefer to see it, characterized by the representing structure being isomorphic 
to an extension of the qualitative structure where the automorphisms (or 
in some situations certain key partial automorphisms) of the qualitative 
structure extend to automorphisms of the extension. It is my belief that 
measurement of general structures should be based either upon representations 
that are isomorphisms onto the representing structure, or, if the situation 
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demands it, upon an appropriate set partial isomorphisms. (A partial iso- 
morphism is an isomorphism of a restriction of the qualitative structure into 
the representing structure.) This should be done in a way so that the corre- 

sponding qualitative concept is either automorphism meaningfulness or H- 
meaningfulness for some meaningful subgroup of partial automorphisms. 
The consequences of these suggestions for current measurement structures 
are minimal; however their effect upon bringing new types of structures 

and techniques into the measurement arena could be significant, particularly 
for structures that resemble those in general relativity and differential 

geometry. 

4. SCALAR PRODUCT STRUCTURES 

Physical structures are the best known and understood empirical structures 

which are decomposable into well-defined empirical substructures. In 
this case, they are decomposable into their various physical dimensions, 

e.g., length, mass, time, which qualitatively can be assumed to be extensive 

structures. In this section, generalizations of this physical case will be 

considered. To simply notation and exposition, only the case of structures 

decomposable into two components will be considered, but the concepts 
and results of this section are easily extendable to the general multicomponent 
case. 

CONVENTION. Throughout the rest of this section, unless explicitly stated 
otherwise, let ~ be a weak ordering on the nonempty set X x P. It will be 

assumed throughout this section, unless explicitly stated otherwise, that 
(X • P, ~)  satisfies the following three conditions: 

(i) Unrestricted solvability: for each xp, yq in X • P, there exist 
z, r such that xp ~yr andxp ~zq; 

(ii) Independence: for each x, y in X, if for some b in P, xb ~yb, 
then for all r in P, xr~yr; and for each p, q inP,  if for some 
a in X, ap ~ aq, then for all z in X, zp ~ zq. 

(iii) Density: for each x, y in X, if for some b in P, xb~-yb, then 
for some z in X, xb ~-zb ~-yb. 
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It easily follows from unrestricted solvability and independence that the 

binary relations ~ x  and ~p  defined on X and P respectively as follows are 

weak orderings: for each x, y in X, 

x ---xY iff 

and for each p, q in P, 

p >'p q iff 

To simply notation and 

for some b inP, xb ~ yb, 

for some a in X,  ap ~ aq. 

exposition, it will be assumed throughout this 

section, unless explicitly stated otherwise, that the following condition holds: 

(iv) >'-x and >'-v are total orderings on X and P respectively. [] 

Independence and unrestricted solvability give (X x P , ~ )  enough structure 

to allow monotonic increasing operations to be defined on IX, ~ x )  and 
(P, ~p), and thus give it the potential to be the basis of a ratio scale. This 

will be shown in detail in Definitions 5.1., 5.2., and 5.3. and Theorem 5.6. 

CONVENTION. Throughout this section, unless explicitly stated otherwise, 

let 
~ =  ( X x P ,  ~ , R 1 , R 2  . . . . .  S1,S2 . . . .  ,T1, T2 . . . .  ), 

where R1, R2 . . . .  are relations on X, S1, $2 . . . .  are relations on P, and 

T1,T2 . . . .  are relations on X x P .  Let S = ( X , ~ x , R 1 , R 2 , . . . )  and 

= (P,~--?,SI,S2 . . . .  ). [] 

DEFINITION 4.1. Recall that in Section 2, the results about scalar struc- 
tures do not depend in an essential way upon the particular functions and 
relations in the qualitative structure. Thus for the current setup if we assume 
that S and ~ satisfy density, homogeneity, and automorphism commutivity 
of Definition 2.5. we may call them 'scalar structures'. Furthermore, by the 
remarks following Theorem 2.7., if S is an Archimedean scalar structure 

then there exists a function ~b from X into Re + such that for some numerical 
structure ~ ,  ~ is an isomorphism onto ~r and the set of automorphisms of 
J : i s  a subset of all multiplications by positive reals. Such a function q$ will 
be called a scalar representation for ~ .  An analogous definition for a scalar 

representation for ~ holds. [] 
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The following two definitions give important ways in which the com- 

ponents of ~ may be related. The first is a quantitative way and the second 

is a qualitative way. Later theorems will show that in many important cases, 

these ways coincide. 

DEFINITION 4.2. (q~, r is said to be a product representation for c~ifand 
only if r :X ~ Re +, ~ :P -+ Re*, and for each xp, yq in X x P, 

xp ~ y q  iff r t~(p)~>r [] 

DEFINITION 4.3. �9 is said to be an X-distributive operation of ~ if and 

only if O is a binary operation on X and for each x, y ,  u, v in X and each 

p, q inP ,  i f x p - u q a n d y p ~ v q ,  t h e n ( x O y ) p ~ ( u O v ) q .  [] 

DEFINITION 4.4. For the rest of this section, let xoPo be a fixed element 
of X x P  and let ~ and ~- be functions defined as follows: ~ : X x P - + X ,  

r:  X -+ P, and for each xp in X x P, 

~(xp)po = xp 
and 

xPo = Xor(X). 

(Unrestricted solvability guarantees that ~ and r are well defined by this 

procedure.) [] 

DEFINITION 4.5. For each x in X define the function/3 x on X as follows: 

for each y in X, 

~xev) = ~[vr(x)]. [] 

LEMMA 4.1. Suppose 0 is a X-distn'butive operation of  ~.  Then for each 

x in X, ~x is an automorphism of  the structure (X, >'x, 0) .  

Proof. Let x , y ,  and z be arbitrary elements of X. 

1. Suppose y > 'x  z. Then by independence 

yr(x) ~ zr(x), 
and thus 

~Lvr(x)]p0 ~ ~[zr(x)]po, 

which by independence yields 
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and thus 

2. Since 

~Lvr(x)] Zx ~[z~'(x)], 

~,ffy) ax  t3x(z). 

~x(Y)Po = ~[vr(x)lPo "~ yr(x) 
and 

flx(Z)Po = ~[zr(x)]po ~z'c(x), 

it follows from X-distributivity that 

[r 0 t3x(z)lPo ~ (y 0 z)'c(x), 

and thus that 

~x~) ot~x(z) = ~[0' Oz)r(x)] = Cxfy Oz). 

3. To show/3x is onto X, we need only show for some u,/3x(u) = y.  By 
unrestricted solvability, let u be such that ur (x )~ypo .  Then fix(U) = 

Jut(x)] = y.  [] 

LEMMA 4.2. Suppose S is homogeneous, 0 is a X-distributive operation 
of  ~ ,  (X, ~ x ,  O) is a positive concatenation structure, and 0 and >'x are 
automorphism meaningful relations for the structure ~ .  Then the auto- 
morphisms of  ~ and (X, ~--x, �9 coincide. 

Proof. Let A be the set of automorphisms of ~ '  and B the set of auto- 

morphisms of (X, > 'x,  O). Since O and ~ x  are automorphism meaningful 
relations of o~', each element of A is an automorphism of (X, ~ x ,  O), i.e., 
A C B. Let ~ be an arbitrary element of B. Let x be an arbitrary element of 
X. Since S is homogeneous, let a in A be such that o(x)=/3(x). Then 
a-1 ./3 is an element of B and (a -1 */3)(x) = x .  Theorem 2.1. of Cohen 
and Narens (1979) shows that in this case ~-1 ./3 must be the identity, t. 
Thus a =/L Since/3 is an arbitrary element of B, it follows that B C_ A. Thus 
B =A.  [] 

THEOREM4.1. Suppose ~ is a scalar structure, 0 is a X-distributive 
operation of ~ ,  (X,~--x,O) is a positive concantenation structure and 
>'x and 0 are automorphism meaningful relations for the structure a~. 
Then for each scalar representation ~b of  ~ there exists ~ such that ((~, ~) 
is a product representation for ~. 
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Proof. Let ~ ' = ( X , > ' x , R 1 , R 2 , . . . )  where ~ = ( X ,  R1,R2 . . . .  ). 
Since >'x is an automorphism meaningful relation for S ,  the automorphisms 
of ~-~ and S '  agree. Let A be the set of automorphisms of ~ " .  Then by 
I.emma 4.2., A is the set of automorphisms of (X, ~x ,  �9 Let ~x  be the 
ordering defined on A by: for each a,/3 in A, a--~x/3if and only if for some 
x in X, a(x)>'x~(X). Then by Theorem 2.4. of Cohen and Narens (1979), 
(A, ~ x ,  *) is an Archimedean totally ordered group of automorphisms of 
(X, >'x, �9 Therefore, ~ '  is an Archimedean scalar structure (where the 
'Archimedeanness' of A is defined in terms of >'x). Let ~b be an arbitrary 
scalar representation for ~ '  '. Since • ' and r are isomorphic, we may 
identify them, and under this identification r may be considered as the 
identity t, and thus the theorem follows by showing there exists ~ such that 
(L, 4) is a product representation for ~r 

By unrestricted solvability, r -1 (p) exists for each p in P. Let ~ = r -1. 
Then ff is a function from P onto X, and since L is a scalar representation 

', qJ is into Re +. 
Note that for each x in X, 

(4.1) ~x(Xo) = ~ [ x o r ( x ) l  = x .  

Also note that since L is a scalar representation for ~"  ', all automorphisms of 
~*" are multiplications by positive reals, and thus by Lemmas 4.1., 4.2., and 
Equation (4.1),/3 x is multiplication by X/Xo. 

Let xp,yq be arbitrary elements o fX x P. Then 

xp ~ yq iff ~(xp) >'x ~(Yq) 

iff ~(Xr[T-I(P)]) >'X ~(YT"[r-l(q)]) 

iff ~(Xr[ff(p)]) >'X ~(yr[~(q)]) 

iff ~0~)(x)->x~(q)(v)  

iff ~b(p___)). x ~> o(q) "y  
Xo XO 

iff L(x)~(p)/> ~0')~(q). [] 

An important part of the proof of Theorem 4.1. is that ~x is an auto- 
morphism of , ~  for each x in X. This condition is derived from Lemmas 4.1. 
and 4.2. Lemma 4.2. assumes that (X, ~x ,  O) is a positive concatenation 



52 LOUIS NARENS 

structure. This assumption is made so that (X,-~x, �9 will not have too 
many automorphisms, and any other set of assumptions that require it to 

satisfy one point uniqueness for automorphisms (if a(x)=/3(x) for some 

automorphisms a,/3 of (X, ~ x ,  O) and some x in X, then a = ~) will do in 
place of assuming (X, ~ x ,  O) to be a positive concatenation structure. 

The assumption in Theorem 4.1. that ~ x  is an automorphism meaningful 

relation of S is very natural, as the following theorem shows: 

THEOREM 4.2. Suppose 2g" is a scalar structure, ~ is a scalar representation 
for ~c ~ ,  and (~, ~) is a product representation for ~'. Then >'x is auto- 
morphism meaningful for the structure S .  

Proof. Let x , y  be arbitrary elements of X and a be an arbitrary auto- 

morphism of S .  Then, since ~b is a scalar representation of ~*', ~b(~) is an 
automorphism of 4~(X, ~) and thus is multiplication by a positive real r. Thus 

x ~ x y  iff xpo ~ ypo 

iff r 1> r162 

iff $(x) ~> qs(y) 

iff r4~(x) >~ rdp(y) 

iff ~(x) ~-x aCv). 

Since a, x, and y are arbitrary, it follows that ~ x  is an automorphism 
meaningful relation of S .  [] 

There often exists a strong relationship between X-distributivity and 

automorphism meaningfulness, and this relationship is investigated in the 
next lemma and theorem: 

LEMMA 4.3. Assume the hypotheses of  Lemma 4.2. Suppose �9 is a ){.distri- 
butive operation of  4. Then �9 is an automorphism meaningful relation of  ~ .  

Proof. By Lemmas 4.1. and 4.2.,/3x is an automorphism of S for each 
x in X. Then for each automorphism a of • ,  

~(=o~(Xo) = ~(Xor[,~(Xo)]) = o~(Xo), 

and thus 
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a - l ~ = o ~ ( X o )  = Xo, 

which by Theorem 2.1. of Cohen and Narens (1979) shows that a-1/7~(Xo ) = L 
and thus that o~ =/Ta(Xo). Therefore {/Tx I x E X} is the set of automorphisms 
of , ~ ,  and thus by I.emma 4.1., $ is an automorphism meaningful relation 
of 2~. [] 

THEOREM 4.3. Suppose S fs a scalar structure, ~ has a product represen- 

tation (r 4 ) where ~ is a scalar representation for o~ '~, (X  • P, ~)  is Dedekind 

complete, and �9 is a binary operation on X. Then the following two state- 

men ts are equivalent: 

O) �9 is a X-distributive operation o f  ~;  

(ii) �9 is an automorphism meaningful relation o f  ~ .  

Proof. Since ( X x P , ~ )  is Dedekind complete, it easily follows that 
(X, >'x) is Dedekind complete. Let (r 4) be a product representation for 

where r is a scalar representation for S .  Since ~ and r  are iso- 
morphic, we may identify them without losing generality. In this case r is 
the identity, ~, and each automorphism of S is multiplication by a positive 
real. Since multiplications by positive reals are automorphisms of S ,  X has 
arbitrarily large and small elements, which by the Dedekind completeness of 
(X, >'-x) implies X = Re +, which in turn by the homogeneity of ~ implies 
that all multiplications by positive reals are automorphisms of S .  It is also 
immediate that ~ x  is ~>. 

(i) Suppose �9 is a X-distributive operation of 7(. We will first show that 
+ is a X-distributive operation of ~ .  Suppose x, y,  u, v are arbitrary elements 
of X and p, q are arbitrary elements of P such that xp ~ uq and yp  ~ vq. 

Then, since (t, 4) is a product representation for 'd', 

x ' f f ( p )  = u"  if(q) and y ' ~ ( p )  = v ' ~ ( q ) .  
Thus 

(x + y ) "  ~(p) = (u + v)-  ~(q), 

and therefore (x + y ) p  ~ (u + v)q, i.e., + is X-distributive. Furthermore 
(X, >'x,  +) = ( Re+, ~>, +) is a positive concatenation structure, and since 
automorphisms of S are multiplications by positive reals, ~ x  and + 
are automorphism meaningful relations of ~ .  Thus the hypotheses of 
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Lemma 4.3. are satisfied, and thus by Lemma 4.3., �9 is an automorphism 
meaningful relation of S .  

(ii) Suppose @ is an automorphism meaningful relation of ~9 ~. Let x,  y ,  

u, v be arbitrary elements of X and p, q be arbitrary elements of P such that 
xp  ~ uq andyp ~ vq. Then since (t, 4) is a product representation for ~ ,  

(4.2) x ' 4 ( p )  = u ' 4 ( q )  and y . 4 ( p )  = v ' 4 ( q ) .  

Since each positive real is an automorphism of ~ ' ,  by the automorphism 
meaningfulness of ~,  

(x ~ y ) "  4(P) = Ix �9 4(P)] ~ [Y " 4(P)], (4.3) 

and 

(4.4) (u $ v ) .  4(q)  = [u �9 4(q)] �9 [v �9 4(q)] .  

Thus by Equations (4.2), (4.3), and (4.4), 

(x ~ y ) .  4(p) = (u �9 v) .  4(q), 

which, since (t, 4) is a product representation for cC, yields 

(x @ y ) p  ~ (u ~ v ) q ,  

and thus that ~) is a X-distributive operation of cg. [] 
The next theorem describes the relationship between product represen- 

tations of ~ .  

THEOREM 4.4. Suppose (4), 4) and (4)1, 41 ) are product representations for  

~ .  Them for  some r, s, t in Re  +, 4)1 = s4) r and 41 = t4  r. 

Proof  Define �9 on X x P as follows: for each xp ,  y q  in X x P (by un- 
restricted solvability) let u in X and v in P be such that xp ~ up�9 and y q  "~ 

xov ,  and let xp � 9  = uv. Let 4)'= (1/4)(Xo)) 4), 4 '=  (1/4(Po)) 4, 4)'1 = 
(1/4)1 (Xo)) 4)1, and 4', = 1/(4x(Po)) 4. Then (4)', 4') and <4)~, 4'1) are product 
representations for cg, and 4)'(Xo)= 4'(Po)= 4)'1(Xo)= 4~(Po)= 1. Define 
F and G on X • P as follows: for each xp  in X x P, F(xp)  = 4)'(x) 4'(P) and 
G(xp) = 4)'1 (x) 4'1 (P)- Then for each xp,  y q  in X x P, 

(i) xp  ~ yq  iff F(xp) >t FO'q) 

iff G(xp) >~ GO'q), 
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and letting u, v be such that xp ~ upo and yq  ~ Xo v, we get 

(ii) F(xp �9 yq )  = F(uv)  

= ~ ' ( u ) ~ ' ( v )  

= [ ~ ' ( u ) ~ ' ( p o ) ]  �9 [ ~ ' ( X o ) ~ ' ( v ) ]  

= [~b'(x)~'(p)] �9 [~b'(y)ff'(q)] 

= F(xp ) "  F(yq),  

and similarly, 

(iii) a(xp  O y q )  = a (xp)  . a fyq) .  

Using (i), (ii), and (iii) it easily follows that ~ = (X x P ,~ ,  O) is a closed 

extensive structure as defined in Definition 3.1. of Krantz etal. (1971)and 
that F and G are multiplicative representations for ~, which by the ratio 

scalability of ~ (Theorem 3.1. of Krantz etal.,  1971) means that we can 
let r in Re + be such that G = F r. Then for each x in X, 

4 , (x )  = ~ ' : (x)~ ' l (po)  = [ ( (x ) ]  r- [~ '(po)] r =  [~'(x)] r, 

and similarly, for each p in P, ~k'l(p) = [~,(p)]r. Thus letting s = ~b(Xo) ~ and 

t = ~(po) ", we get ~bl = sr and ~bl = t~ r. [] 

DEFINITION 4.6. ~ is said to satisfy component  •- invariance if and 

only if for each automorphism a of S and each xp,  yq  in X x P, xp  ~ yq  

iff a(x)p ~ a ( y ) q .  An analogous definition holds for component  g -  

invariance. [] 

In the physical case, the component invafiances of Definition 4.6. is often 

called dimensional invariance and is an important property of physical 
structures. The key idea behind dimensional analysis in physics is that 
complex physical quantities can be factored into basic dimensions in a way 
that changes in scale of the measurements of the basic dimensions produce 
changes in scale of the measurement of complex quantities. The following 
theorem shows that component invariance is closely related to the previous 

development. 
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THEOREM 4.5. Suppose S is a scalar structure and ~ is a binary operation 

on X that is an automorphism meaningful relation o f  Jg~. Also suppose that 

~satisfies component  S-invariance and (~ satisfies the following two 

conditions: 

(i)  Solvability: for  each x, y in X, i f  x>" x y ,  then there are exactly 

one u and one v such that x = y �9 u = v �9 y .  

(ii) Positivity: for  each x, y in X, x �9 y ~ ' x  x and x �9 y >'x  Y. 

Then ~ is a S-distributive operation o f  ~. 

Proof. Suppose xp ~ uq andyp ~ vq. To show the theorem, we need only 
show that (x �9 y ) p  ~ (u �9 v)q.  By positivity, solvability, and unrestricted 
solvability, let u', v' in X be such that 

(x ~ y ) p  "~ ( u ' ~  v)q  ~ (u �9 v ')q.  

Thus we need only to show that v = v'. By homogeneity in ~ ,  let a be an 
automorphism of S s u c h  that a(x) = u. We will show that a(y) = v. Again by 
homogeneity in S ,  let t7 be an automorphism of ~ such that/l(x ~ y )  = x. 
Then by component ~-hwariance, 

~(x ~ y ) p  ~ ~(u �9 v ')q.  

Thus 
uq ~ xp  ~" ~(x ~ y ) p  ~ ~(u �9 v ' )q ,  

and therefore, 

u = t~(u �9 v ' ) .  

Since ~ is a scalar structure, the automorphisms of S commute, and thus 

~ ( x  ~ y )  = ~t~(x ~ y )  = ~ ( x )  = u = t~(u �9 v ' ) ,  

which by the automorphism meaningfulness of �9 yields 

~ ( x ) ~ ( y )  = u ~ ( y )  = u~v', 

and from this and solvability it follows that 

~ ( s )  = v ' .  
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By a similar argument, we can choose an automorphism 3' of  ~ such that  

3'0,) = v and show that 3'(x) = u'. Now by the automorphism meaningfulness 

of  ~ ,  
3"(x(gy)  = 3"(x)e3"0 , )  = u' r  = u e v '  

= ~(x) �9 ~(v)  = ~(x e y ) ,  

and thus by Lemma 2.1., 3' = a.  Therefore 

v = 3 ' 0 ' )  = ~ 0 " )  = v ' .  [ ]  

5. A D D I T I O N A L  T H E O R E M S  AND P R O O F S  

In this section some new theorems will be shown and the proofs for some 

theorems of the previous sections will be given. The proofs of  Theorems 5.1. 

and 5.2. assume some familiarity with the basic concepts of  nonstandard 

analysis (e.g., in Robinson, 1966), and Theorems 5.3. and 5.4. rely heavily 

on results of  Cohen and Narens (1979). Theorems 5.5. and 5.6. use concepts 

developed in Narens and Luce (1976) and Cohen and Narens (1979). 

THEOREM 5.1. (Theorem 2.2.) Suppose :~ = (Y, Ti)s~j is a relational 

structure and S is a set o f  one-to-one endomorphisms o f  y/ that commute 
with one another. Then there exists an extension y/ '  o f  ~" such that each 

endomorphism in S extends to an automorphism of  ~/'. 
Proof by nonstandard analysis. Let ~ be an enlargement of  :?/. Then 

* 2 / =  (*Y, *Tj.)j~*j. Let Ir be an internal *finite subset of  *S such that 

S _C W C_ *S. Let co be an element of  *I + and a l  . . . . .  ar be such that W = 

{al . . . . .  aw} is an internal indexing of  W. Let v be an infinite positive 

. . .  ~ where for each *endomorphism 7 and each integer and a = a~ * * aw, 

p in *I +, 3 P stands for p applications of  7, e.g., 7 2 = 3' * 3'. Then a is a 

*endomorphism of  * ~ .  

Note that for each k in I + and each Pl  . . . . .  Pk in *I § and each nl . . . . .  

nk in I,  if 1 ~< Pi ~< co, then (by the commutivity of  elements of  S and 
therefore *S) 

nk ~;i * ' - - * % * ~  
in a *endomorphism of *:V. Let 
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Y ' =  {oe],: , . . .  ,o~,~ ,o~(y) l y e  Y, k e I + , n i e I  

a n d l  ~ Pi<~ co for i = 1 . . . . .  k}. 

Then a(Y) C_ y,, and for each/3 in S a n d y  in Y', */3(y) and *13-a(y) are in Y'. 

Let/3 be an element of S. Since/3 is an endomorphism of f f  and is one-to- 
one, */3 is an *endomorphism of *~ /and  is *one-to-one, from which it follows 

that */3 is an endomorphism of *~ /and  is one-to.one. For each j in J, let 

T; = *Tj t  Y' and let ~ / '  = (Y', T])#~j. For each 3' in S, let 7' = *7 t Y'. 
Then by construction,/3' is one-to-one and is an endomorphism of W '. Also 

since by construction/3,-l(y) is in Y' for all y in Y',/3' is onto Y'. Thus/7' 
is an automorphism of Y'. Since tx t Y is an isomorphic imbedding of W into 
W', we may identify Y and a(Y) and thus consider 2 / '  as an extension of~/  

and/3' as an extension of/3. [] 

THEOREM5.2.  (Theorem2.8.). Suppose ~ is a monotonic prescalar 
structure. Then S has an extension ~ = (X, ~-', F, R) that has the following 
five properties: 

(i) S is Dedekind complete; 

(ii) ~ i s  homogeneous, i.e., for each x, y in X there exists an auto- 
morphism tx o f  ~ s u c h  that tx(x) = y; 

(iii) f f  satisfies monotonicity (Definition 2.10.); 

(iv) each automorphism of  ~ extends to an automorphism o f  a~; 

- >., >., (v) X is dense in (X, - ), i.e., for each x, y in X such that x y, 
there exists z in X such that x >-'z ~S y. 

Proof by nonstandard analysis. Let ~ be an enlargrnent of ~Z ~. Then 
* S = (*X, *>', *F, *R) and * ~ = (*A, *>', **). To simplify notation, ~ will 
be written for *--~ and * for **. 

Recall that an element c~ of  *A is said to be finite if and only if for some 
/3, 7 in A,/3 >" e ~ % ~ in *A is said to be infinitesimal if and only if for each 
positive 7/in A, ~7 >-a  >-~- l .  Define the binary relation --~ on *A as follows: 
for each ~,/7 in *A, o~ ~--/3 if and only if a/3 -1 infinitesimal. Then it is easy to 
show that ~- is an equivalence relation on *A. 
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Definition 1. An element x in *X is said to be finite if and only if there 
exist y ,  z in X such that y >- x >-z. 

Definition 2. Define the binary relation = on the set of fnite elements 
of *3" as follows: for each finite x, y in *X, x ---y if and only if for some 
infinitesimal a,/3 in *A, ~(x) >'y and/3(v) >'x. 

The following three lemmas are easy to show: 
Lemma 1. ~ is an equivalence relation on the set of finite elements of *X. 
Lemma 2. For all finite elements x, y in *X, x ~-y if and only if for all 

infinitesimal or,/3 in *A, ~(x) ~/30,) if and only if for some infinitesimal ~,/3 
in *A, ~(x) =/3(y). 

Lemma 3. Suppose o~ in *A is positive and noninfinitesimal and/3 in *A is 
infinitesimal. Then ot ~-/3, i.e., for each x in *X, c~(x)~-/3(x). 

Lemma 4. Suppose x, y ,  u, v are finite elements of *X, x ~ u and y --- v. 
Then *F(x,y) -~ *F(u, v). 

Proof Without loss of generality suppose *F(x,y)~ *F(u, v). Let o~ and 
be infinitesimal elements of *A such that o~(u)>-x and /3(v)>-y. Let 

3' = max {a,/3}. Then ~,(u) ~-x and 3'(v) >-y. Then by *monotonicity of *F, 

(5.1) 3'[*F(u, v)] = *F[7(u), 3'(v)] ~- *F(x,y) ~_ *F(u, v). 

Since 3' is infinitesimal, by Lemma 2, 3'[*F(u, v)] ----*F(u, v), and thus by 
Equation (5.1), *F(x,y) -~ *F(u, v). 

Definition 3. Let 

J7 = {A I 2x is a = equivalence class of finite elements of *X}. 

Let ~ '  be the following binary relation on J(: for each 2x, 17 in J(, 

A ~ '  17 iff forsomexEAandyE17,x~--y.  

The following lemma follows from applying usual nonstandard analysis 
techniques to <X, >'>: 

Lemma 5. The following three statements are true: 

1. For each 2x, 17 in J~, 2x >-' I" if and only if for all x in A and all 
y in P,x>-y. 

2. ~ '  is a total ordering on JT. 

3. (_~,~') is Dedekind complete. 
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Definit4on 4. Define the ternary relation F on )( as follows: for each 
A, F, 2 in X, F(A, P, 2) if and only if for some x E A, y E F, and z E 2], 
*F(x,y) ~ z. 

Lemma 6. Let A, F and 2] be elements of ~ .  Then F(A, P, 2]) if and 
only if for all x E A, y E F, and z E 2, *F(x, y)  -~ z. 

Proof. We need only show the 'only if' part of the lemma. Suppose 
F(A, F, 2). Let u, v, w be such that u E A, v E F, w E 2, and *F(u, v) ~- w. 
Let x, y be arbitrary elements of *X such that x E A and y E F. Then 
x ---- u and y ~- v. Since ---- is an equivalence relation, we need only show 
that *F(x,y)~-w.  There are two cases: Case1: *F(x,y)>'w.  Let a, ~ be 
infinitesimal positive elements of *.4 such that ~(u)>'x and 13(v)~y. Let 
7 = m a x  {t~,/3}. Then ~/(u)~x and 7 ( v ) ~ y ,  and by the *monotonicity of 

*F and Lemma 2, 

~,(w) ~- v[*f(u, v)] = *Fb,(u), ~(v)l >--*F(x,y) >" w, 

and thus, since by Lemma3, 7 ( w ) ~ w ,  it follows that *.F(x ,y )~w.  
Case 2: that w >" *F(x,y) follows by an analogous argument. 

It immediately follows from Lemma 6 that for all A, F, 2, 2'  in J(, if 
F(A, F, 2) and F(A, F, 2'), then 2 = 2',  i.e., that /~ is a function. Thus 
we shall write F(A, F) = 2 for F(A, F, 2). 

Definition 5. For each finite a in *A, let ~(A, F) be the binary relation 
on )( that is defined as follows: for each A, P in )(, 

~(2x, I') iff for some x in s ~(x) e r .  

Lemma 7. For each finite ~ in *.4 and each A, F in )(, 

~(A,F) iff for a l lx inA,  a(x) EP.  

Proof Suppose fi(A, F). By Definition 5, let u in A be such that a(u) ~ 17. 
Let x be an arbitrary element of A. Then x,~-u, and thus by Lemma 2, let 
% 6 be infinitesimal elements of *,4 such that ~,(x)>-u and 6(u)>'x. Then 

* ~,(x) >" a(u) and a * 6(u) ~--a(x). Using commutivity of * in *.4, it follows 
that 7[a(x)] >" ~(u) and 6 [t~(u)] >" a(x), and since c~(x) and c(u) are finite, 
it then follows that a(x) -~ ~(u). Since ol(u) E F, it follows that ct(x) E P. 

Lemma 8. For each finite a in *.4 and each 2x, P, F' in )~,-if g(A, F) iff 
~(A, P'), then F = P'. 

Proof. Immediate from I.emma 7. 
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From ]_emma 8 it follows that ~ is a function on .~ and we shall write 
E(A) = F for E(A, F). 

Lemma 9. For each finite a in *A, E is an automorphism of (X, ~',/7>. 

Proof. Let a be an arbitrary finite element of *A. It is easy to show that 
is an order isomorphism of ()(,~'>. Let A, F be arbitrary elements of X. 

Let x be an element of A and y an element of F. Let z and E be such that 
*F(x,y).---z and fi(A, p) = E. Then z E E. Furthermore, a(x) E E(A), a(y) E 
E(P), and a(z) E E(E). Since a is a *automorphism of * ~ ,  *F[a(x), a(y)] = 
a(z). Thus by Definitions 4 and 5,/7[E(A), E(F)] = E(E). 

Lemma 10. For each A, F in .~ there exists a finite a in *A such that 
~(A) = r .  

Proof. Let A, F be arbitrary elements of X . Let x be an element of A 

and u, v be elements of F such that u ~-' v. By *automorphism density let 
a be an element of *A such that u ~.a(x) ~- v. Then a is finite and a(x) E F. 
Thus ~ (~ )  = F. 

Lernma 11. fiis strictly monotonic in each variable. 

Proof. We will show ff is strictly monotonic in the first variable. The case 
for the second variable follows by a similar argument. Suppose A, A', and F 
are elements of )~ and/x ~.'/','. We need only show that/7(A, F) ~-'/7(A', F). 

Let x be an element of X and ~ the element of .~ such that x ~ ~. By 
Lemma 10, let a be a finite element of *A such that 8(F) = ~. Let O = 8(A) 

and O' = 8(A'). Then by Lemma 9, O ~" O'. Also by Lemma 9, 

F(A, r )  >-'/?(A', r )  iff F(O, E) >-' fi(O', Z'), 

so that it needs only to be shown that if(O, E)~-'F(O',  IS). L e t y ~ O  and 

z EO'.  Since O>-'O', let u,v be elements of X such that y~--u~-v~-z.  
Then by the *monotonicity of *F, 

*F(y,x) >" *F(u,x) >" *F(v,x) ~ *F(z,x), 

where *F(u, x) = F(u, x) and *F(v, x) = F(v, x) are elements of X. It follows 
from this that F(O, N) ~-' F(| ~). 

For each x in X, let 2 be the element A of _~ such that x ~ A. Then the 

mapping of x --.2 is an isomorphic imbedding of (X, >', F> into (X, >",/7). 
Thus we may think of (X, ~ ' ,  F) as an extension of(X, --~, F). Considered in 
this way, it is easy to show that X is a dense subset of(X, ~ ' ) .  Let/~ be the 
ternary relation on .~ defined by: for each A, p, Z in .~, 
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/~(A, r ,  ~) iff /7(A, r ,  ~). 
- -  ] ~ . p  

Let ~ = (X, -- ,  F, R). Then by the above Lemmas Conditions (i), (iv), and 
(v) of the Theorem holds. By Lemmas 9 and 10, Condition (ii) holds, and by 
Lemma 11, Condition (iii) holds. [] 

THEOREM 5.3. (Theorem 2.9.). Let ~ = (X,>'-, O) be a positive con- 
catenation strueture. Then the following conditions are equivalent: 

(i) 2t a satisfies automorphism density (Definition 2.10.); 

(ii) foreachx,  y i n X ,  i fx>-y ,  t h e n f o r s o m e a i n A ,  x>-a(y)>-y;  

(iii) foreachninI+ andeachx, y i n X ,  n ( x O y )  = (nx)O(ny) .  

Proof. (i) implies (ii) by the definition of automorphisms density. 
Assume (ii). Then by Theorem 2.5. of Cohen and Narens (1979), O is 

a closed operation. Then by a modification of the proof of Theorem 5.2. 
of Cohen and Narens (1979), if follows that ~ is isomorphically imbeddable 
in a Dedekind complete scalar structure S = ()(, ~ ' ,  (D) that is a positive 
concatenation structure. By Theorem 3.1. of Cohen and Narens (1979), 
for each x, y in )( and each n in 1 +, n(x C3y) = (nx) 0 (ny). Since ~ is a 
substructure of S ,  Condition (iii) follows. 

(iii) implies that a n defined by an(x) = nx is an automorphism of ~,~, and 
thus by Lemma 3.3. of Cohen and Narens (1979) (i) follows. [] 

THEOREM 5.4. (Theorem 2.10.). Let • = (X, -->', Q) be a totally ordered 

positive concatenation structure that satisfies automorphism density. Then 

the following three statements are true: 

1. ~ is extendable to a positive concatenation structure that is a 
Dedekind complete scalar structure. 

2. All Dedekind completions of  ~ that are totally ordered positive 
eoncantenation structures are isomorphic. 

3. I f  ~/~ is a Dedekind completion o f  S that is a totally ordered 
positive concatenation structure, then each automorphism of  
~C~ extends to an automorphism of  Jr. 
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Proof. 1. Statement 1 was shown in the proof of Condition (ii) of 

Theorem 5.3. 

2. Suppose by Statement 1 of this theorem that ~ = (.~, >", O) is an 
extension of ~ that is a positive concatenation structure and a Dedekind 

complete scalar structure. We will suppose that X, ~ resulted in the construc- 

tion used in Theorem 5.2. of Cohen and Narens (1979). By this construction, 
X is an order dense subset of (X,>'-'). Suppose ~ 1  =(Xx, -> ' l ,O1) i s  an 

extension of ~ that is a Dedekind complete positive concatenation structure. 
To show Statement 2 of the Theorem, we need only show that S and ~ 1  
are isomorphic. 

It is easy to show by using basic properties of positive concatenation 

structures that ( .~ ,~ ' )  and (Xl,> 'x)  are without endpoints and have de- 

numerable order dense subsets. Since S and $ 1  are Dedekind complete 
it follows that (.~, ~ ' )  and (Xx, ~1)  are of order type 0 and therefore by a 
classical theorem of G. Cantor are isomorphic. Thus without loss of generality, 

we may assume ) ( =  X'  and ~- '=-~1,  and write ~9~ 1 = (X, .>'- ', O1). Thus to 
show the Theorem, we need only show O = Oa. This will be done by con- 
tradiction. Suppose x , y  are elements of ~ such that x O y  :~ x O1 y.  

Case 1. x O y  >:x  01 y .  Since X is order dense in )(, let z, w in X be 
such that 

(5.2) x O y ~ '  z >"  w >-' x O1 y.  

Since ~ satisfies automorphism density, let ~ be an automorphism of 
S such that 

z >-' 3 ( w ) > "  w. 

Let s be an element of X such that x >- s. It then follows from basic proper- 

ties of automorphisms of positive concatenation structures developed in 
Cohen and Narens (1979) that 3n(s) becomes arbitrarily large for large n in 
I + and thus that for some k in I +, 

~k+l(s) -> x >- t~k(s), 

which by letting u = 3k(s) yields 

(5.3) 13(u) >'' x > '  u. 

Similarly v in X can be found so that 
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(5.4) ~(v) ~ '  y ~" v. 

Thus by Equations (5.3) and (5.4) and the monotonicity of O, we get 

(5.5) t3(u) �9 t3(v) =/3(u) O/3(v) >--' x O y ~'  z >-'/3(w). 

Since/3 is an automorphism of ~ ,  it follows from Equation (5.5) that 

(5.6) u O v >- w. 

By Equations (5.2) and (5.4), w>-'x 01y .  Thus by Equations (5.3) and 
(5.4) and the monotonicity of Ox, 

w > . u  Q v  = u  O v ,  

which contradicts Equation (5.6). 
Case 2. x 01 y ~ ' x  C) y. Similar to Case 1. 

3. We will now show Statement 3. Let ~ =  ~ ,  >'', 0 )  be an extension 
of ~ that is a Dedekind complete positive concatenation structure. Then by 
Statements 2 and 1 and the proof of Statement 2, X is an order dense subset 
of (3(, >") and ~ is a scalar structure. Let a be an arbitrary automorphism 
of ~ ,  and for each x in )~, let 

(5.7) ~(x) = l . u .b {a (y ) l yEX  and x>-'y}. 

We will show ~ is an automorphism of ~2". 
The 'l.u.b' of Equation (5.7) exists by the order density of X in (X, >"). 

Thus ~ is a function from .~ into Y(. 
Suppose x, y are arbitrary elements of )( and x ~ ' y .  To show ~ is order 

preserving it is sufficient to show ~(x)>-' ~(y). Since X is order dense in 
. .  , - . ,  let u, v in X be such that x>-'u~-'v >-'y. Then it follows from 

Equation (5.7) that 

~(x) >--' ~(u) >-' ~(v) >" ~Cv). 

Next we will show that ~ is onto )(. Let x be an arbitrary element of )(, 
Y= {y EXla(y)  x} and Z =  {y E)(lx>-'fiCv)}. Then it easily follows 
that (Y,Z)  is a Dedekind cut of (.~, ~ ' ) .  By Dedekind completeness of 
(.~,k-'), let w be the cut element in ()7,~') of (Y,Z). We will show by 
contradiction that ~(w)= x. Suppose ~(w)+ x. There are two cases to be 
considered: 
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Case 1. ~(w) >"x. Since X is order dense in ()(, >"), let p in X be such 
that ~(w) ~-'p ;>-'x. Since a is an automorphism of ,Y", let q in X be such that 
or(q) =p .  Then q is in Y and w>.'q,  contradicting that w is the cut element 

of (Y, Z). 
Case 2. x >" ~(w). Similar to Case 1. 
Again assume that x, y are arbitrary elements of X'. We will show 

~(X Oy)  = fi(x) O if(y). Since by Statement 2, all Dedekind complete, 
totally ordered positive concatenation structures that are extensions of 

are isomorphic, it follows from the construction used in the proof of 
Theorem 5.2. of Cohen and Narens (1979) that for all w, z in J(, 

(5.8) wC)z  = 1 . u . b { u O v l u ,  v E X ,  w ~ ' u ,  and z ~ ' v } .  

In particular, from Equation (5.8) it follows that 

(5.9) { P l p E X  and xOy--~ 'p} 
>-, >-, 

= {P I P E X and for some u, v in X, x -- u, y -- v, 

and u O v ~'p}.  

Also, by Equation (5.7), 

(5.10) ~(x)O~(v) = 1.u.b { s O t r s ,  t E X ,  a(x)--  s, and ~,(y) ->'-' t}. 

Letting u, v in X be such that in Equation (5.10) a(u) = s and a(v) = t and 
using ~ is order preserving on (X, ~-') and noting from Equation (5.7) ~ is 
an extension of a, it follows that 

(5.11) fi(x) O ~(y) = 1.u.b {a(u) 0 a(v) I u, v E X, ~(x) --~' a(u) 

and fi(v) ~--' ~(v)} 

= 1.u.b {a(u) O a(v) I u, v E X, x ~ '  u and y ~ '  v } 

= 1.u.b {a(u O r )  l u, v E X ,  x ~ ' u  andy >"v}. 

However, from Equation (5.9) 

(5.12) 1.u.b {a(u O r ) [ u ,  v E X ,  x ~ ' u ,  andy>"v}  

= 1.u.b {a(u O r ) [ u ,  v E X  and x C ) y ~ ' u  C)v}. 

Thus from Equations (5.11), (5.12), and (5.7), 
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fi(x) O fi(y) = 1.u.b {a(u O r ) l u ,  v E X  and x O ' y > " u O v }  

= fi(x (Dy). [] 

Throughout the rest of this section, we will use concepts developed in 
Narens and Luce (1976) and Cohen and Narens (1979). 

DEFINITION 5.1. Let ~' = <X x P,~> be a local conjoint structure with 
minimal element ab (Definition 4.1. of Narens and Luce, 1976). <u,/3> is 
said to be a change of  scale for ~ if and only if a and/~ are order auto- 
morphisms of <X,~x)  and <P, ~p> respectively, and for each xp, yq in 
X x P ,  

xp " y q  iff ot(x)/3(p) - a0')/3(q). [] 

DEFINITION 5.2. ~ = <X x P, ~ ,  ab> is said to be a conjoint scalar struc- 

ture (with minimal element ab) if and only if ~ satisfies the following four 
conditions: 

(i) ~ i s  a local conjoint structure with minimal element ab; 

(ii) (X, ~x> and <P, ~p> are totally ordered and Dedekind complete; 

(iii) for each xp in X x P there exists y such that yb ~ xp; 

(iv) for each x, y in X, if x ~= a and y ~ a then there exists change of 
scale (a,/3) such that a(x) = y .  [] 

(The Dedekind completeness in Condition (ii) is not essential and the 
homogeneity part of Condition (iv) can be weakened to an automorphism 
density condition.) 

CONVENTION. Throughout the rest of this section let ~" = <X x P, ~-,., ab) 

be a fixed conjoint scalar structure. Since ~ x  and~v  are total orderings, we 
will often write >'x for ~ x  and >'p for ~v- [] 

CONVENTION. Throughout the rest of this section let ~ '*  = (X § >", O') 
be the positive concatenation structure induced by ~' (Narens-Luce 1976, 
Definition 4.3 .). 
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THEOREM 5.5. a~ + is a Dedekind complete, scalar structure. 

Proof. Let (a,/3) t~e a change of scale for g~. We need only show that 
(restricted to X +) is an automorphism of X+; that is, since oe is an order 
automorphism of (X, >'x), we need only show oe(x O'y)  = a(x) 0 '  a(y) for 
all x ,  y in X +. 

Let ~, r be defined as follows: for each xp in X x P, 

xp  ~ ~(xp)b and xb ~ ar(x). 

Then by the construction of Narens-Luce (1976), 

x o ' y  = ~[xr0,)]. 

Note that since a,/3 are order automorphisms of (X, ~x )  and (P, >-p) and 
a, b are minimal elements, it follows that 

a ( a )  = a and /3(b) = b. 

Let x, y be arbitrary elements of X. Then 

yb  ~ at(y),  

~Cv)/3(b) ~ ~(a)~[r0,)], 

~0,)b ~ a~[rCv)], 

and thus 

(5.13) 

Now, 

r[~Cv)] = ~[r(v)l. 

(x O ' y )b  ~ xrOe), 

a(x O'y)~(b)  ~ a(x)#[rO')], 

oe(x O ' y ) b  ~ a(x)/3[r(v)]. 

Thus by Equation (5.13), 

~(x O 'y )b  ~ ~(x)r[~0,)],  

from which it follows that 

ot(x O 'y )b  ~ ~[a(x)r(a[y])] b, 
i.e., 

~(x O 'y )  = ~(x) o'~Cv). [] 
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DEFINITION 5.3. (r 4, O) is said to be a scalar representation for ~ if and 
only if r is a function from X onto the nonnegative reals, 4 is a function 
from P onto the nonnegative reals, | is a binary operation on the nonnegative 
reals, and the following five conditions hold for each x p , y q  in X x P, 

(i) r = 4(b) = O; 

(ii) r | 4(b) = r 

0~) r e 4@) = 4@); 

(iv) there exist f :  Re + ~ Re § such that i fx  ~ x  a and p~..p b, then 

r 0 4(P) = 4(P)f r 

(v) x p ~ y q  iff ~(x) Q 4(P) /> 0(. v) (D 4(q). [] 

It follows from Condition (iv) of Definition 5.3. that multiplications by 

positive reals are the automorphisms of the positive concatenation structure 

(Re +, >t, (D). It also follows from Condition (iv) that if (~, 4, (D) is a scalar 
representation for 9 ~, then (r4~, r4 ,  Q} is a scalar representation for cC for all 

r in Re § 

THEOREM 5.6. There exists a scalar representation for ~. 

Proof. By Theorem 3.2. of Cohen and Narens (1979), let ( r  be a unit 

representation for the fundamental unit structure ~ + .  Define r as follows: 
~(a) = 0 and for each x in X § ~b(x) = r Define 4 on P as follows: for 
each p in P, 

4(p) = r 

Then 4@) = r = 0. Define | as follows: for each nonnegative real r, s, 

r O s  = r if s = 0, 

r |  = s  if r = 0, 

r O s = s ' i [ ~  / if r >  0, s >  0. 

Then by construction, we have shown Conditions (i), (ii), (iii), and (iv) by 
Definition 5.3. 



T H E O R Y  OF R A T I O  S C A L A B I L I T Y  69 

To show Condition (v), let x p , y q  be arbitrary elements ofX x P. Suppose 
x p > - y q .  Let z = ~(ap) and w = ~(aq). Then r(z) = p ,  r(w) = q, 4)(z) = ~(p), 

and 4)(w) = r Thus 

xr(z) >- yr(w),  

[xr(z)] >" x ~ [vr(w)], 

x O ' z  > - x  y O ' w ,  

4)(x o'  z) > 4)0' o '  w), 

I > 4)(w>. I 
L - " J 

q.'(P)" f [4)(x) > r f L~--~J' 

4)(x) e r > 4)(v) e r [] 
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