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This paper takes a critical look at theory-free, statistical methodologies 
for processing and interpreting data taken from respondents answering a 
set of dichotomous (yes-no) questions. The basic issue concerns to what 
extent theoretical conclusions based on such analyses are invariant under 
a class of "informationally equivalent" question transformations. First the 
notion of Boolean equivalence of two question sets is discussed. Then Lazars- 
feld's latent structure analysis is considered in detail. It is discovered that 
the best fitting latent model depends on which one of the many informationally 
equivalent question sets is used. This fact raises a number of methodological 
problems and pitfalls with latent structure analysis. Related problems with 
other methodologies are briefly discussed. 

1. Introduction. Much of the methodology in the social sciences 
proposes techniques for drawing conclusions from data represented 
in the form of answers to dichotomous (yes-no) questions (or attributes) 
about some domain of inquiry. Among the many examples are latent 
structure analysis (e.g., [ 5 ] ) ,  multivariate uncertainty analysis (e.g., 
[2]), multidimensional scaling of respondents, taxonomy construction, 
and the classification of respondents by linear discriminant analysis 
([4]). Such methodologies postulate a theory-free set of mathematical 
models, and the application of a particular methodology to particular 
data involves selecting the "best fitting" member of the set of models 
for that methodology. While a methodology may be applied solely 
as a data reduction tool in the spirit of curve fitting, more frequently, 
efforts are made to interpret the selected model theoretically in 
substantive terms. Related examples of this strategy in the social 
sciences (for data other than dichotomous) are well known in applica- 
tions of analysis of variance, factor analysis, linear regression, and 
multidimensional scaling. ' 
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In the dichotomous case, a particular research project generally 
proceeds in four separate stages: (1) questionnaire development, (2) 
data collection and preliminary analysis into a respondents-by-ques- 
tions matrix, (3) the application of some standard methodology to 
such data, and (4) the substantive interpretation of the resulting model. 
While there is some body of literature on what constitutes a '&good 
questionnaire," we have not been able to find any literature on the 
relationship of the questionnaire to the conclusions drawn from the 
data by the methodology employed. Most researchers suspect that 
one's knowledge about a domain will be heavily dependent on which 
questions are asked, but the extent to which the substantive conclusions 
of a data analysis routine will depend on the questions asked is not 
known. Basically this paper is concerned with the central question 
of whether or not the best fitting model (and therefore the substantive 
conclusions) of a statistical methodology for dichotomous data is 
invariant under a class of question transformations. Precise definitions 
of "question transformations" will be developed in the next section. 

There is an old saw in mathematics that most things of mathematical 
or theoretical interest are invariant under important classes of trans- 
formations. For example, topological properties of a rubber sheet 
are invariant under various distortion operations such as stretching, 
and the areas and volumes of geometrical objects are invariant under 
the transformation of rotating coordinate system, etc. Invariants have 
also played a major role in the development of science, e.g., the 
conserved quantities of mass, energy, and momentum are invariant 
under radically different description frameworks. Even social science 
has its invariants, e.g., the correlation coefficient as well as the t 
and F statistics are invariant under linear transformations in the 
dependent variables. In fact one way that statistical texts can be 
organized is around the scale type of the dependent variables which 
in turn by the work of Stevens ([8]) is related to measurement scale 
transformations and invariants. Multidimensional scaling into Euclid- 
ean space has the feature that interobject distances are invariant under 
coordinate axis rotation, etc. 

The emphasis of this paper is the question of the invariance of 
the theoretical structuring of a domain of inquiry under transformations 
on the questions asked about it. A corollary of this perspective is 
that when invariance is absent the case must be made for why the 
questions or attributes used were the "correct ones" for the method- 
ology. The paper first presents a technical discussion of dichotomous 
questions and introduces the concept of Boolean transformations. 
Then, after preliminary notation is developed, latent structure analysis 
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is considered in the context of general Boolean transformations on 
the question set. Following a brief summary of related results for 
other methodologies, a number of methodological issues are raised. 

2. Boolean Transformations. Dichotomous questions are questions that 
can be answered yes or no. There are two types of dichotomous 
questions that will be considered: objective questions and subjective 
questions. Objective questions are formulated and answered by the 
researcher and are questions about dataon the members of a population; 
subjective questions are questions that are formulated by the researcher 
and answered by members of the population. If the researcher asks 
a subject "Do you have a cold today?" the question is considered 
subjective; if the researcher asks (of himself) about a subject "Did 
he answer 'yes' when asked if he had a cold today?" the question 
is considered objective. 

Sometimes answers to some questions uniquely determine in some 
sense answers to other questions. To analyse this phenomena it is 
convenient to introduce a calculus of questions called the propositional 
calculus. Since for our purposes a "yes" answer to a question Q 
is equivalent to the assignment of the truth value true to the proposition 
expressed by Q, we will often call questions propositions. Furthermore, 
the symbol 1 will be used to denote a yes response or assignment 
of true to Q and 0 will denote a no response or an assignment of 
false to Q. Also in some contexts, questions are called attributes, 
and the assignment of 1 for subject j for attribute P will mean that 
subject j has attribute P. 

Let 2 = {Q,,  Q,, . . ., Q,) be a set of M propositions. Then by 
a Boolean function P on 2, we mean a logical formula using the 
propositions in 2 and the standard logical connectives: disjunction 
("or," v), conjunction ("and," A ) ,  negation ("not," -), bicondition 
("if and only if," *), etc. It is a well-known theorem of propositional 
logic that all possible logical connectives can be defined in terms 
of the connectives A and -. By this definition there are infinitely 
many Boolean functions on 2. However, if one identifies two Boolean 
functions P and Q as being logically equivalent if and only if P* Q 
is a tautology, then there are exactly 2=" different types of Boolean 
functions on 2 such that a Boolean function of one type is not logically 
equivalent to a Boolean function of a different type. 

While a researcher may collect data from each population member 
only on 2, it is useful for our analysis to imagine that data exist 
on all 22" Boolean function types generated by 2. In the case of 
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objective2 questions, it seems reasonable to expect that the usual 
methods of truth assignments and logic apply since we are supposing 
that the researcher is a good researcher and is therefore logical. 
However, in the case of subjective questions, the respondent may 
well be illogical and his response to a Boolean function on 2 need 
not be uniquely determined by his response to 2 .  Nevertheless, a 
logical respondent is certainly a possibility, and it is our aim to study 
the impact on standard data analysis routines of logical respondents. 
If the conclusions of a data analysis routine are very dependent on 
which set of Boolean functions the respondent is asked, then in some 
cases it could be argued that the data analysis routine demands illogical 
respondents to preserve its conclusions. 

Let 2 = { Q , ,  . . ., Q,) be a set of M propositions and r be the 
set of Boolean functions on 2 .  If P,R are elements of T, then P  
is said to be Boolean equivalent to R (in symbols, P  eq R)  if and 
only if P* R is a tautology. Let 9 be a set of M Boolean functions 
on 2. Then 9 is said to be Boolean equivalent to 2 (in symbols, 
9 eq 2 )  if and only if for each Q  in 2 there exists a Boolean function 
P  on 9 such that P  eq Q. 

Esample2.1. Let 2 = { Q , ,  Q,) and 9= {P , ,  P,), where PI 
= Q ,  - Q 2  and P, = Q,. .Then P, eq Q ,  - Q,, P, eq Q,, 
Q ,  eq P ,  -P,, and Q,eq P,, i.e., 9 is Boolean equivalent to 2. 
Note the truth assignment correspondence given by Equation 2.1. 

Note also that the truth assignments given to 9 are a permutation 
q of the truth assignments given to 9, where q ( l ,  1) = (1, I), q(1,O) = 
(0, O), q(0, l )  = (0, I), and 9(0,0) = (1,O). That truth assignments on 
9 are permutations of those on 2 will be shown in the following 
to be a characteristic property of Boolean equivalence. 

Let 2 = { Q , , .  . ., Q,) be a set of M propositions and 9 
= { P ,  , . . . , P,) be a set of M Boolean functions on 2. Then 9 
is said to be infovmationally equivalent to 2 if and only if the truth 
assignments on 9 are permutations of the truth assignments to 2: 

,It would be possible to become more technical at this point and introduce the 
idea of a dichotomous attribute being tied to a measurement. For example, Q,  Q, 
might not be obtained by first measuring Q, and Q, and then performing logic. Such 
issues are interesting, but their elaboration here would only obscure our main point. 
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in other words, P is informationally equivalent to 2 if and only 
if there exists a 1 - 1  function q on the set of truth assignments X 
(viewed in the usual truth table format as ordered M-vectors of 1's 
and 0's) on 2 and functions q , , . . . , qM from X into {0 ,1)  such 
that for each x in X ,  ( i )  qi(?)  = 1 if and only if Pi is assigned the 
value 1 by 5, and (ii) q ( 5 )  = (q,(_x), . . ., qM(?)) .  Thus if 9 is 
informationally equivalent to 2, then each truth assignment to elements 
of 2 uniquely determines a truth assignment to elements of 9 and 
vice versa, i.e., 9 and 9 are informationally indistinguishable. 

Tl~eorem 2.1. Let 2 = { Q ,  , . . . , Q,) be a set of M propositions 
and P = {P , ,  . . ., P,) be a set of M Boolean functions on 
2. Then 2 and P are Boolean equivalent if and only if they 
are informationally equivalent. 

Proof. Let X be the set of truth assignments on 2. For each 
s E X and each i 5 M,  let qi(&) = 1 if and only if Pi is true under 
the assignment 5, and let q ( 5 )  = ( q  (s), . . . , q,(_x-)). 

Suppose 9 is informationally equivalent to 2, i.e., suppose q is 
1-1.  For i 5 M,  let 

9, = { z j z  E x and q i t ( & )  = 1 ) .  

Now for each x - E ?Pi, write the co~zjunctive normal form 9 ( 5 )  of 
9 corresponding to x, - e.g., if 5 = (1,0,0) write 

P(.X) = A - P2 A - P3. 

Then let 

R i =  \P P (  5) 9 (2.2) 
x E @ i  

where Eq. 2.2 represents the sentential formula obtained by "or-ing" 
all the 9 ( x )  for x E 9i. It is readily established that R i  eq Qi .  To 
see this note that if Qi is true, then the set of possible truth assignments 
on P is given by 9i;  consequently, 9 ( 5 )  is true for some 5 E g i  
and therefore R i  is true. On the other hand, if R i  is true, then P ( 5 )  
is true for some 5 E g i  from which it follows that q i l ( . x )  = 1 and 
thus Qi is true. Thus P eq 2. 

Suppose 9 is Boolean equivalent to 9. Suppose that q is not 1- 1. 
A contradiction will be shown. Let 5, y be elements of X such that 
5 # y and q ( 5 )  = q ( y )  Since 5 f y, let Q  be an element of 2 such 
that -3 assigns true tlo Q and y assigns false to Q. Since 9 eq 2,  
let R be a Boolean function on @ such that R eq Q. Since the elements 
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of P are Boolean functions on 9, R may also be considered as a 
Boolean function on 2 .  Since R eq Q and R is a Boolean function 
on Q, x assigns true to R and y assigns false to R. However, R 
as a ~ o o l e a n  function on $ is Bssigned true by x if and only if 
R as a Boolean function on 9 is assigned true by q<&) if and only if 
(since q(5) = q(y)) R is assigned true by q(y) if and only if R (as 
a Boolean function on 2)  is assigned true by y. Since R eq Q, x 
assigns true to Q if and only if y assigns true to 2, and this is 
a contradiction. 0 

- 

By theorem 2.1, every 9 which is Boolean equivalent to 2 is 
equivalent to one of (2aM)! sets of M Boolean functions on 9 which 
correspond to the possible permutations of X. The members of this 
finite set of canonical, Boolean equivalent representations constitute 
the set of informationally equivalent transformations of 9. 

3. Data Processing Routines. Preliminary notation. Suppose a re- 
searcher collects responses on M questions, 9 = {Q, ,  . . ., Q,), 
from each of N respondents (either objectively or subjectively). It 
is possible to represent the data in an N x M data matrix D whose 
ijth term, DiJ ,  is given by 

1 if respondent i records a "yes" to question j 
D.. = - [ J  0 otherwise. 

Further, it is useful to denote the ith row vector of D by Di. and 
the jth column vector of D by D,j .  

Most of the methods of data analysis that will be considered in 
this paper proceed by first transforming Dinto a M-dimensional binary 
contingency cube S. The cells in the cube correspond to the 2, truth 
value assignments on 2-hereafter known as the signatures of $-and 
the cell entries are the number out of the N respondents whose answer 
pattern corresponds to to that cell's signature. The next example 
illustrates these remarks. 

Example 3.1. Suppose that there are 6 respondents to the 2 questions 
Q ,  and Q, yielding the following data matrix: 
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Then the 2-dimensional contingency cube corresponding to Q would 
be 

In general, transformations of a question set 2 = { Q , ,  . . .. Q,) 
to an informationally equivalent set 9 = { P , ,  . . ., P,) not only alter 
D but they alter anything based on Q such as S. To illustrate, assume 
that the D and S  of Equations 3.1 and 3.2 and that q is the transform 
of 9 = a,, Q ~ }  as developed in Example 2.1. The derived D ( q )  
and S ( q )  are as follows: 

and 

Notice that the effects on S of the transformation q are to juggle 
the cell frequencies inside of S. It is always the case that a Boolean 
equivalent transformation will juggle the frequencies in S; and further, 
each juggling of the cell frequencies in S has a corresponding informa- 
tionally equivalent transformation of the question space that gave 
rise to S. There are always (2M)! ways to juggle the cell frequencies 
in a contingency cube with 2M cells, and these are in 1- 1 correspondence 
with the class JV of informationally equivalent transformations on 
2. Since each q E Jf maps the signature space X onto itself, the 
cell frequency in cell xis - merely mapped by q into the cell corresponding 
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to q(x). Of course if several cells have identical frequencies, some 
of the transformations will not change S. 

Before turning to the data analysis ioutines, another observation 
about the relationship between the logic and the binary contingency 
cube is in order. Basically for each question set 2 = {Q, , . . ., Q,) 
some of the -q E ,V merely negate certain questions-i.e., change 
their truth sense-and others merely reorder the questions. Such 
transformations preserve the original question set except for reorder- 
ings and truth sense changes. Such transformations are called signed 
permutations of 2 .  Since with M questions there are 2M possible 
truth sense changes (including the identity transform q(x) = x for 
all 5 E X )  and M !  reorderings of the questions, there are 2" - M !  
members of J?" that are signed permutations of 2 .  

Signed permutations of 2 preserve a certain structure on the marginal 
frequencies of "yes" and "no7' to each component question. That 
is, for any set of M questions one can construct a 2 x M matrix 
M of the frequencies of respondents (out of N) who answer "yes" 
or "no" to each question 

where f ,, is the frequency of respondents responding "yes" to question 
j and f,, is the frequency responding "no" to the question j for 
1 I j I M. If q is a signed permutation of 9 ,  then M(q) will consist 
of a permutation of the columns of M with some number between 
0 and M interchanges of the f ,,'s ark f,.'s. Moreover if r) is not 
a signed permutation of 2, then in general, the resulting M(q) - may 
not conform to these restrictions. 

It is easy to define a binary relation R ,  on N such that for all 
T I ,  T2 Jy 

TI Rd 7 2  

if and only if there is a 0 E /I" such that 0 is a signed permutation 
andq, (9) = 0 [q , (211. That is, 7,  ( 9 )  and -q2 (3) are identical question 
sets up to possible reorderings of the questions and changes in the 
truth sense of certain questions. Further, it is easy to show that 
R, is an equivalence relation on A'". Therefore we can partition the 
(2 M, ! members of A ' into 
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(2M)!/(2M. M!) = (2M - l ) ! /M! 

equivalence classes each with 2M . M! members which are signed 
permutations of each other. Example 3.2 illustrates some of these 
points. 
Example 3.2. Suppose two questions 2 = { Q ,  , Q,) are asked of N 
respondents giving rise to the 2 x 2 contingency table (cube) 

where, of course, a + b + c + d = N. For M = 2 there are (22)! 
= 4! = 24 members of JV and by the preceding remarks there should 
be 3 equivalence classes each with 8 members. Such is clearly the 
case and prototypical members of the other two classes are given 
by 

and 

4. Latent Structure Analysis. Latent structure analysis ( [ 5 ] )  is one 
of several statistical methods in Social Science designed to resolve 
structure from data. The data consist of the N x Mmatrix D described 
in the previous section. Each structural model has the nature of a 
set of L "latent classes," c [ ,  to each of which is associated an 
M-dimensional row vector, p !, whose jth term is the probability of 
a "yes" response to question j for any respondent falling into class 
c ,  , where 1 5 & 5 E and 1 5 j M. The analysis proceeds under 
the assumption that the population of actual or potential respondents 
to questions about a concept domain can be partitioned into groups 
each of which presumably represents some intrinsic or latent viewpoint 
about the concept domain under investigation (cf. [ 5 ] ,  Chapter 1). 
All members of a particular group (latent class) of respondents are 
thought to look at the concept domain in the same way in the sense 
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that they all have the same probability of a "yes" response to any 
particular question that might be asked about the concept domain. 
In addition, responses to a set of questions for members of a latent 
class are postulated to be independent (the axiom of local indepen- 
dence). The output of the analysis for a particular set of M questions 
is a "best approximating" number of classes, L, the associated set 
of L response probability vectors, and the a posteriori probabilities 
that each of the Nrespondents falls into the various classes (sometimes 
called recruitment probabilities). 

The method of extracting latent classes from Dproceeds by forming 
the M-dimensional, binary, contingency cube S and attempting to 
decompose S into a sum of L contingency cubes, 

S =  H, + ... + HL, (4.1) 

where each of the H's  manifests approximate statistical independence. 
Each of the component cubes corresponds to one of the latent classes, 
c i ,  and the response vector for that class, p , ,  is given by the 
M-dimensional row vector of marginal probabilities of "yes" responses 
to the M questions for the corresponding cube, H ,  . 

For purposes of our analysis, it is useful to formalize the notion 
of statistical independence in an M-dimensional, binary, contingency 
cube H with N observations. If F(5) is the observed frequency in 
the c&l H ( x ) ,  then H is said to show statistical independence in 
case for all 5 E X ,  

F ( 5 )  = N . II;!, pi"' (1 - p,)"-'1' (4.2) 

where p i  and xi are the jth members of the row vectors p and 5 ,  
respectively. Equation 4.2 requires that each cell frequencfbe com- 
putable from an appropriate product of marginal probabilities times 
the sample size. 

The tasks of selecting Land selecting a model that gives an adequate 
approximation to Equation 4.1 give rise to complex and interesting 
problems in applied mathematics. For purposes of this section we 
shall assume that Equation 4.1 can be solved adequately. At its best 
a solution to Equation 4.1 gives rise to latent classes that truly reflect 
underlying pockets of opinion about some cognitive domain in the 
sense that any other "complete" set of questions about the same 
domain would give rise to essentially the same latent classes and 
class memberships despite different response vectors. At its worst, 
the analysis is merely a data processing routine for rerepresenting 
D - as an approximation in terms of simpler structures. The first of 
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these possibilities is important because researchers generally employ 
the analysis with the intention of interpreting the resulting structure 
substantively. 

One way to assess the theoretical usefulness of latent structure 
analysis is to see if its output is left invariant under informationally 
equivalent transformations of $2. Since any of the (2M)! "complete" 
question formats could have been used in a questionnaire study, one 
would hope that the latent classes revealed by the analysis would 
be the same for each question format. In the event that the latent 
class structure that emerges from the analysis depends on the question 
set, a number of methodological issues, previously unraised, emerge. 

It is easily seen that the results of latent structure analysis are 
invariant under signed permutation transformations. To see this one 
notes that the right side of Equation 4.2 is invariant under question 
transformations that reorder the M questions or change particular 
xi's from 0 to 1 or from 1 to 0. Thus if Equation 4.1 represents 
an adequate approximation to S and q is a signed permutation 
transformation on 9 then 

gives an identically adequate approxinlation to S(q). 
Unfortunately, when transformations stray -outside the class of 

signed permutation transformations of 9, the results of latent structure 
analysis can be radically different. To illustrate this, consider the 
two question case discussed in Example 3.1, Equations 3.1, 3.2, 3.3, 
and 3.4. It is readily verified that Equation 4.2 is satisfied for Equation 
3.2 but not for Equation 3.4, i.e., Equation 3.2 shows statistical 
independence but not Equation 3.4. Therefore, a latent structure 
analysis of D will reveal one latent class; whereas, the analysis of 
D(q) will not. 

A second and more substantive example of the problems with using 
latent structure analysis to discover "true" latent classes is the 
following: 

Example 4.1. Suppose that a large data bank has among other things, 
information from 210 respondents to the following three questions: 

3The fact that this example and the next involve only two questions (M = 2) should 
not disturb the reader. It is easy but undesirably messy to create examples of M 
r 2 in the spirit of the examples provided. The examples illustrate the fact that 
the output of a latent structure analysis is necessarily not invariant under equivalent 
question sets. 
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(1) Q ,  , registered Republican, (2) Q 2 ,  voted for Nixon in 1972, and 
(3) Q,, believed Nixon innocent in 1974. Note that for simplicity 
we will assume that the respondent pool has been sifted so that "no" 
answers on Q, ,  Q,, and Q, mean registered Democrat, voted for 
McGovern in 1972, and believed Nixon guilty in 1974, respectively. 
Equation 4.3 gives the respondent frequencies corresponding to each 
labeled signature frequency (data hypothetical). 

Label Frequency 

60 
35 
5 

40 
10 
15 
5 

40 
- 

210 

Now let us suppose that two astute political scientists-Professor 
X and Professor Y-decide to apply latent structure analysis to data 
drawn from the bank in an effort to uncover fundamental American 
political viewpoints prevalent in the early 1970's. Professor X has 
a theory which suggests that PI  , "party loyalty," and P2 , "identity 
with the party image," are critical questions. He decides to use the 
data bank to define these questions as follows: 

and 

Put less technically, "party loyalty" is defined as "voted for the 
party you registered for" and "identity with the party image" is 
approximated by an identical logic used on the assumption that the 
party image of the Republican party was that Nixon was innocent 
and that the opposite viewpoint was the stand of the Democratic 
party. 

Let us assume that quite independently Professor Y decides to 
employ the same methodology but to two different questions. Accord- 
ing to Professor Y's theory, critical questions would be R , ,  "party 
loyalty7' (same as before), and R,, "satisfied with 1972 vote" (mea- 
sured in 1974). He formally defines these by 
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and 

Thus a "yes" is registered to R, for Nixon voters who thought Nixon 
was innocent in 1974 and McGovern voters who thought Nixon was 
guilty in 1974. 

It is of interest that Professor X's and Professor Y's questions 
are informationally equivalent, i.e., { P I  , P, } is equivalent to { R ,  , 
R,} in the sense of section 2. This fact can be seen by noting the 
following implications: 

and 

It is particularly interesting to note that from Professor X's viewpoint, 
Professor Y's questions seem unduly complicated since they involve 
the biconditional in Equation 4.4; however, from Professor Y's 
viewpoint, Professor X's questions suffer from exactly (!) the same 
flaw in Equation 4.5. 

The actual latent structure analysis is facilitated by Equations 4.6 
and 4.7 which convert data bank frequencies into signature frequencies 
for the new questions: 

P I  P2 Data Bank Frequencies 
.- - 

1 1 A + H  100 
1 0 B + G  40 
0 1 C + F  20 
0 0 D + E  50 

and 

R ,  R ,  Data Bank Frequencies -- 
1 1 A + H  100 
1 0 B + G  40 
0 1 D + E  50 (4.7) 

0 0 C + F  20 
- 

210 . 

The reader should note that a comparison of Equation 4.6 and 4.7 
directly reveals the equivalence of { P I ,  P,) and { R ,  , R , ) ,  and, 
in terms of the definition q(1,l) = (1,1), q(1,O) = (l,O), q(0,l) = 

(0,0), and r1(0,0) = (0,1). 
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The appropriate Chi-squared test of independence ([3], Chapter 
17) for the data in Equation 4.6 yields 

with X 2  = 35, which is a poor fit of Equation 4.2. On the other hand, 
for the data in Equation 4.7 one gets 

with X 2  = 0, which is a perfect fit of Equation 4.2. Thus Professor 
X would probably find more than one latent class in his analysis; 
whereas, Professor Y, working with logically equivalent questions, 
would find only one latent class. 

The first point to be made about the noninvariance result illustrated 
by the previous examples is that it does not hinge on requiring the 
the respondents to answer questions in one set in a manner logically 
consistent with their answers to the other set. In both examples, 
it was the analyst and not the respondents who provided the data 
for analysis from original respondent data. Nevertheless, the example 
seems very damaging to the efficacy of latent structure analysis because 
the respondents might have been asked either set of questions. From 
the examples we can conclude that the subjects would have had to 
respond illogically to both sets to reveal identical latent class structures. 
It seems to us that a technique for revealing latent structure in a 
cognitive domain which requires that respondents make responses 
to questions that are logically inconsistent is foundationally untenable. 
Of course an alternative method of analysis which required that subjects 
be logically consistent would also be untenable. 

A natural response to the preceding argument would be that the 
data for a latent structure analysis represent a sample from an 
underlying probability distribution over the signature space. In such 
cases, "illogical7' responding would seem to be a necessary conse- 
quence of small sample theory. It should be observed, however, that 
our discussion could just as easily be pitched at the population level 
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of analysis. Viewed in this way, corresponding to each informationally 
equivalent transformation on 2 would be a new probability distribution 
over the signature space. Our results then can be viewed as showing 
that if the output of a latent structure analysis is to be invariant 
under informationally equivalent transformations, then the corre- 
sponding transformations on the probability distributions on the 
signature space is not mirrorable by the logic. For example, if P,  
eq [Q ,  t, Q,],  then it is not consistent that 

That such natural transformations of probability distributions are 
incompatible with latent structure analysis is viewed by us as a serious 
fundamental problem on a par with the practical problem illustrated 
by the two examples. 

Another implication of the examples is that latent structure analysis 
is rather limited in situations involving unobtrusive data gathering 
procedures. In such cases the experimenter (perhaps a botanist) gathers 
a body of yes-no data on each of N subjects (perhaps fossilized 
plants) without awareness on the part of the subjects. An experimenter 
could pose and answer M questions from the data for each subject, 
from a D matrix, and perform a latent structure analysis. However, 
the examples show us that the result of the analysis would depend 
heavily on the questions selected by the experimenter. 

A natural response to the preceding argument might be that while 
the results of the analysis might vary with question format, each 
result might be interesting in its own right. It is true that each 
informationally equivalent question set gives rise to its own set of 
latent classes; however, initial in their determination is the axiom 
of local independence alluded to earlier. Lazarsfeld and Henry ( [ 5 ] ,  
p. 22) write: 

The defining characteristic of the latent structure models is the 
axiom of local independence, stated here for the case of discrete 
classes. . . . 
AXIOM OF LOCAL INDEPENDENCE. Within a latent class, 
a, responses to different items are independent. The within class 
probability of any pattern of response to any set of items is the 
product of the appropriate marginal probabilities. . . . 
Notice that our definition applies to any set of items, no matter 
how large. . . . 

We of course agree that the methodology produces a best fitting 
model, for each informationally equivalent question set; however, 
because local independence is so dependent on the format used, we 
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doubt its usefulness as a primitive assumption in theoretical inter- 
pretations of data. 

If the analysis is incompatible among various informationally 
equivalent transformations, it might be argued that it is intended to 
work only for sets of M "elementary" ("simple," "atomic") questions. 
Such a restriction would seem to resolve our problem by simply basing 
the analysis on the set 9. However, from a semantic standpoint, 
the simple questions may be as complicated logically as the sententially 
more involved questions in 9. For example, suppose a subject's 
semantics of disease included the notion that "to have a cold" (Q) 
means "to have a runny nose (Q,) and a postnasal drip (Q2) but 
not a sinus headache (Q,)." Then we have Q = Q, A Q, A - Q, . 
In other words, any cognitive domain worthy of interest will have 
a semantic structure that reflects opinion. The originally unknown 
logical character of this semantic structure would preclude an a priori 
assessment of which questions actually represent "elementary" prop- 
ositions about the cognitive domain. While some might be tempted 
to observe that correct question selection might constitute an art, 
it should be pointed out that no such observations are evident in 
the considerable literature on the subject. 

Even more damaging to the argument that latent structure analysis 
is suited to deal with only "simple" questions is the obvious fact 
that simplicity is judged with respect to a base. Thus in Example 
4.1, the {R , ,  R,) set is just as complex logically when viewed in 
terms of {PI, P,) as a base as is { P I ,  P,) viewed in terms of {R,  , R,). 
In fact, Equations 4.4 and 4.5 show that the R's can be written 
logically in terms of the P's in exactly the same way that the P's 
can be written in terms of the R's. Put loosely, each equivalent question 
format regards the alternative, equivalent formats as occupying various 
points on a complexity scale with itself as the least complex. Nothing 
in the logical form of the transformations bears on complexity of 
a question format unless we know on other considerations which 
is the most basic format. A reasonable "other consideration" would 
be that the questions used were based on some theory of the cognitive 
domain under investigation. However, the existence of such a theory 
would likely render unnecessary the use of latent structure analysis 
in the first place. In any event, no such connections are established 
in the literature on the methodology. 

5. Other Related R/Iethodologies. A number of methodologies, other 
than latent structure analysis, for dealing with dichotomous data are 
flawed by similar lack of invariance results. A brief summary of 
these is presented in this section. 
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Several methodologies start with D and produce an N x N matrix 
of similarity or resemblance coefficients based on a simple count 
of respondent agreements. The similarity matrix, T, - based on D - is 
an N x N matrix whose ij"' term is given by 

= Pi. . Dj. + [(_I - Di.) . ( I  - Dj,)] (5.1) 

= pi. 0 oj. , 
where "." is the vector product and "_I" is the iW-dimensional row 
vector of 1's. Thus t,, is a simple count of the number of agreements 
between respondent i and j and is thought to reflect their similarity. 

Among the methodologies based on T are the various nonmetric 
scaling programs4 (see [6] for a taxonomy) and the taxonomy con- 
struction methods based on phenic characters prevalent in biology 
(see [7]). The aim of such methodologies is to rerepresent the data 
in Din a format designed to make similar respondents "close together. " 
In the case of nonmetric scaling, respondents are represented as vectors 
and closeness is defined in terms of the Euclidean or Minkowskian 
metrics, and in the case of taxonomy the close respondents fall into 
higher cells of a taxonomic hierarchy. 

It is clear that informationally equivalent transformations on 2 will 
change the pattern of similarities between respondents. To see this, 
consider the data in Example 3.1, Equation 3.1. The 6 X 6 matrix 
of similarities obtained from Equation 3.1 by using Equation 5.1 is 

When 2 is transformed by r) to yield the D given by Equation 
3.3 the similarity matrix becomes 

4Nonmetric scaling programs require as input a matrix of similarities between pairs 
of entities. The method of getting T described in Section 5 is only one of many 
utilized. Our concerns do not extend in a natural way to other methods of getting 
T. 
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Examination of Equation 5.2 indicates that for the 2 set 1 = t,, > t,, 
= 0; however, for the transformed data 0 = t , ,  ( q )  < t,, ( q )  = 1. There 

are other reversals of the distances. However, it should be noted 
that tii = 2 if and only if t i j ( q )  = 2. This clearly follows because q 
is a 1-1 function on X so that if two subjects have identical answer 
patterns to 2 then they will have identical patterns in q ( 2 ) ,  for all 
q E A'". It is also easy to show that the subject similarity matrix 
is invariant under signed permutation of 2. 

The preceding example clearly shows that the results of nonmetric 
scaling of subject similarities are not invariant under informationally 
equivalent transformations. A plausible idea for getting a matrix of 
similarities that are reflective of different question sets might be to 
compute the average tij over all q E JI.", 

The next theorem shows that this plan is frustrated by a surprising 
result: 

Theorem 5.1 Let D be a N x M data matrix with questions 2' 
= { Q ,  , . . ., Q M )  and let JV be the set of Boolean equivalent 
transformations on 2. Then for all 1 5 i,j N 

Proof: Clearly if Di = Dj,,  t i j ( q )  = M for all q E A'" since q is 
1-1 ; hence tij = M. 

If Di, f Dj ,  then every signature pair sand 5' E X (x # 5 ' )  is assumed 
by subjects i and j equally often as q ranges over JV'. In fact there 
are 2 M - 2 !  members of N that result in Di and Dj taking any fixed 
pair of distinct signatures. Consequently, 
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Theorem 5.1 implies that the average similarity between any pair 
of subjects who differ at all in their answers to 2 is the same regardless 
of how many different answers they had to ~ 2 . ~  Such a result would 
seem to place in jeopardy the practice of substantively interpretating 
similarity matrices based on subject similarity scores from an arbitrary 
question set. However, as with latent structure analysis, our results 
do not invalidate these methods if viewed merely as data reduction 
tools. 

The methodological implication of Theorem 5.1 is similar to the 
results of the preceding section. Put simply, efforts to group respond- 
ents by their answer patterns to a set of questions are heavily dependent 
on which set of questions is used. In particular, naturally related 
question sets produce incompatible groupings. The considerable litera- 
ture in the social sciences on these and related methodologies have 
ignored the syntactic issue altogether, preferring instead, to emphasize 
the complex applied mathematical issues that arise in such analyses. 

Related observations are possible for other methodologies for 
analyzing dichotomous data. In particular, substantive conclusions 
based on the information theoretic approach6 ([2]) and on linear 
threshold logic7 ([I] ; [4]) are severely restricted to the question format 
utilized by the methodology. While either methodology may be useful 

5After we had arrived at the theorem, a related result by Watanabe ([9]) came 
to our attention. The theorem of Watanabe is called the "Theorem of the ugly duckling." 
Basically Watanabe shows that an ugly duckling and a swan are just as similar as 
two swans if one compares entities on the full Boolean lattice of 2 2 M  predicates based 
on any starting set 9 and M predicates. We had similar experiences to Watanabe 
in explaining this result to various scientists: Watanabe states: 

. . . It is curious that when I talked about the statement and proof of the theorem 
on different occasions since 1961, some people have manifested their surprise 
and delight, while others grumbled that they knew something like this must be 
true. But when I asked the latter group of people where they had read or written 
it, I could get no clear answer. . . . ([9], p. 376) 

Our Theorem 5.1 is not the same as Watanabe's theorem, but it amounts to the same 
thing. 

While total uncertainty in a contingency $is invariant under informationally equivalent 
transformations on 9, the contingent uncertainty as well as the maximum uncertainty 
depend heavily the question format used. 

'The main result here is that for each classifactory partition of the signature space 
for 9 there exists an informationally equivalent transformation of 9 that permits a 
description of that partition by a linear threshold function (the dichotomous case of 
a linear discriminant function) on the derived question set. In other words, the validity 
of a set of questions can not be based on the existence or nonexistence of an efficient 
classification rule that is based on a linear threshold function of the question set. 
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as a data reduction and/or description method, theoretical conclusions 
based on such analyses are radically altered by transformations among 
informationally equivalent question sets. While each question format 
produces a best fitting model, the primitive assumptions of the method 
seem too particular to us to suggest that each might be useful in 
its own right. 

6. Discussion. In this paper we have studied methodologies for dealing 
with dichotomous data in the context of transformations on the data 
space that preserve information of a logic-theoretic sense. In the 
case that the data space consists of all M-dimensional one-zero vectors 
corresponding to M dichotomous questions or attributes, the trans- 
formations (see section 2) amount to the class of permutations 
of the respondent signature frequencies over the set of 2 M  possible 
signature patterns. Since these transformations may strike the reader 
as rather radical and of !ittle interest, it is reasonable to renew and 
restate the case for their importance. 

When a scientist approaches a domain of inquiry with the intention 
of collecting data from members of a population, he must select 
questions or attributes for study. There are always other questions 
or attributes that might have been selected, and, in particular, every 
set of M dichotomous questions gives rise to a number of alternative 
sets of M questions each of which is an equivalent syntactic repre- 
sentation of the information obtained from the members of the 
population. Lacking any reasonable theoretical basis of choosing among 
such question sets, it seems desirable that theoretical conclusions 
from data analysis routines be invariant under transformations among 
informationally equivalent question sets. A number of methodological 
analyses in current practice, in particular latent structure analysis 
and methodologies based on respondent similarities, do not ,yield results 
that are invariant under this class of transformations. While such 
methodologies may be convenient as data reduction tools, theoretical 
conclusions based on these methodologies must be held with serious 
suspicion until criteria are developed for selection and evaluation 
of sets of questions for data processing. 

The preceding paragraph summarizes the position taken in this paper. 
A number of objections to aspects of the argument have been 
communicated to us from readers of preliminary drafts of the paper, 
some of which have been dealt with in earlier sections. In the remainder 
of this section several of these are considered in numbered paragraphs. 

I. It might be objected that respondents should not be expected 
to reply to a Boolean function of questions in a manner that is consistent 
with their answers to the original questions. Thus it would appear 
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inappropriate to permute signature frequencies when changing question 
sets. 

There are two replies to this objection. First, the analysis of 
dichotomous data often takes the form of a researcher both formulating 
dichotomous attributes and assessing members of a population himself. 
In this case one would expect the researcher to be bound to the 
dictates of Boolean logic. Second, we are not proposing a response 
model based on formal logic; however, if a respondent did behave 
according to Boolean logic, then a methodology should not yield 
differing conclusions depending on which set of informationally 
equivalent, Boolean functions is selected for analysis. Our point is 
that response patterns must  violate Boolean logic if the conclusions 
from several methodologies are to be invariant under our class of 
question transformation, and thus we see reason to doubt such 
methodologies on foundational criteria. As remarked in Section 4, 
our concerns extend to the population as well as the sample level 
of analysis. 

11. One might argue that the original set of questions is simpler 
than any other set in that its members are "elementary propositions," 
whereas, any other set of equivalent questions has as its members 
Boolean functions of the "elementary propositions." Thus by requiring 
that methodologies only be applied to these "elementary propositions," 
one removes the need for invariance. 

This is a tricky point, and it is true that if "squatter's rights" 
are granted to the utilized set of questions, all other equivalent sets 
appear to be more complex. However, such simplicity is always judged 
relative to a base. What is simple from the point of view of one 
question set is complex from another's point of view. Example 4.2 
nicely illustrates this point by showing that if either of two equivalent 
question sets is chosen as the base, the other appears identically 
complex. Put differently, the idea of propositions corresponding to 
atomic predicate symbols in logic and the idea of an elementary notion 
from a substantive view point are not the same. For example, "setting 
up the chess men correctly" is a basic notion for chess players; 
however, its description is a very complex Boolean function of certain 
propositional systems such as the chess rules or action sequences. 
While a serious analysis of these semantic considerations would require 
a richer logic than the propositional calculus, the direction of that 
analysis is clearly indicated by our examples. 

111. An objection related to the previous one is that the original 
questions were formulated by the researcher carefully using his 
intuition for what constitutes basic notions in the domain of inquiry. 
While researchers may err in their ability to construct basic questions, 
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methodologies are intended for good question sets and therefore ought 
to be expected to yield conclusions invariant under equivalent formula- 
tions. 

While this point appears to us to have some validity, there are 
two important points to be made. First, nothing in the formalisms 
of the methodologies we have analyzed states the conditions under 
which a set of questions for a domain of inquiry is appropriate. Perhaps 
new work could be directed toward formulating such criteria; however, 
there is no current justification for asserting that these methodologies 
are intended for use on "basic" questions only. In the area of medical 
diagnosis, for example, considerable latitude over popular lay 
symptomologies is exercised in developing diagnostic methodologies. 
Even if adequate criteria for a basic question set could be developed, 
they would depend on already acquired knowledge of the area of 
inquiry. Thus the use of many methodologies in, for example, anthro- 
pological analyses offers no escape from the well-known pitfalls of 
culture bias, i.e., it appears to us that the type of knowledge required 
to determine if a particular set of questions is fundamental for studying 
the belief system of an exotic culture may turn out to be the type 
of knowledge that some anthropologists have hoped to achieve by 
employing the supposedly "culture free" data processing methodol- 
ogies. 

IV. Finally, it must be stated that many of the results in this paper 
are of a negative character, i.e., they argue against a current practice 
without clearly pointing the way to a substitute. 

We feel that the results in the paper are positive from a foundational 
standpoint, since they provide a criterion for the sorts of measurements 
which can be taken seriously in drawing conclusions from dichotomous 
data. Once the requirements on a measure are clearly stated, the 
task of developing more sophisticated tools of measurement is greatly 
facilitated. (The authors are currently completing a sequel to this 
paper that proposes new measurement methodologies, as well as 
providing useful criteria for the fundamentalness of question sets.) 
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