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Q U A L I T A T I V E  I N D E P E N D E N C E  IN P R O B A B I L I T Y  T H E O R Y  1 

Probability theory is measure theory specialized by  assumptions having to do 

with stochastic independence. Delete from probability and statistics those 

theorems that explicitly or implicitly (e.g., by  postulating a random sample) 
invoke independence, and relatively little remains. Or at tempt to estimate 

probabilities from data without assuming that at least certain observations 

are independent, and little results. Everyone who has worked with or applied 

probability is keenly aware of  the importance of  stochastic independence; 

experimenters go to some effort to ensure, and to check, that repeated 

observations are independent. 

Kolmogorov (1933, 1950) wrote: 

"The concept of mutual independence of two or more experiments holds, in a certain 
sense, a central position in the theory of probability" (p. 8). 

"In consequence, one of the most important problems in the philosophy of the 
natural sciences is - in addition to the well known one regarding the essence of the 
concept of probability itseff - to make precise the premises which would make it 
poss~le to regard any given real events as independent" (p. 9). 

Despite these views, his classical axiomatization of  numerical probability 
brings in stochastic independence not as a primitive, but as a defined quantity. 
ff (X,~,P) is a finitely or countably additive probability space, then he 

defines two events A, B in ~ to be (stochastically) independent if and only if 

~ A  n B) = e(A )e(B ). 

The same is true of  most presentations of  qualitativa probability, such as 
Savage (1954), in which sufficient axiomatic structure is introduced on 
(X, ~,~.), where N. is a binary relation o f  qualitative probability on ~, so as to 

be able to construct a finitely additive probability representation in terms of  
which independence is defined in the usual way. An exception is the work o f  
Deme te r  (1970) who combines axioms involving qualitative probability and 
independence to construct a finitely additive probability representation. 

Since it is easy to give examples of  qualitative structures for which the 
representation P is not unique, it is clear that stochastic independence cannot 
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be defined in terms of ~.. (And even i f P  is unique, it appears that by using 
metamathematical results one can show the impossibility of  giving a general 
definition of independence in terms of the underlying order.) In this con- 

nection, two quotations from Fine (1973) are relevant: 

"...we must be cognizant of the fact that invocations of [stochastic independence] 
are usually not founded upon empirical or objective knowledge of probabilities. Quite 
the contrary. Independence is adduced to permit us to simplify and reduce the family 
of possible prvbabilistie descriptions for a given experiment" (p. 78). 

"Given our views as to the problems encountered in assessing probability, we do 
not favor a purely probability-based definition [of independence]" (p. 141). 

Once it is accepted that independence should not be treated as a defined 

concept, but rather should be in some sense a primitive which must, however, 
be consistent with the numerical probabilities, then another distinction 
looms important. One way to suggest it is to ask whether the author speaks 
of  events or experiments as being independent. This distinction seems to lurk 
below the surface of many discussions, but it is difficult to cite brief quotations 
to bring it out, and in many cases (e.g., Kolmogorov above) authors treat 

events and experiments interchangeably. 
In the case of events, one may think of independence as a binary relation 

between events, written • and one is interested in its being consistent with 
numerical probability in the weak sense that for all A, B in ~, 

(1) A / B  implies P(A NB)=P(A)P(B), 

or in the strong sense that 

(2) A •  OB)=P(A)P(B). 

In the case of  independent experiments, one usually finds the discussion 

cast in terms of two or more independent random variables, as in a random 

sample. The usual probabilistic approach assumes that the experiments under- 
lying the two random variables are each run, that a joint probability distribution 
exists over the various pairs of  events, and that the relevant pairs induced by 
the random variables are stochastically independent as events. In practice, 
however, what one does is attempt to devise experimental realizations for 
which there are ample structural reasons for believing the two experiments 
are independent of each other in the sense that knowledge of the one does 
not affect the other. This concept of independence is discussed at length by 
Keynes (1962), see especially Ch. XVI. 
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Our aim here is to axiomatize qualitatively the concept of independent 
experiments and then we show how it relates to stochastic independence of 
events. The outline of the paper is, first, to discuss the qualitative idea of 
independent events and to show the conditions under which the usual multi- 
plicative representation is forced. This leads naturally to the question of 
qualitative conditional probability and how its induced notion of independent 
events relates to the given primitive. Next we formulate the idea of independent 
experiments, show why that definition leads naturally to multiplication of 
probabilities and how such a structure can be embedded in a probability 
space in which independence of experiments is reflacted as stochastic in- 
dependence of events. Finally, we discuss how all of this relates to the usual 
normalization of probability, to meaningfulness of probabilistic statements, 
and to dimensional analysis. Proofs ofalltheorems are relegated to an appendix. 

QUALITATIVE INDEPENDENCE OF EVENTS 

The goal of this section is to understand what properties a qualitative relation 
of independence between events must satisfy in order for it to be represented 
weakly (Eq. 1) or strongly (Eq. 2) as stochastic independence. 

To this end, let us begin with a qualitative probability structure (X, t, ~'), 
where X is a set, t an algebra of subsets of X, and _>" a weak ordering (tran. 
sitive and connected) of 'at least as possible as' on t. Let us suppose there is a 
unique finitely additive probability measure P that represents ~_. (See Krantz 
et al., 1971, Ch. 5 for various sets of sufficient conditions for P to exist.) And 
finally let • be a binary relation over t, which is to be interpreted as qualitative 
independence of events. If ~ is a subalgebra of t ,  it is convenient to abbreviate 
statements of the form A • B for all B in ~ by A 1 9.  

To insure that I is a sufficiently rich relation, we impose the following 
structural conditions. 

AXIOM 1. (X, t,  ~ 1) is a qualitative probability structure with 1 a binary 

relation on t such that there exists a set t '  o f  subsets o f  X with the following 
four  properties: 

O) t '  is an algebra o f  sets. 
(~) t' c-t, 
(iii ) for  all A in t ,  there exists A ' in t '  such that A ' ~ A ,  
(iv) for  all A ' in t ' ,  there exists A in t such that A ~ A ' and A I t ' .  
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Next we formulate a necessary interlock between 1, ~ ,  and O if I is to be 
represented as in Eq. 1. 

AXIOM 2. For all A, B, C, D in ~ suppose A 1 B, C i D, and A ~ C. Then 

B ~ . D i f f  A A B  ~. CND.  

THEOREM 1. Suppose (X, ~, ~-,• satisfies Axioms 1 and 2 and that(X, ~, ~. > 
has a unique probability representation (X, ~,P). Then for all A, B in ~, 

A I B  implies P(A n B) = P(A)P(B). 

To achieve the equivalence of I and stochastic independence we need 
something close to Axiom 2 but with a statement about • as the consequence. 
The following necessary condition seems appropriate. 

AXIOM 3. For all A, B, C, D in ~, irA • B, A "~ C, B "~ D, and A n B ~ Co  D, 
then C • D. 

THEOREM 2. Suppose (X, ~, ~., 1) satisfies Axioms 1,2, and 3 (X, ~, ~-> 
has a unique probability representation (X, ~,P). Then for aU A, B in ~, 

A I B  i f fe (A NB)  =P(A)P(B). 

The proofs of these theorems are given in the appendix; however, it is 
important to understand the basic nature of the proofs. The key idea is to 

study the property 

.,4 ~ B i f f A  n Y ~ . B A  Y 

for some fixed Y in ~ and all A, B in the subalgebra ~'. The mapping 

F(A) = A N Y is shown to establish an isomorphism between the structure 
restricted to ~' and that restricted to F(~'). And because of the uniqueness of 
the postulated probability measure, this isomorphism forces the multiplicative 
property P(A n Y) = P(A)P(Y).  In our opinion, the basic feature of in- 
dependence is the above monotonicity of ~ under the operation n ;  the 
multiplicative representation of independence results from the isomorphism 
induced by monotonicity. All of this is captured in Lemmas 1-3 of the 
Appendix. 

QUALITATIVE CONDITIONAL PROBABILITY AND INDEPENDENCE 

Given the structure LY,~,~.~I), one can introduce the following concept of 
qualitative conditional probability. Define the ternary relation I on ~ by: 
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for A, B, C in ~, A [8 ~ C i f f  there exist B', C' in ~ such that B' ~ B, C' ~ C, 
B' I C', and B' r C' ~ A N B. 

In terms of this concept, another notion of independence is available, 
namely, AIB "-- A. We first show that in the presence of all three axioms, the 
two concepts agree. 

THEOREM 3. Suppose (,If, ~, ~. , I) is a qualitative probability structure with a 
binary relation L For aliA, B in ~, i f  the structure satisfies Axiom 3, A ~ ~ A 
implies A I B; i f  the structure satisfies Axioms i and 2,A I B  implies ALB ~ A .  

Furthermore, the probability representation of • is as one would expect. 

THEOREM 4. Suppose (X, ~, ~,  1) satisfies Axioms 1 and 2 and has a unique 
probability representation P. Then for all A, 8, C, in ~, 

A i~ ~ c l i f e ( c )  = ~ ( a  n ~)/P(8). 

INDEPENDENCE OF EXPERIMENTS 

The idea of the same experiment being repeated twice (the generalizations to 
any finite number of replications are obvious) can be captured by considering 

• ~, where ~ is an algebra of subsets of  a set X. To be strictly correct, we 
should distinguish the two occurrences of ~, treating them as isomorphic 
copies, but such an abuse of notation does not seem to lead to problems. 
The notion of qualitative probability corresponding to the idea of a joint 
distribution is a binary relation ~ on ~ • ~. Our problem is to formulate 
axioms on >. sufficient to represent it as a joint probability measure that is 
a product of  a measure on ~. Roughly, the axioms will formulate the idea 

that the experiments are independent and will also reduce the construction 
of the probability measure to a known result. 

DEFINITION 1. Suppose X is a set, ~ an algebra o f  subsets o f  X, and >_ a 
binary relation on ~ X ~. The structure (X, ~ • ~, ~ is called an independent 
joint qualitative probability structure i f  and only if  the following axioms hold 
for all A, B, C, D, E, Fin  ~ : 
AXIOM 1. ~ is a weak ordering. 
AXIOM 2. (Independence) (A, C) ~. (B, C) i f f  (A, D) >_ (B, D). 
AXIOM 3. (Symmetry) (A, B) ~ (B, A). 
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AXIOM 4. (Distribution) l f  A n B = C n D = @, (.4, E) ~ (C, 10, and (B, E) 
~. (D, F), then (A w B, E) ~ (C W D, F). Moreover, the conclusion is >- if 
either hypothesis is >-. 

Note: By Axioms 2 and 3, a unique ordering-~1 is induced on ~ which, by 
Axiom 1, is a weak order. 

AXIOM 5 . X > ' 1 0 , A  ~-10. 
AXIOM 6. (Archimedean) Every sequence of the following form is finite: 
A~)~ O,B>'IC>'~ O, and (Ai+ 1, C ) ~  (Ai, B). 

The remaining axioms are structural. 
AXIOM 7. There exists U in ~ such that (U, 2") ~ (A, B). 
AXIOM 8. l f  A N B = O and (A, B) )r. (C, D), then there exist C', D' in ~ such 
that C'~.1 C, D ' ~  D, and C' n D' = O. 
AXIOM 9. I r A q i  B, then there exists A t in ~ such that A ' ~  A and A ' ~_ B. 

Comment: If one knows the theory of additive conjoint measurement, it is 
not surprising that we invoked Axiom 2. One might also have expected us to 
postdate the Thomsen condition which is so essential to a product repre- 
sentation. However, as has been demonstrated in slightly different contexts 

(Narens, 1976; Narens & Luce, 1976), when one has a conjoint structure with 
an operation on a component that has an additive representation and is 
related to the conjoint structure by a distribution law (Axiom 4), then the 

multiplicative representation follows without the Thomsen condition. 
The three structural axioms are strong -: in essence they imply an atomless 

structure with many events equivalent in probability. It would be nice to 
weaken them. 

THEOREM 5. Suppose (X, ~ X ~, ~.) is an independent joint qualitative 
probability structure. Then there exists a real-valued function P on ~ such 
that 

1~ 

2. 

(X, ~,P) is a finitely additive probability space, and 

for all A, B, C, D, in ~, 
(A, B)~  (C, O) if f  P(A)P(B) >~ P(C)P(D). 

The next obvious question is whether the conjoint independence captured 
in part 2 of Theorem 5 is also reasonably interpreted as stochastic indepen- 
dence of events, as is usual in probability theory. Put another way, can one 
imbed the structure (X, ~ X ~,P) into a probability space. The answer is Yes. 
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Let (~ • ~)* consist of all subsets of X • X which are unions of finitely 

many disjoint subsets from ~ X ~. For E in (~ X ~)* with 
n 

E = U (A,, 
i = l  

where for i, ] = l,  2, ... , n, i =/=], (Ai, B/) and (ApBi) in ~ X ~ and (AoBi) n 

(A/, B/) = 0, define 
n 

P*(E) = X P(Ai)P(Bi)" 
i=1 

THEOREM 6. Suppose ~ is an algebra of  subsets o f  X, then 
(i) (~X ~)* is an algebra of  subsets o f  X X X; and 
(ii) (~ X ~)* is the minimal algebra of  X X X that contains ~ X ~. 

I[ (X, ~, P) is a finitely additive probability space, then 
(iii) (XX X,(~X ~)*, P*) is a finitely additive probability space; 
(iv) it is the unique space with the property that for (A, B) in ~ X ~, 

P*(A, B) = P(A)P(B); and 
(v) ?* [(a, X) n (X, 8)] = e*(A, x)e*(x, 8). 

UNIQUENESS OF PROBABILITY REPRESENTATIONS 

The literature on numerical representations of qualitative probability structures 
is not really satisfactory for the following reason. In order for the repre- 
sentation to be unique (with P(X) = 1), one is forced to postulate very strong 
solvability conditions. Without such conditions, such as in the finite case, not 

only do several representations exist but their relations to one another are 
difficult to characterize. But the real issue centers on nonuniqueness which is 
clearly incompatible with independence being formulated as P(A (q B) 
= P(A)P(B). This has led many of us to believe that were we to introduce an 
appropriate qualitative notion of independence, it could be used to force 
uniqueness of the representation. So far,however,this has not proved successful. 

The discussion of the preceding section suggests an alternative route, 
namely, to require that the measure represent repeated, independent exper- 
iments. When we do this, the representation is unique for any X. 

THEOREM 7. Suppose (X, ~n >7.,n) ' n = I, 2, ..., are ordered structures that 
are represented by a probability space (X, ~,P) in the sense that for every n 
and all A 1 . . . . .  An, B1 .... ,Bn in ~. 
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n n 

( A , ,  ... , An) ~- n (B,  . . . . .  Bn) iff I-[ P(A.~ ~ l-I P(Bi)" 
i=1 i=1 

Then P is the  unique representation. 

D I S C U S S I O N  

Among the various numerical measures used in the physical sciences, prob- 
ability seems to have the unique status of  being unique, of having a natural 
unit as well as zero. This does not follow simply because the measure is 
bounded from above, for velocity has that property and no one claims that 
the velocity of  light must be 1. Rather, it is a claim that the numerical measure 

admits no transformations, that the statement P(X) = 1 is not purely con- 

ventional. Where does this added constraint come from? 
It arises from two facts. The first is the definition of stochastic indepen- 

dence, and the second is that X is independent of  every event in ~. From 

these two we see 

whence 

P(A) = e ( x  n A)  = e (X)e(A) ,  

P(X)= 1. 

This uniqueness of probability is not without some philosophic and, 

perhaps, practical disadvantages. These disadvantages arise when we consider 

the poss~ility that some statements which can be formulated in terms of 
numbers between 0 and 1 are not really meaningful when the numbers are 

treated as probabilities of  events. More generally, if one looks at the overall 

structure of  physical dimensions, which presumably should include probability 

as well as length, mass, e tc ,  there again is a distinction between meaningful 
and meaningl~ess statements, the meaningful ones corresponding to what 
physicists call dimensionally invariant laws (Krantz et  aL, 1971, Ch. 10; 
Lute, 1978). The definition of meaningful qualitative relations which has 
evolved is that the relation should be invariant under the group of trans- 
formations which take one representation into another - the uniqueness of  
the representation. Thus, if we take seriously the absolute uniqueness of  
probability, there are no transformations other than the identity and so all 
quantitative relations which can be formulated are meaningful. Such a con- 
clusion strongly suggests that either something is wrong with our concept of  
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meaningfulness or we are wrong about the absolute uniqueness of probability. 
If one examines carefully the proofs given in the Appendix, homomor- 

phisms of qualitative probability sub-structures play an essential role in our 
analysis of  independence, and so it is very difficult to believe that this natural 
quantitative interpretation - a scale change in probability - should be wiped 
out by the definition of  stochastic independence. Indeed, it is quite clear that 

the concept of independence does not need to restrict the representation of 
probability beyond that of a ratio scale (multiplication by a positive con- 
stant). This is transparent in our analysis of independent experiments, where 
the multiplicative structure arises from conjoint measurement, but it is 
equally true for events. Turn to the proof of Lemma 2, where we invoke the 
uniqueness of the additive representation, and assume P is a ratio scale rather 
than an absolute one, then we see that the assertion is altered to 

P(A n Y)P(X) = P(A)P(Y). 

In the usual case, P(X) = 1 and it is suppressed. This change then leads to the 
following modified representation of independence 

A I B  iffP(A OB) =P(A)P(B)/P(X). 

With that slight change, probability is then a ratio scale, just like the other 
basic extensive measures of physics. In particular, probability can be incor- 
porated into the dimensional structure of physics (if it is found to interrelate 
with other dimensions via distribution laws) and meaningfulness can be 
studied as with other dimensions. 

APPENDIX. PROOFS OF THEOREMS 

General notation and terminology: ~ and ~' are algebras of subsets of X (dosed 
under unions and complementation), A denotes the complement of A, ~_ is a 
weak order of ~, and if ~' ~.~,~_~, is the restriction of~_ to ~'. If(X, ~,P) is a 
probability space and P preserves the order ~_, then we say P represents 
(X, ~, ~_). Throughout, we will deal with the equivalence classes of ~. 

LEMMA 1. Suppose (AT, ~, ~-) is a weakly ordered algebra, ~' C_ ~, and there is 
a Yin  ~such tha t fora l lA ,Bin  ~', 

A ~_Bif fA n Y ~ B A  Y. 
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Define F(A) = A n Y and let ~" = F(~') = {F(A)M in ~'}. Then F is a quali- 
tative probability isomorphism o f (X ,  ~', ~_~,) and (Y, ~", ~_C). 
Proof. By definition of  ~", F is onto ~". To show F is one to one, suppose 

F(A) = F(B), i.e., A n Y = B n Y. Thus, (A - B) n Y = 0 = (B - A)  n Y. 

If  A = B, we are done. ff not,  then either A - B 4 : 0  or B - A 4: 0,  so with- 
out loss of  generality assume A - B > ' 0 .  Since A - B, q) are in ~', (A - B) n 
Y>'O n Y = 0,  a contradiction. So F is 1 : 1. 

Next we show F is a Boolean isomorphism. 

F(A u B) =(A u B)n  Y=(A n Y)U(B n Y)= F(A)U F(B) 

F(A)  =.4 n Y= ( x n  Y) - ( A n  Y) = Y -  F(A). 

Finally, F is an order isomorphism since for all A, B in ~', 

A ~ ,  B i f fA N Y ~ .B o Y i f f F ( A )  >:_~,F(B). 

LEMMA 2. In addition to the hypothesis o f Lemma 1, suppose P and P' =P I ~' 
the unique probability representations o f  ~ and ~' respectively, Then for each 
AinU',  

e(A n ~O = e(A)e(r). 

Proof. Let Q = PLY" and Q' = Q/P(I O. Clearly, Q'  is a probability represen- 

tation for (Y, ~", ~ , , ) .  But by  the isomosphism of  Lemma 1 and the fact that 

(X,~' ,  ~ , )  has a unique probability representation, we must have P ' (A) 

= Q' [F(A)]. Therefore, for each A in ~', 

P(A)=P'(A)=Q'[F(A)] - Q'OI n Y) = P(A n Y)  
P(Y) P(Y) 

LEMMA 3. Suppose in addition to the hypothesis o f  Lemma 2, there is a 
binary relation J_ with the property that if A J_ B and A I C then B >z_ C i f f  
A A B ~ A  n C. Suppose YL~'. ThenforallA in ~', 

P(A n Y)=P(A)B(Y).  

Proof. Immediate from Lemma 2. 

Proof o f  Theorem 1. Suppose A J_B. By Axiom 2(iii) l e tA ' ,B '  in ~' be such 
that A' ~ A,  B' ~ B. By Axiom 2(iv) let A"  in ~ be such that A" ~ A  and 
A"  L ~'. Since Axiom 2 (with A = C) yields the hypothesis of  Lemma 3, we 
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have P(A" r B') = P(A")P(B'). But Axiom 2 applied to A L B, A" 1 B', 
A ~ A", and B ~" B' implies A O B ~ A" n B', and so the result follows. 

Proof o f  Theorem 2. By Theorem 1, we know the implication goes in one 
direction. So suppose P(A n B) = P(A)P(B). According to Axiom 2(iii) and 
(iv), there exist A" in ~ and B'  in ~' such that A" " A, B ' ~  B, A" • ~'. By 
Lemma 3, 

e(A"  n B') = = e(A )e(B) = e(A n a), 

so A" N B' ~ A  n B. Since A" LB', Axiom 3 implies A lB .  

Proof o f  Theorem 3. Suppose A~B ~ A, i.e., there exist B', A' in ~ such that 
B' ~ B , A ' ~ A , B' LA', andA' n B' ~ A n B. By Axiom 3,A LB. 

Conversely, suppose A LB. By Axiom l(iii) and (iv) there exist A', B' in 
~' such that A' ~ A, B' ~ B, and there exists A" in ~ such that A" "~ A' and 
A" 1 ~'. In particular, A" 1 B'. So by Axiom 2, A" n B' ~ A n B. Thus, by 
definition, A [B ~ A. 

Proof o f  Theorem 4. Suppose A IB ~ C, i.e., there exist B', C' in ~ such that 
B' "~ B, C' "" C, B' 1 C', and B' n C' ~ A n B. By Theorem 1, 

P(A n B) = P(B' n C') = P(B')P(C') = P(B)P(C). 

Conversely, suppose P(C) = P(A N B)IP(B). By Axiom l(iii) and (iv), 
there exist B', C' such that B' ~ B, C' ~ C, B' 1 C'. By Theorem 1, 

P(B' n C') = P(a')P(C') = P(B)P(C) = P(A n B), 

so B' N C' "" A n B. By definition, C ~ A lB. 

Proof o f  Theorem 5. All references to Axioms are those of Definition 1. 

LEMMA 4. Suppose B >'lOand A O B = O, then A U B ~'IA. 

Proof ByB ~'~0 and Axiom 2, (B, X) >" (@, X). By Axiom 1, (A ,X)  "~ ( A y ) ,  
so by Axiom 4, (A UB, X)>-(A,X).  

LEMMA 5. (i) A ~ IB if f  B ~-1~1. 
(ii) l f  A ~IB ,  there exists B' in ~ such that B' C_A and B ' ~  IA. 

Proof. (i) Suppose both A ~-IB and .4 ~- xB, then using Axiom 2, (A ,X)  
(B,X) and (.4,X) >" (/~,X), whence by Axiom 4, (X ,X)  >- (X,X),  contrary 

to Axiom 1. 
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(ii) I fA ~-IB, then by part (i) B ;>:- 1-4, whence by Axiom 9, there is Cin 
such that C ~ /~  and C D.~. Thus, B' = C has the two properties. 

LEMMA 6. (X, ~, ~-1) is an Archimedean structure o f  qualitative probability 
(Def. 5.4, Krantz et al., 1971) for which Axiom 5.5 (p. 207, Krantz et al., 
1971) holds. 
Proof. Axiom 5.4.1. holds by Axioms 1 and 2. 

Axiom 5.4.2. is the same as Axiom 5. 
Axiom 5.4.3. Suppose A r3 B = A 63 C = @ and, without loss of 

generality, B ~_ 1C. Using Axioms 1 and 2, ( A , X ) "  (A, X) and (B,X) ~, (C,X), 
so by Axiom 4 (A U B,X)  ~. (A u C,X), so A U B ~-IA U C. The converse 

holds because Axiom 4 holds for strict inequalities. 
Axiom 5.4.4. Suppose {A i } is a standard sequence relative to A >- 10 (Def. 

5.3, Krantz et al., 1971). Using Axiom 7, let Ui solve (Ui,X) ~ (Ak,A). 
Observe that by the definition of Ai, 

(Ai+I,A) "~ (Bi u Ci, A) (Def. 5.3, Krantz etal., 1971) 

>-(Bi,A ) (Ci ~ e4>50, Lemma 1) 

"~(Ai, A), 

so Ui+x >'lUi. The sequence {Ut} is bounded from above by X and from 
below by 0 (Axiom 5 and Lemma 5), so by Axiom 6 it is finite. Therefore, 

(.4 i } is finit e. 
Axiom 5.4.5. Suppose A 63 B = O,A>'IC, and B ~ D .  By Axiom 2, (A,B) 

>'(C,D). By Axiom 8, there exist C',D' in ~ such that C' ~ aC, D' "~ 1D, and 
C' 63 D' = 0. By Axiom 9, there exists E in ~ such that E ~ IA t3 B and 
E D C' U D'. 

Part 1 of  Theorem 5 follows from Lemma 6 and Theorem 5.2 of Krantz 

et al. (1971). 
To prove part 2, let the solution U of (U,X) ~ (A,B) (Axiom 7) be 

denoted A * B. By Axioms 1, 2, and 3, A * B ~ 1B * A. IfA * B~'zB, then 
by Axioms 2 and 5 and l_emma 50), 

(A . B ,X)  >'(B,X) >'. ( B , A ) ~  (A,B), 

contrary to definition of A * B. So B ~-IA * B. By Lemma 5(ii), there exists 
(A * B)' ~ i  A * B with (.4 �9 B)' _C B. So by Axiom 2, (.4 * B)' is an iso- 
morphism from ~ into 
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~B = {CiCin ~ and CC_B). 

By the uniqueness of extensive structures, there exists a constant CB such that 

P(A * B)=P[(A *B)'] = OBP(A). 

Setting A = X ,  

P(A * B) = P(B) = CBP(X) = CB, 
SO 

P(A * B) = P(A)P(B). 

The conclusion follows since by Axiom 2, 

(A , B , X ) " ,  (A,B)  ~ ( C , D ) -  (C * D,X) .  

Proof o f  Theorem 6. 
n 

(i) Note that (A,B) N (C,O) = (A n C,B n D). Thus if E = O (Ai, Bi) 
i=1 

m 

a n d F = U  (Ci, Di), where (Ai ,Bi )n  (Ai ,Bi)=Ofor 1 <~i,]<n, ive ], 
i = l  

and (Ci, Di) n (C],D/) = @for 1 ~< i , ]< m, i r  then 
n m 

E fl F=U=I/U=a ( A i n  C],B i n DI), where 

(AiN C/,BiA D/) N (Ai' n Ci,,Bi, A D/,)= 0 

for 1 ~< i, i' <~ n, 1 <~ ], ]' <~ m, i] @- i']'. Thus (~ X ~)* is closed under inter- 

sections. To show it is also dosed under complementations, assume E is above 
i 

and let A'I =A1, and for 1 < i < n  let A'i+I =Ai+l - UA'k,  and let An+l 
k=-I 

n 
= X - UA'k.  B' i are similarly defined. ThenA'i  andB' i are partitions of Xand 

k-=-I 
Ak, Bk for k = 1, ... , n + 1 are definable as finite unions of elements of the 
partitions A'i, B'i, respectively. Thus (Ak, Bk) are definable as finite unions of 
the partition (A'i, B'/), 1 ~< i, ] <~ n + l, and therefore E and hence ~7 are 
definable as finite unions of elements of this partition. Since unions are 
definable in terms of intersections and complements, (~ X ~)* is closed under 
unions. 

(ii) Since an algebra is closed under finite unions, (~ X ~)* is clearly the 
minimal one containing ~ X ~. 

(iii) By construction, P* is finitely additive, and P*(X X X) = P(X)P(X) 
= 1 .  
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(iv) This follows from (ii) and the construction of P*.  
(v) P* [ (A ,X)  A (X,B)] = P*[(A,B)] 

= P ( A ) e ( B )  

= e*  [ ( . 4 , x ) w *  [(x,B)] .  

Proof o f  Theorem Z The p roof  of  the result is trivial for ~ = (X, 0}, so we 
assume there is an A in ~ for which 1/2 ~<p = P ( A )  < 1. Clearly, it suffices to 

work with the subalgebra (X,A, .~,~)  and to show p is unique. For each 

positive integer n there exists a unique positive integer re(n) such that 

pro(n) ~ (1 - p ) n  >pro(n) + 1 

since p > 1 - p, re(n) + 1 >_ n. This means that  there are events A i = A, 

"4i = "4, and X i = X such that 

. . .  , A m ( , ) , X , )  + 1 .. .  . . . ,  

Sin(n) + I - n) ~-m(n) + 1 (h i ,A2, . . .  ,Am(n) + 1)" 

Therefore, if  0c, ~, Q) is another probability representation of  (X, ~n, ~_n) 
for n = 1 ,2 ,  ..., and if Q(A) = q, then 

qm(n)_~(1 _q)n  >qm(n) + 1 

Observe that 

m (n). > log (1 - p)  > re(n) +______~1 

n - log p n 

Thus, h = lim m(n) exists and 
n~** n 

Thus, 

h - log (1 - p)  _ log (1 - q) 
log p log q 

qh + q _  l =ph + p _  l. 

Since f (p)  = ph + p _ 1 is monotonically increasing for p _~ 0 and f(O) < 0 
and f(1)  > O, there is a unique p such that f (p)  = O. So p = q. 

Harvard University 
University o f  California at Irvine 
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