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Minimal Conditions for Additive Conjoint Measurement and 

Qualitative Probability1 

LOUIS NARENS 

School of Social Sciences, University of California, Irvine, California 92664 

Axioms for additive conjoint measurement and qualitative probability are given. 

Representation theorems and uniqueness theorems are proved for structures that 

satisfy these axioms. Both Archimedean and nonarchimedean cases are considered. 
Approximations of infinite structures by sequences of finite structures are also con- 

sidered. 

At the present time, there is one set of techniques for proving representation theorems 
for finite measurement structures an another set for infinite structures. Techniques 
for finite structures were developed in Scott (1964) and basically consist of solving 
finite sets of inequalities; techniques for infinite structures in one way or another 
resemble those used in Holder (1901) an d consist of the construction of fundamental 
sequences. Although finite structures often admit good axiomatizations in the sense 
that necessary and sufficient conditions for their representations can be given, they do 
not admit good uniqueness results. Infinite structures, however, often have uniqueness 
results for their representations but assume structural (nonnecessary) conditions in 
their axiomatizations. In this paper, new techniques are developed which allow 
infinite structures to be represented in terms of their finite substructures and thus 
simultaneously achieve good axiomatizations and representation theorems. These new 
techniques use the compactness theorem of mathematical logic in a way similar to 
Abraham Robinson’s use in his Nomtandurd Analysis (Robinson, 1966). However, to 
avoid the introduction of a large amount of mathematical logic into this paper, 
algebraic constructions are given for the various uses of the compactness theorem. 
This makes the paper relatively self-contained. These new techniques also allow 
a bridge to be built from finite to infinite structures. Thus, in Section 7 it is shown 
that certain infinite structures with unique representations are limits of sequences of 
finite structures. In terms of representations this means that as more elements are 
included into the qualitative structure the more “unique” the representation becomes. 
These new techniques also avoid the use of Archimedean axioms. 

r The author wishes to thank R. Duncan Lute for his help in the preparation of this paper. 
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1. PRELIMINARIES 

The following definitions, notations, and conventions will be observed throughout 
this paper. 

A = XL, A, will mean that A is the Cartesian product of the sets A, ,..., A,. 
xy=, Ai is sometimes written as A, x ... x A, . By convention it is assumed that 
n > 2 and for each i < n, A, is nonempty. Members of )(b, Ai are often written as 

a1 ... a, where it is understood that for each i < n, ui E Ai. ai is called the ith 
coordinate of a, ... a, . 

Let 2 be a binary relation on A. By convention, it is assumed that 2 is nonempty. 
(Thus A f a.) By definition, 

(1) x-yifandonlyifx&yandykx, 
(2) x>yifandonlyifxkyandnotx-y, 
(3) y 5 x if and only if x 2 y, 
(4) y < x if and only if x > y. 

A statement of the form u 2 v, u > v, or u - v is called an inequality, and u is called 
the left side (of the inequality) and v is called the right side. If the inequality is of the 
form u > v it is called a strict inequality. If the inequality is of the form u - v, it is 
called an equivalence. 

By convention, ; f  A = )(y=, Ai and 2 is a binary relation on A, then it is assumed 
that for each i < n there are a, .~.a,inAandx,y~A~suchthata,...a~_~xu~+~...a,> 

a1 ... a,-lyai+l ... a,. 

Let 2 be a binary relation on A. By definition, 

(1) 2 is reflexive if and only if for each x E A, x - x, 
(2) 2 is a weak order if and only if (i) 2 is reflexive, (ii) (transitivity) for each 

x, y, z in A, if x 2 y and y 2 z, then x 2 z, and (iii) (connectivity) for each x, y E A, 

either x 2 y or y 2 x. 

(x,Y), 6,~) will d enote ordered pairs, (x, y, z), (x, y, z) will denote ordered 
triplets, etc. If R(x, ,..., x,) is a relation on A and B is a set, then, by definition, the 
restriction of R to B, R r B is {(b, ,..., 6,) / b, ,..., b, E B and R(b, ,..., b,)}. 

Re will denote the set of real numbers, I the set of integers, Re+ the set of positive 
real numbers, and I+ the set of positive integers. The real numbmfield is the ordered 
4-tuple (Re, +, . , 2). (Re, +, ., >,) is sometimes called the reals. (F, 0, 0, 2) 
is said to be a weakly orderedfield if and only if the following conditions hold: 

(1) the elements 0 and 1 are in F and not 0 - 1, 
(2) 2 is a weak order on F, 

(3) forallx,y,z,wEF,x@y-y@x,x@(y@z)-(xOy)%)z,x.10-x, 
and if x 2 y and z 2 w, then x @ z 2 y @ w, 
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(4) for each x E F there is a y E F such that x @ y N 0, 
(5) for all x,y,z,w~F, XOY -yOx, xo(yo~)“(xoy)o~, 

x01 =x,ifxkOandyXO,thenxOykO, 
(6) for each x E F, if not x NOthenthereisayEFsuchthatxOyNl, 
(7) foreachx,y,zinF,xO(y@z)~(xOy)@(xOz). 

By definition, (F, 0, 0, 2) is said to be a weakly ordered Jield extension of the reals 

if and only if (F, 0, 0, k} is a weakly ordered field such that F 1 Re, @ 2 +, 
03 *, and ,> 2 3. For notational simplicity, weakly ordered field extensions of 
the reals will often be written as (*Re, + , ., 2) where it is understood that +, . are 
extensions of the addition and multiplication operations of the reals, etc. *Re+ 
will denote {x E *Re / x > O}. 

Let X be a set. If A _C X then X - A is said to be the complement of A (relative to X). 
We often write A * for the complement of A when it is clear from the context that this 
complement is relative to X. d is said to be an algebra of subsets of X if and only if 
(i) X is a nonempty set and each member of d is a subset of X, (ii) X E d and + E 8, 
and (iii) if x, y E 8 then x w E d and x u y E 8. Let 9 be a nonempty family of subsets 
of X. A is said to be a maximal element of S if and only if for each B E 9, if B -3 A 
then B = A. %? is said to be a chain in F if and only if %? C S and for each A, B E %, 
either A C B or B C A. By a fundamental theorem of set theory miscalled Zorn’s 
lemma, if 4t is such that for each chain %? in F, UU E S’, then for some A E 9, A is 
a maximal element of 9. 

2. ADDITIVE CONJOINT STRUCTURES 

DEFINITION 2.1. (A, 2) is said to be an additive conjoint structure if and only if 
the following three conditions hold: 

(1) for some 71 E I+, A = )(y=, A,; 

(2) 2 is a reflexive relation on A; and 
(3) for i = l,..., n, there are functions ai from A, into Re such that for each 

a1 a** a, and each b, *.* b, in A the following two properties hold: 

(i) if a, *-a a,, > b, ... b, then @da,) + *-a + @,(a,) > %(4> + **a + @,(b,), 
and 

(ii) if a, ... a, N b, .** b, then @l(aJ + ... + Qp,(a,) = GP,(b,) + 1.. + @,(b,). 
The functions @i , . . . , @,, that satisfy condition (3) are called a set of strict representation 
functions for (A, 2). 

DEFINITION 2.2. Let A = )(z, Ai and 2 be a binary relation on A. Then 
(A, X> is said to be independent if and only if for each i < n and each xi , yi E Ai , 
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if for some aj , j # i, a, ... ~,-~x~u~+r a*. a, k al 0.. a~-rytq+r ..* a, then for each 
bj E A, , j # i, b, . . . b,-lxib,+l I.. b, 2 b, ... bi-,y$i+, . . . b, . 

THEOREM 2.1. I’(A, 2) is an additive conjoint structure and 2 is a weak order 

then (A, 2) is independent. 

Proof. Left to reader. 

DEFINITION 2.3. Let A = )(y=, Ai and 2 be a reflexive relation on A. Then for 
each i, let & be the relation defined on Ai as follows: x & y if and only if for some 
uj E Aj , j # i, a, ..* ai-lxai+, ... a, 2 a, ... aielyai+, .** U, . 

DEFINITION 2.4. Let A = x7=, Ai and 2 be a weak ordering on A and (A, k> 
be independent. Then (A, 2) is said to be Archimedeun if and only if it is not the case 
that there are 

(1) i,j<nsuchthati#jand 
(2) U, b E Aj such that b >j u and 
(3) for p # i, j, c, E A, and 
(4) x, xl, x2,... in A, such that either (i) for each positive integer k, 

x >i xk+l >i xk and c, ... xkfl a.. a ... c, 2 cr a.* xk ... b ... c,, or (ii) for each 
positive integer k, xk >i xkfr >i x and c1 I** xk ... a ... c, 2 cr *** xk+l *.* b ... C, . 

THEOREM 2.2. If  (A, 2) is an additive conjoint structure and 2 is a weak order 

then (A, 2) is Archimedeun. 

Proof. Suppose not. Let A = )(L, Ai . Since by Theorem 2.1 (A, k> is inde- 
pendent, & is defined on Ai for each i < n. Let i, j < n, i # j, U, b E Aj , b >j U, 
ck E A, for k # i, j, and X, x1, x2,... be in Ai , and x >$ xp+l >i xv (the case where 
xp >i xp+l >i x will follow similarly), and for each positive integer p, 

Cl . . . u . . . ck . . . x~+l . . . c, 2 c 
1 

. . . b . . . c 
k 

. . . x~ . . . c, . 

Let @r ,..., CD, be a set of strict representation functions for (A, 2). Then for each 
positive integer p, 

(1) @&I) + *‘* + @j(u) + “’ + @&) + “’ + $(XPfl) + *‘* + @&,L) 
> Ql(C1) + ... + @j(b) + ... + @k(ck) + *-* + @,(X”) + ‘.. + @n(G). 

By subtraction we get 

(2) Qj(u) + Qi(x’+l) > Dj(b) + Qi(x”). 

Let yp = @$(xP) and s = Oj(b) - @?(a). S ince b >j U, s > 0. From (2) it follows that 

yg+1 - yp 3 s for each positive integer p. Since x >i xp, Qji(x) > yp for each positive 
integer p. This violates the Archimedean axiom for the real number system. 
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DEFINITION 2.5. Let A = XL, Ai and 2 be a binary relation on A. (B, 2’) is 
said to be a Jinite substructure of (A, 2) if and only if for i = l,..., n, Bi is a finite 
subset of Ai , B = )(y=, Bi , and 2’ is the restriction of 2 to B. (A, 2) is said to 
have the Jiniteness property for additive conjoint structures if and only if each finite 
substructure of (A, 2) is an additive conjoint structure. 

THEOREM 2.3. If (A, 2) is an additive conjoint structure then (A, 2) has the 

finiteness property for additive conjoint structures. 

Proof. Obvious. 

DEFINITION 2.6. Let A = Xl, Ai and 2 be a reflexive relation on A. Let r be 
a set of equivalences of members of A, or strict inequalities of members of A. That is, 
each y E I’ has the form a, ... a, m b, ... b, , or the form a, ... a, > b, -*. b, . For 
each i < n and each x E Ai define Pz and Pp as follows: I’: is the number of y in r 
such that x occurs in the ith coordinate of the left side of y, and I’Li is the number of y 
in r such that x occurs in the ith coordinate of the right side of y. (A, 2) is said to 

satisfy the kth cancellation axiom if and only if for each set r which consists of equiva- 
lences of members of A or strict inequalities of members of A, if r has at most k 
elements and for each i < n and each x E Ai , r: = rc, then each member of r is an 
equivalence of members of A. (A, 2) is said to satisfy the Jinite cancellation axioms 
if and only if (A, 2) satisfies the kth cancellation axiom for each k E I+. 

THEOREM 2.4. If {A, 2) is an additive conjoint structure then (A, 2) satisJies the 
kth cancellation axiom for each k E I+. 

Proof. Let A = )(y=, Ai , @I ,..., di, be a set of strict representation functions for 
(A, 2) and r be a set of equivalences and strict inequalities on A. Suppose that r 
has at most k elements where k E I+ and for each i < n and each x E Ai , I’: = rc. 

Let y be in I’. Then y is a, ... a, > b, ... b, or y is a, ... a, m b, ... b, . In either 
case let l(y) = Ql(al) + ... + Dlz(a,) and r(y) = @,(b,) + ... + @,(b,). Then if y is 
a strict inequality, l(r) > Y(Y) and if y is an equivalence l(y) = r(y). Therefore, 

YEL- .l I 
zry(d = C C r%(x). 

i&n xsA, 

Since r; = r;, xyer I(y) = &- r(y). This can only happen if for all y E r, I(y) = 
r(y). That is, each y is an equivalence. Thus (A, &) satisfies the cancellation axiom. 

THEOREM 2.5. Let A be a Jinite set and 2 be a reftexive relation on A. If (A, 2) 
satisfies the finite cancellation axioms then (A, 2) is an additive conioint structure. 

Proof. Chapter 9 of Krantz, Lute, Suppes, and Tversky [1971]. 
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THEOREM 2.6. Let 2 be a reflexive relation on A. If (A, 22) satisjes the finite 
cancellation axioms then (A, 2) satisfies the Jiniteness condition for additive conjoint 

structures. 

Proof. Immediate from Theorem 2.5. 

THEOREM 2.7. Let 2 be a weak ordering on A. If {A, 22) satisfies the second 
cancellation axiom then (A, 2) is independent. 

Proof. Left to reader. 

3. QUALITATIVE PROBABILITY 

DEFINITION 3.1. {X, 8, &) is said to be a qualitative probability structure if and 
only if X is a nonempty set, d is an algebra of subsets of X, 2 is a reflexive relation 
on 8, and there is a function P from & into [O, l] such that the following four conditions 
hold for all A, B in 8: 

(1) P(X) = 1, P(D) = 0; 
(2) if A > B then P(A) > P(B); 
(3) if A - B then P(A) = P(B); and 
(4) if A n 3 = o then P(A u B) = P(A) + P(B). 

The above function P is called a probability representation for (X, 6, k), 

DEFINITION 3.2. Let X be a nonempty set, & an algebra of subsets of X, and 2 
a binary relation on A. Then (X, 6, k> is said to be Archimedean if and only if for 
each A, A,, A, ,... in &, it is not the case that 

(1) A> 0, 
(2) Ai > A for each i E I+, and 
(3) Ai n Aj = ,B for each i, j E I+ such that 

THEOREM 3.1. I f  (X, 8, 2) is a qualitative probability structure, then (X, 8, 2) is 
Archimedean. 

Proof. Left to reader. 

DEFINITION 3.3. (X, &, 2) is said to satisfy the Jiniteness property for qualitative 
probability if and only if X is a nonempty set, & is an algebra of subsets of X, 2 is a 
binary relation on &. and for each finite subalgebra &’ of 8, (X, b’, >,‘> is a qualitative 

probability structure where 2’ is the restriction of 2 to 8’. 

THEOREM 3.2. If (X, 8, 2) is a qualitative probability structure then (X, 8, 2) 
satisfies the Jiniteness property for qualitative probability. 
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Proof. Immediate from Definition 3.3. 

DEFINITION 3.4. Let X be a nonempty set, 8 an algebra of subsets of X, and 2 
a reflexive relation on 8. Let r be a set of equivalences or strict inequalities of members 
of 8. That is, each y E r is of the form A > B or A - B. For each x E X, define 
Z’,l and rzr as follows: r,l is the number of y in r such that x is a member of the left 
side of y, and rzr is the number of y in r such that x is a member of the right side of y. 
(X, b, 2) is said to satisfy the kth cancellation axiom if and only if for each r which 
is a set of equivalences or strict inequalities of members of 8, if r has at most k 

elements and for each x E X, I’,l = rzr, then each member of r is an equivalence of 
members of 6. (X, &, 2) is said to satisfy the jnite cancellation axioms if and only if 
(X, 8, 2) satisfies the kth cancelaltion axiom for each k E I+. 

THEOREM 3.3. If <X, 8, 23) is a qualitative probability structure then (X, 8, 2) 
satisjes the kth cancellation axiom for each k E I+. 

Proof. Left to reader. 

THEOREM 3.4. Let X be a nonempty set, d a$nite algebra of subsets of X, and 2 a 
reflexive relation on 8. If  (X, 6, 2) satis$es thefinite cancellation axioms then (X, 8, 2) 
is a qualitative probability structure. 

Proof. Chapter 9 of Krantz et al. [1971]. 

THEOREM 3.5. Let X be a nonempty set, d an algebra of subsets of X, and 2 a 

reflexive relation on 8. If (X, &, 2) satisfies theJinite cancellation axioms then (X, 8, 2) 
satisjies the infiniteness condition for qualitative probability structures. 

Proof. Immediate from Theorem 3.4. 

4. ULTRAPRODUCTS 

DEFINITION 4.1. Let 9 be a nonempty collection of sets. 9 is said to have theJinite 
intersection property if and only if for each finite nonempty subset 3 of 9, n 3 # or. 

DEFINITION 4.2. & is said to be an ultrajilter on X if and only if the following six 
conditions hold for all subsets A, B of X: 

(1) X is a nonempty set; 
(2) @ is a collection of subsets of X; 
(3) XE%and @ $‘B!; 
(4) if A E % and B > A then B E %; 
(5) if A E Q and B E S? then A n B E a; and 
(6) either A E % or A - E 9. 
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THEOREM 4.1. If X is a nonempty set and .9 is a collection of subsets of X that has 
the finite intersection property, then there is an ultrafilter @ on X such that S 2 3. 

Proof. Let r be defined as follows: 99 E r if and only if (i) 3 is a family of subsets 
of X, (ii) 9 > 9, and (iii) 9 has the finite intersection property. We will show by 
Zorn’s lemma that r has a maximal element. Let A be a chain in l7 Let YY = &l. 
Then it is easy to show that 1w is in I’. Thus by Zorn’s lemma, r has a maximal element 
%. Suppose that A C X and A $ @. Then, since @ is a maximal element of r, % u {A} 
does not have the finite intersection property. Thus for some A, ,..., A, in @, 

4 n . ..nA.nA=~.ThereforeA-lA,n...nA,.~~~uA-}hasthefinite 
intersection property since if for some B, ,..., B,inQ,B,n...nBB,nA-=a, 
then B, n -..nBB,nA,n ..* n A, = 0, which would contradict that 9 has the finite 
intersection property. Therefore 3! u (A *} is in r. Since @ is a maximal element of 
r, A - E a. In other words, for each subset A of X, either A E % or A u E %. Since 
@ has the finite intersection property, o # 42. Therefore, % u = X E %. Suppose D E % 
and E E 9. Since % has the finite intersection property and D n E n (D n E) * = ,0, 
(D n E) a is not in a. Therefore, D n E is in a’. Suppose that F E % and X 1 G IF. 
Since @ has the finite intersection property and F n G u = IZ, G - is not in “11. 
Therefore, G is in %. Therefore, by Definition 4.2, & is an ultrafilter. 

DEFINITION 4.3. Let % be an ultrafilter on J and for each j E 1, let & be a binary 
relation on the nonempty set A, . Then, by definition, the @ ultraproduct of 

{<A 92d I .i E I> is (4 22 w h ere A = )(jeJ A, and 2 is the binary relation on A 
defined by: f  2 g if and only if {j 1 f(j) &g(j)} E %. 

THEOREM 4.2. Let @ be an ultrafilter on J and for each j E J, let kj be a weak 
ordering on the nonempty set A,. Let {A, 2) be the @ ultraproduct of {(Aj , kj) 1 j E J). 
Then 2 is a weak ordering on A. 

Proof. Let f ,  g, h be in A. Since J = {j 1 f(j) zi f  (j)}, by Definition 4.3, f  2 f.  
Thus 2 is reflexive. Suppose that f  2 g and g 2 h. Then by Definition 4.3, J1 = 

{j I f(j) &g(j)> E ~2 and Jz = {j 1 g(j) >j h(j)) E %. Since % is an ultrafilter, 
J1 n Jz E a. Since & is a weak order, J3 = {j 1 f(j) X3 h(j)> 2 (j j f(j) kj g( j) and 

g(j) kj h(j)) = II n 12 . S ince 92 is an ultrafilter, J3 E a. Therefore, by Definition 4.3, 
f  2 h. Thus, 2 is transitive. To show that 2 is connected, suppose that d and e are 
in A. Let J1 = (j ] d(j) kj e(j)} and Jz = (j 1 e(j) kj d(j)}. Since for each j E J 29 
is a weak order, J1 v Jz = J. Since % is an ultrafilter on J, either JI E % or Jz E %. 
Thus by Definition 4.3 we have either d 2 e or e 2 d. 

DEFINITION 4.4. Let % be an ultrafilter on J. Then (*Re, 0, 0, 2) is said to be 
an & ultrapower of (Re, +, * , 2) if and only if for all f ,  g, h in *Re the following 
four conditions hold: 

480/11/4-6 
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(1) *Re = {d / d is a function from J into Re}; 
(2) f Z g if and only if {j I f(j) > g(j)) E q’; 
(3) f @ g N h if and only if {j 1 f(j) + g(j) = h(j)) E %; and 
(4) f 0 g N h if and only if {j 1 f(j) *g(j) = h(j)} E %. 

Let % be an ultrafilter on J, 9Z?‘i = (Re, +, ., 2) for each j E J, and *9? = 
(*Re, 0, 0, 2) be an % ultrapower of (Re, +, ., >I>. Then (*Re, 2) is the @ 
ultraproduct of C!Zi. Also note that by Theorem 4.2 2 is a weak ordering in *Re. 
Also note that for each f, g E *Re, f - g if and only if {j E J 1 f(j) = g(j)} E a. 

THEOREM 4.3. Let @ be an ultrajilter on J. If *W = (*Re, +, *, 2) is an & 
ultrapower of 5% = (Re, +, ., >,), then *55? is a weakly ordered field extension of 9. 

Proof. By Theorem 4.2 2 is a weak ordering on *Re. Suppose that f, g, h are in 
*Re. Then 

J = 0 I f(j) + g(j) = g(j) + f(j)) 
= 0’ I f(j) + [g(j) + WI = LKi) + g(j)1 + N.9) = {j I f(j) . g(j) = g(j) . f(j)) 
= 0’ I f(j) . [g(j) . WI = [f(d . g(j)1 * WI 
= {i I f (j> * [g(j) + h(j)1 = f(j) . g(i) + f(i) . h(j)). 

ThusbyDefinition4.4,fOgNgOf,fO(gOh)N(fOg)Oh,fOgNgOh, 
fo(gOh)-(fog)04 andfO(g@h)N(fOg@(fOh).Let*Oand*lbe 
the following functions on J: For each j E J, O*(j) = 0 and *l(j) = 1. Then *O and 
*l are in *Re. Since J = {j 1 *O(i) # *l(i)}, it is not the case that *0 - *l. Since for 
eachfE*Re,J={jIf(j)+ *O(j)=f(j)}={jIf(j). *I(j)=f(j)},itfollowsfrom 
Definition 4.4 that f @ *0 -f and f 0 “1 -f. Suppose that d E *Re. Let d’ be the 
following function on J for each j E J, d’(j) = -d(j). Then d’ E *Re. Since J = 
(j 1 d(j) + d’(j) = *O(j)}, by Definition 4.4, d @ d’ - *O. Suppose that e E *Re and 
not e - “0. Let e” be the following function on J: for each j E J, if e(j) # 0 then 
e”(j) = I/e(j), and if e(j) = 0 then e”(j) = 0. Let JI = {j I e(j) # O}. Since not 
e - *0, Jr E %!. But then J1 = {j I e(j) * e”(j) = *I(j)>. Thus by Definition 4.4, 
e Q e” N “1. Suppose p 2 q and r 2 s. Let JZ = {.i I p(i) 3 q(j)) and J3 = 
{j I r(j) > s(j)). Then by Definition 4.4, Jz E %! and J3 E 9. Since %! is an ultrafilter, 

Jz n J3 E @- Since J4 = fj I p(j) + r(j) 3 q(j) + s(j)> 1 {j I p(j) 3 q(j) and r(j) 3 
s(j)> = Jz n Js , J4 E s’. Th ere ore, f by Definition 4.4, p @ r 2 s @ q. Suppose that 
a, b E *Re and a 2 “0 and b 2 “0. Then by Definition 4.4, J5 = {j j a(j) 2 *O(j)) E 92 
and Ja = (j 1 b(j) 2 *O(j)) E a. S ince (8 is an ultrafilter, J5 n J6 E 92. Since J, = 
{j I a(i) . b(j) Z *O(j)) 2 {i I a(j) Z *O(j) and b(j) Z *WN = J5 n Js , J7 E @. Thus 
by Definition 4.4, a 0 b 2 “0. For each x E Re let *x be the following function on 1: 
Forj E J, *x(j) = X. For each x E Re let F(x) = *x. Then it is easy to show that F 
is an isomorphic imbedding of Re into *Re. (We may therefore consider Re as a subset 
of *Re.) Therefore, *W is a weakly orderend field extension of c%. 



ADDITIVE CONJOINT MEASUREMENT 413 

NOTATION. To simplify notation we will from here on write “0” as “+” and 
“(y, as ‘L.V* Although this introduces some ambiguity, it makes the text much more 
readable. 

DEFINITION 4.5. Let (*Re, +, . , 2) be a weakly ordered field extension of the 
reals. An element f~ *Re is said to be finite if and only if there are Y and s in Re such 
that r>f>s. 

DEFINITION 4.6. Let (*Re, +, ., 2) b e a weakly ordered field extension of the 
reals, f~ *Re, and f be finite. Let A, = {X E Re 1 x >f} and A, = {X E Re 1 f  > x}. 

Then since f  is finite, the ordered pair (A, , A,) is a Dedekind cut of Re. Let b be the 
cut number of (A, , A,). Then, by definition, “f = b. 

THEOREM 4.4. Let (*Re, +, *, 2) b e a weakly ordered jeld extension of the reals 

and f  be a finite element of *Re. Then for each positive real number r, / “f - f  1 5 r. 

Proof. Let r be a postive real number. Let A, = {x E Re / x <f} and A, = 
{X E Re / x 2 f}. Since “f is the cut number of the Dedekind cut (A, , A,), “f - r/2 is 
in A, and “f + r/2 is in A, . But then “f - r/2 5 f  5 “f + r/2. In other words, 

I “f-f I 5 r/2. 

THEOREM 4.5. Let (*Re, +, ., 2) b e a weakly orderedJield extension of the reals and 

e, f,  g, h bejnite elements of *Re such that e > f  andg N h. Then ‘e > “f and “g = “h. 

Proof. Since for each positive real number r, j e - ‘e I < r and [ f - “f 1 5 Y, it 
follows that for each r E Re+, “e-“f+2r=“e+r-(of-r)~e-f. Thus, 
‘e - “f 2 0. Similarly it can be shown that “g = “h. 

THEOREM 4.6. Let (*Re, + , ., 2) be a weakly ordered field extension of the reals 
and f, g bejinite elements of *Re. Then f  + g is a$nite element of *Re and “(f + g) = 

“f + “g. 

Proof. It is immediate from Definition 4.5 that f  + g is finite. By Theorem 4.4, for 
each positive real number r, 1 “f-f I < r, 1 “g -g 1 5 r, and I “(f + g) - (f + g)l < r. 

Thus I”(f+g)-(fof+‘=g)l<3 r f or each r E Re+. Therefore, “(f + g) = “f + “g. 

THEOREM 4.7. Let (*Re, +, * , & be a weakly ordered jield extension of the reals 
and fi , fi ,..., fn be finite elements of *Re. Then fi + fi + *.. + fn is a finite element of 

*Re and “(fi +fi + *** +fJ = “fi + “fi + ... + “fiz . 

Proof. Left to reader. 
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5. MINIMAL CONDITIONS FOR QUALITATIVE PROBABILITY 

THEOREM 5.1. Let X be a nonempty set, d an algebra of subsets of X, and 2 a 
refexive relation on d. Suppose that (X, d, k> satis$es the $nite cancellation axioms 
(DeJinition 3.4). Then there is a weakly ordered$eld extension of the reals (*Re, +, *, 22) 

and a function Pfrom d into *[0, l] = ( x E *Re 1 0 5 x 5 I} such that the following 
four conditions hold: 

(1) P(X)- 1 andP(@)-0; 

(2) if x > Y then P(x) > P(y); 

(3) if x - y then P(x) - P(y); and 

(4) ifx,yE&andxny = o thenP(xuy)-P(x)+P(y). 

Proof. Let S = {a 1 a is a finite subalgebra of a}. Let Y = (A 1 A is a nonempty 
finite subset of S}. For each a E S let 8 = {A 1 A E Y and 01 E A}. Let 9 = {& 1 a E S}. 
I f  6, )...) 8, are in 9r then 2, n ... n ala # ~zr since {ai ,..., a,} E Bi for i = I,..., n. 
Thus, g has the finite intersection property. Therefore, by Theorem 4.1, let @ be an 
ultrafilter on Y such that 42 1%. 

For each 01 E S let 2, be the restriction of 2 to 01. Since (X, 6, 2) satisfies the 
finite cancellation axioms, by Theorem 3.5, (X, 8, 2) satisfies the finiteness condition 
for qualitative probability structures. Therefore, for each a E S let P, be a probability 

representation for (X, 01, &). For each x E d define the function F, from Y into Re as 
follows: Let p be the finite subalgebra of d generated by WA, and: 

if x E /3 then F,(A) = Pe(x); 

if x $ p then F,(A) = 0. 

Let (*Re, +, *, 2) b e an % ultrapower of (Re, +, *, 2). Define P on 8 as follows: 
for each x E d let P(x) = F, . Then P is a function from d into *Re. 

Let 01 E S. If  A E B and p is the finite subalgebra generated by UA then F,(A) = 
Pe(X) = 1 and F, (A) = Pe( 0) = 0. In other words {A 1 F,(A) = l} 2 6. Since B E @, 
we can conclude that Fx - 1. Therefore, P(X) - 1. Similarly, P(a) - 0. 

Suppose that x, y  E ~9 and x > y, Let a E S be such that x, y  E a. If  A E B and ,!? is the 
finite subalgebra generated by U A then F,(A) = P,(x) > Pe(y) = F,(A). In other 
words, {A 1 F,(A) > F,(A)} 2 8. Since B E 9, we can conclude thatF, > F, . Therefore, 
P(x) > P(y). Similarly it can be shown that if x, y  E 6’ and x - y  then P(x) - P(y). 

Supposethatx,yE&andxny = @.LetaESbesuchthatx,yEa.IfAE&andfl 
is the finite subalgebra generated by UA thenF,,,(A) = Pe(x u y) = P,(x) + Pe( y) = 
F,(A) + F,(A). In other words, (A 1 F,,,(A) = F,(A) + F,(A)} 2 d. Since &E Q we 
can conclude that P(x U y) - P(x) + P(y). 
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DEFINITION 5.1. Let d be an algebra of subsets of X and 2 be a reflexive relation 
on 6. Then P is said to be a weak probability representation for (X, 8, 2) if and only if 
P is a function from d into [0, l] such that the following four conditions hold for all 
x,ye& 

(1) P(X) = 1, P(0) = 0; 
(2) if x > y then P(x) 3 P(y); 
(3) if x - y then P(x) = P(y); and 
(4) if x n y = o then P(x U y) = P(x) + P(y). 

THEOREM 5.2. Let d be an algebra of subsets of X, 2 a rejexive relation on 8, and 
(X, 8, 2) satisfy the finite cancellation axioms (Definition 3.4). Then there is a weak 
probability representation for (X, 8, 2). 

Proof. By Theorem 5.1 let (*Re, +, * , 2) be a weakly ordered field extension of 
the reals and P a function from 6 into *Re such that the following four conditions hold 
for each x, y E 8: 

(1) P(X)- 1, P(m)-0; 
(2) if x > y then P(x) > P(y); 
(3) if x - y then P(x) - P(y); and 
(4) if x n y = o then P(x U y) - P(x) + P(y). 

Since for each x E c” X 2 x 2 O, by (l), (2), and (3), 1 M P(X) 2 P(x) 2 P(+) - 0. 
Therefore, P(x) is finite for each x E 8. Thus, by Definition 4.6 for each x E 8, let 
P’(x) = “P(x). Then P’ ’ rs a function from d into [0, 11. By Theorem 4.5, P’(X) = 1 
and P’( 0) = 0. Let x, y be elements of 8. If x > y then by (2) P(x) > P(y), and thus 
by Theorem 4.5, P’(x) > P’(y). If x -y then by (3) P(x) - P(y), and thus by 
Theorem 4.5, P’(x) = P’(y). If x n y = 0 then by (4) P(x U y) - P(x) + P(y), and 
thus by Theorem 4.5, P’(x u y) = P’(x) + P’(y). Therefore, by Definition 5.1 P’ is 
a weak probability representation for (X, 8, k}. 

DEFINITION 5.2. Let d be an algebra of subsets of X, z a weak order on 6, and 
a, b E 8 such that a C b. Then (b, c, d, a) is said to be a t&split of b, a if and only if the 
following four conditions hold: 

(1) b>cldla; 
(2) b-ckc--d; 
(3) b - d 2 d - a; and 
(4) c - a 2 b - c. 

(X, 6, 2> is said to be trispZittabZe if and only if for each a, b E 8, if a C b then there 
are c, d E 8 such that (b, c, d, u) is a trisplit of b, a. 
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LEMMA 5.1. Let 6 be an algebra of subsets of X, 2 a weak order on 6, a, b E d such 
that a C 6, (b, c, d, a) a trisplit of b, a, and P a weak probability representation for 
(X, 6, 2). Then 

HP(b) - P(a)] 3 P(b) - P(c) b W(b) - P(a)]. 

Proof. Since b >_ c 3_ d, (b - c) n (c - d) = G and (b - c) U (c - d) = b - d. 
Thus, 

(1) P(b - d) = P(b - c) + P(c - d). 

Since b - c 2 c - d, P(b - c) 3 P(c - d). Thus, by (1) we can conclude 

(2) 2P(b - c) > P(b - d). 

Since b - d 2 d - a, P(b - d) > P(d - a). Thus, by (2) we can conclude that 

(3) 4P(b - c) 3 P(b - d) + P(d - a). 

Since b>dZa, (b-d)n(d-a) = o and b-a=(b-d)u(d-a). Thus, 
P(b - a) = P(b - d) + P(d - a). Therefore, by (3) 

(4) 4P(b - c) > P(b - a). 

Since b > c 2 a, (b - c) n (c - a) = o and (b - c) u (c - a) = b - a. Therefore 

(5) P(b - c) + P(c - a) = P(b - a). 

Since c - a 2 b - c, P(c - a) > P(b - c). Thus, by (5) 

(6) P(b - a) > 2P(b - c). 

Sinceforeachx,yE&suchthatx>y,yn(x-y)= ,D andx=yu(x-y),we 
can conclude that P(y) + P(x - y) = P(x), i.e., P(x - y) = P(x) - P(y). There- 

fore, by (6) and (4) 

(7) W(b) - P(a)1 Z P(b) - P(c) 2 W(b) - WI. 

LEMMA 5.2. Let 8 be an algebra of subsets of X, 2 a weak ordering on 8, P a weak 
probability representation for b, (X, 8, 2) be trisplittable, r, s E [0, l] and s > r. Then 
for some s E 8, s > P(x) > r. 

Proof. Suppose not. A contradiction will be shown. Let .9 = {x E d 1 P(x) > s>. 
9# ~zrsinceX~~.Lett=inf{P(x)[x~~}ande=t--.Thenforeachx~dit 

is not the case that t > P(x) > r. Then by the definition of inf let y  ~9 be such 
that P(y) - t < e/100. Let a, = o and for each iEl+, ai , b, be such that (y, ai+l , 
bi , ai) is a trisplit of y, ai . By repeated applications of Lemma 5.1, it is easy to show 
that (1/2$)P(y) > (l/2i)[P(y) - P(al)] > P(y) - P(ai+J. Note that since a, = 0, 
P(y) - P(e) 3 E. Therefore let n E I+ be such that P(y) - P(a,) > E and 
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P(y) - P(a,+,) < c. Then by L emma 5.1 we can conclude that E > P(y) - P(a,+i) > 

W(Y) - mJ1 3 &. Then t > P(a,+,) > r, a contradiction. 

LEMMA 5.3. Let & be an algebra of subsets of X, 2 a weak ordering on 8, P, Q weak 
probability representations for (X, b, k), and (X, &, 2) be trisplittable. Then for each 
a, b E &, if b > a and P(b) = P(a) then Q(b) = Q(a). 

Proof. Let a, b E 8 be such that 6 > a and P(b) = P(u). Let c = b - a. 

Since c n a = o and P(b) = P(u u c) = P(u) + P(c), P(c) = 0. Let d1 = ia and 
for each i E I+, let di , ei be such that (c -, di+, , ei , di) is a trisplit of c *, di . By repeated 
applications of Lemma 5.1 one can show that for each i E I+, P(c * - di) > 0, 

Q(c N - dJ > 0, and lim,,, Q(c * - di) = 0. S’ mce 2 is a weak order and for each 
iEI+, P(c-- di) > P(c) = 0, we can conclude that c * - di > c for each i E I+. 
Thus Q(c” - di) 3 Q(c) for each i E I+. Since lim,+, Q(c w - di) = 0, Q(c) = 0. 
Therefore, Q(b) = Q(u U c) = Q(u) + Q(c) = Q(a). 

THEOREM 5.3. Let d be an algebra of subsets of X, 2 be a weak ordering on 6’, 
(X, 8, 2) be trisplittable, and P, Q be weak probability representations for (X, b, 2). 

Then P = Q. 

Proof, Define Q’ on [0, l] as follows: For each t E [0, I] let Q’(t) = SUP,,~ Q(a) 
where A = {x E 8 1 P(x) < t}. Note that if P(z) = P(y) then by Lemma 5.3 
Q(y) = Q(z) and thus 

(1) for each x E 8, Q’[P(x)] = Q(x). 

Suppose that Y, s G [0, l] and s > Y. By Lemma 5.2, let x,y ~8 be such that 
s > P(x) > P(y) > Y. Since 2 is a weak order, x > y. Thus, Q(x) > Q(y). Then by 
the definition of Q’, Q’(s) > Q’[P(x)] = Q(x) > Q(y) > Q’(r). (Note that by Lemma 5.3, 
Q(x) > Q(y) since P(x) > P(y).) In other words, 

(2) for each Y, s E [0, 11, ifs > Y then Q’(s) > Q’(Y). 

We will now show the following: 

(3) if for each i E I+, P(q) < w and lim,,, P(q) = w, then supi,r+ Q(q) = Q’(w). 

To show (3) there are two cases to consider: Case 1. for each z E 8, P(z) # w. Let 
A={z~c8’/P(~)<w). Th en for each z E A there is an i E I+ such that zi > x. 
Thus Q’(w) = supisI+ Q(q). Cuse 2. x’ is such that P(z’) = w. Since 2 is a weak order 
and P(z’) > P(q), a’ 2 .q for each i E I+. Thus, Q(x’) > Q(q) for each ie I+. 
Therefore, Q(z’) >, supipI+Q(xi). Assume that Q(z’) > sup,,r+Q(zi). We will show a 
contradiction thus establishing that Q(z’) = sup,,r+Q(zJ. By Lemma 5.2, let x E 8 
be such that Q(z’) > Q(x) > supiel+Q(zi). Then since 2 is a weak ordering, 
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Z’ > x > zi . Since limier+ P(z,) = w = P(x), P(x) = P(z’). Therefore, by Lemma 5.3 
Q(x) = Q(z’), a contradiction. 

We will now show the following: 

(4) For all u, v E [O, I] such that u + et E [0, 11, Q’(u + EJ) = Q’(e) + Q’(v). 

There are two cases to consider: Case 1. u = 0 or v = 0. Without loss of generality 
suppose that u = 0. Let A = (x E 8 1 P(x) = 0). Then by Lemma 5.3, for each 
x E A, Q(x) = 0. Therefore, Q’(U) = 0. Thus, Q’(u + v) = Q’(v) = Q’(U) + Q’(v). 
Case2.u#Oandv#O.ThensinceO<u+v~1,u#1andv#l.ByLemma5.2 
let (xi 1 i E I+} be such that for each in I+, 0 < P(x,) < u and lim,+, P(x,) = u. 
Since u + v < 1 and for each i E I+, P(x,) < U, we can conclude that v < P(xi -). 
For each i E I+, let gi = (y j y = xi * n z for some z E &}, & be the restriction of 2 
to G?~, and Pi = P/P(x, *). Then for each i E I+ it is easy to show that bi is an algebra 
of subsets of xi N, & is a weak ordering on xi *, (xz -, &‘i , k,> is trisplittable, and Pi is a 
weak probability representation for (xi -, li , &). By Lemma 5.3, for each i E I+ let 
{yij 1 j E I+> be such that 0 < P,(yJ < v/P(xd *) and lim+, Pi(ysj) = v/P(xi -). Then 
it follows that 0 < P( yij) < v and lim,,, P( yu) = v and for each i, j E I+, xi n yij = o . 
Thus 

F+i li+i qxj u yjj) = &l @n[P(Xi) + P(Y,,)l = !&p(%) + j;z P(Ydl 

= lp[P(Xi) + v] = 24 + v. 

Therefore, by (3) supi,jer+ Q(x~ U yij) = Q’(u + v). Since 

and by (3) supj,jEr+ Q(xJ = Q’(U) and SUP~,~~~+ Q(yu) = Q’(v), we can conclude that 

"Go; ;ia- Q'(u) + Q'W 

(5) Q’(0) = 0 and Q’(1) = 1, 

since if A = (x E d 1 P(x) = 0} and B = {y E d ( P(y) = I} then from Lemma 5.3 it 
follows that for each x E A and each y E B, P(G) = P(x) = Q(D) = Q(x) and P(X) = 

P(Y) = Q(X) = Q(Y)- 
It is a well-known theorem of analysis that the only function Q’ that satisfies (2), (4), 

and (5) is the identity function. (This can also easily be shown by using the representa- 
tion and uniqueness theorem for Archimedean, regular, positive, ordered local 
semigroups that is given in Chapter 2 Krantz et al. [1971].) Thus, for each Y  E [0, 11, 
of Q’(Y) = Y. By (1) th is means that for each x E 8, Q(x) = Q’[P(x)] = P(x). 
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THEOREM 5.4. Suppose that d is an algebra of subsets of X, 2 is a weak ordering on 
8, (X, &, 2) is trisplittable and Archimedean (DeJnition 3.2), (X, 8, 2) satisfies the 
finite cancellation axioms (Definition 3.4), and P is a weak probability representation for 
(X, &, 2). Then P is a probability representation for (X, B, 2). 

Proof. Suppose that P is not a probability representation. A condtradiction will be 
shown. Let x, y E & be such that x > y and P(x) = P(y). Let dI = 0 and for each 
i E I+, let ci di be such that (X, di+, , a , c I di) is a trisplit of X, di . Then by Lemma 5.1, 
one can easily show that for each i E I+, P(d,+l - dJ > 0. Let ei = di+, - di . Then 
if i, j E I+ and i # j, then ei n ej = 0. Since 2 is a weak ordering, by Theorem 5.1, 
let (*Re, +, ., 2) b e a weakly ordered field extension of the reals and Q a function 
from d into *[0, l] such that for all U, v, w, t in E, (i) u > v if and only if Q(u) > Q(o), 
and (ii) if w n t = 0 thenQ(w u t) = Q(w) + Q(t). Let z = x - y. Since x > y and 
z n y = a andy u z = x,Q(x> =Q(Y u 4 =Q(Y) + Q(4>Q(r). Thus,Q@) > 0. 
Thus, z > 0. Since P(x) = P(y) and P(x) = P(y u z) = P(y) + P(z), P(z) = 0. 
Since for each iE I+, P(eJ > 0 = P(z), ei > z. Therefore, for each i, jtz I+, 
ei n e, = 0 and ei > z> 0. This contradicts the Archimedean axiom (Definition 3.2). 

THEOREM 5.5. Suppose that d is an algebra of subsets of X, 2 is a weak ordering on 
6, (X, 8, 2) is trisplittable and satisjes the finite cancellation axioms (Definition 3.4). 

Then there is an unique weak probability representation P for <X, 8, 2). Furthermore, if 
in addition (X, 8, 2) is Archimedean, then P is a probability representation for 

m $9 a. 

Proof. Theorem 5.2, 5.3, and 5.4. 

6. MINIMAL CONDITIONS FOR ADDITIVE CONJOINT MEASUREMENT 

THEOREM 6.1. Let A = Xy=, Ai and 2 be a reflexive relation on A. Suppose that 
(A, 2) satisfies the $nite cancellation axioms (Definition 2.6). Then there is a weakly 
orderedJield extension of the reals (*Re, f ,  *, 2) andfunctions @i on Ai for i = l,..., n, 
such that the following two conditions hold: 

(1) if aI -a- a, > b, - b, then %(a,) + *a- + @&,J > @,(h) + **a + @,(b,); 
and 

(2) if aI *a- a, - 6, --a b, then @,(a,) + **a + @,(a,,) - @4(h) + **a + @,db,). 

&oof. To simplify notation, we will assume that A = A, x A, . 
Let S = {a 1 a is a finite substructure of (A, k)}. Let X = {d 1 d is a nonempty 

finite subset of S}. For each OL E S let B = {d 1 d E X and 01 E O}. Let 9 = {& 1 01 E S}. 
If dl, ,..., am are in F then d, n *a* n & # 0 since (01~ ,..., iqJ E Bi for i = I,..., m. 
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Thus, 9 has the finite intersection property. Therefore, by Theorem 4.1 let $P be an 
ultrafilter on X such that % 3_ 9. 

Suppose that A is in X, A = (q ,..., CII,), and a( = (Bli x BZi, ki) for i = l,..., m. 
Let B, = Bll u ... u Blm, B, = B,l u ... U B,“, and k1 be the restriction of 2 to 
B, x B,. Then 01 = (B, x B,, 2’) ES and oli is a finite substructure of a! for 
i=l ,..., m. Let /3 be the function from X into S defined by p(A) = 01. 

Since (A, 2) satisfies the Kth cancellation axiom for each k E I+, by Theorem 2.6 
(A, 2) satisfies the finiteness condition for additive conjoint structures. Therefore, 
for each 01 E S, let !Pr= and !PaU be a set of representation functions for LY. For each 
a E A, , b E A, , and A E X, the functions F, and G, on X are defined as follows: 

(1) F,(A) = Y:‘“‘(a) if for some 01 E A, if a: = (B, x B, , 2’) then a E B, , 
otherwiseF&A) = 0; 

(2) Gb(A) = Ye’“’ if for some u E A, if 01 = (B, x B, , 2’) then b E B, , 
otherwise Gb(A) = 0. 

Let (*Re, +, . , 2) be the % ultrapower of (Re, +, ., 2). Define @r on A, and @a 
on A, as follows: For each a E A, , let Ql(u) = F, , and for each b E A, , let Q,(b) = G,. 
Since F, and Gb are functions from X into Re, F, and G,, are in *Re. Thus, @r and @s 
are functions from A, and A, into *Re. 

Suppose that x, u E A, and y, v E A, . Let A1 = {x, U} x {y, v} and x1 be the 
restriction of 2 on Al. Let 01 = (Al, 2’). Then (Y E X. By definition of %‘, aZ E a. 
Let A E dz. Then 01 E A. Since 01 = ({x, y} x {u, v}, Xi>, F,(A) = YT’d’(x), FJA) = 
Y!““(u), G,(A) = Yt’d’(y), and G,(A) = Y:(“)(v). 

Case 1. xy > UV. Since 01 = ({x, u} x {y, v}, 2’) and 01 E A, Y:‘“‘(x) + Yi’d’(y) > 
Y:(‘)(u) + Y;(“)(v). Th us, F,(A) + G,(A) > F,(A) + G,,(A). In other words, 
{A I F,(A) + G,(A) > F,(A) + G,(A)} 16. S’ mceBE%,F,-+ G,>F,+ G,.That 
is, @dx) + WY) > @d4 + %W. 

Case 2. xy - uv. By a proof similar to Case 1 we show that @r(x) + @s(y) - 

@l(U) + @‘2(v)* 

DEFINITION 6.1. Let A = )(y=, A, and 2 be a binary relation on A. Then 
@ 1 >***, an is said to be a set of representation functions for {A, 2) if and only if the 
following three conditions hold for all a, **- a, , b, **. b, in A: 

(1) for each i < n, Qi is a function from Ai into Re; 

(2) if a, ... a, > b, ... b, then @,(a,) + *.- + @,(%) > @l(bl) + ... + @n(t); 

and 

(3) if a, ... a, N b, .a* b, then @,(a,) + *.- + @,(a,) = @l(Q + ... + @,(bJ. 
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DEFINITION 6.2. Let A = )(y=, Ai , 2 be a binary relation on A, and (A, 2) be 
independent. Then (A, 2) is said to be bounded by a, , 6, , us ,..., a, if and only if 
the following three conditions hold for each x1 *.* X, in A and each i, 2 < i < n: 

(1) b, 21 xl kl ali 
(2) Xi 28 CZ~; and 

(3) b,a, 1.. ai ... a, 2 a, ... ai-lxiai+, ... a,. 

THEOREM 6.2. Let A = )(y=, Ai, 2 be a reflexive relation on A, (A, 2) be 
bounded by a, , b, , a2 ,..., a, , and (A, k> satisfy the finite cancellation axioms 
(Definition 2.6). Then. there is a set of representation functions for (A, k), ds, ,..., Qn, 

such that Ql(a,) = $(a,) = ... = @Ja,) = 0 and @,(b,) = 1. 

Proof. To simplify notation, we will assume that A = A, x A, . By Theorem 6.1, 
let (*Re, +, *, 2) b e a weakly ordered field extension of the reals and Yr’, Ya’ 
functions from A, , A, into *Re such that for all UV, xy in A, (i’) if uv > xy then 
Yr’(u) + Y;(v) > Yr’(x) + Y,‘(y), and (ii’) if uv N xy then Yr’(u) + Yz’(v) N 
Yr’(x) + Ys’(y). Let Yl = Yr’ - Yr’(a,) and Yi = Ys’ - Yz’(a,). Then Y;l(a,) = 
Yi(ua) = 0. Since b > a, Y;(b) > 0. Let Yr = Y,“/Yl(b) and Ya = Yl/Yl(b). Then it 
is easy to show that Yr(ar) = Ya(a,) = 0, Yl(b,) = 1, and for each uv, xy in A, 
(i) if uv > xy then Y,(U) + Ys(v) > Yr(x) + Y,(y), and (ii) if uv N xy then 
Yr(u) + Ys(v) N Yr(x) + Y,(y). Since for each x E A, , b, & x & a, , it follows 
that 1 = Yl(b,) 2 Y,(x) 2 Yr(a,) = 0. Since for each y E A, , b,a, 2 a,y, it follows 
that Yl(b,) + Ys(a,) 2 Yr(a,) + Ys(y) and thus 1 = Yl(bl) 2 Yz(x) 2 0. Therefore, 
for each x E A, and each y E A, , Yr(x) and Y,(y) are finite (Definition 4.5). Therefore, 
for each xy E A, let @r(x) = “Yr(x) and @a(y) = “Ys(y). Then by Theorem 4.4, 
@r(a,) = ~&(a,) = 0 and QP,(b,) = 1. Suppose that uv, xy are in A and uv > xy. Then 

y&4 + Y&J> > y,(x) + Ye. Th us, by Theorem 4.5, “[Yr(u) + Ys(v)] 3 
“[Yr(x) + Y,(y)], and by Theorem 4.7, “Yr(u) + ‘Ya(v) > “Yr(x) + “Ys(y). Therefore, 
@r(u) + C&(V) > dir(x) + @&(y). In a similar manner it can be shown that if ef, gh are 
in A and ef N gh, then @r(e) + @s(f) = cPl(g) + G,(h). 

The first interesting thing to not about Theorem 6.2 is that no type of Archimedean 
axiom is assumed. In general, Archimedean axioms are used to guarantee that no 
distinguished pair of measured objects (i.e., a pair x, y where x > y or y > X) are 
“too far” or “too close” with respect to a fixed distinguished pair. While in most 
areas of physical sciences there are reasonable grounds for making such an assumption, 
it seems to me to be a highly dubious assumption to make in the social sciences, 
especially when one is measuring quantities like utility or subjective probability. 
In Theorem 6.2, all distinguished pairs of elements of A that are “too close” with 
respect to the distinguished pair Q, ... a, , b,u, a** a, , are assigned the same numerical 
value. 
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DEFINITION 6.3. Let A = )(&A,, 2 be a weak ordering on A, (A, k} be 

independent, i < n, and u, v, x, y  E Ai . Then, by definition, u - v  >; x - y  if and 
only if (1) u >i v  and x >iy, and (2) for some a, ... a, in A and for some j # i and 
some b, d in Aj , 

DEFINITION 6.4. Let A = )(a, Ai , 2 be a weak ordering on A, (A, 2) be 

independent, and i < n. Then (b, c, d, u) is said to be an i-trisplit of b, a if and only if 
the following four conditions hold: 

(1) b>ic>id>ia; 
(2) b - d>i d - a; 
(3) c-cz>>ib-cc;and 
(4) b-c>>ic-d,andd-a>>ic-d. 

DEFINITION 6.5. Let A = XL, Ai , 2 be a weak ordering on A, and (A, 2) be 
independent. Then (A, 2) is said to be trisplittable if and only if for each i < n, if 
b >i a then there is an i-trisplit (b, c, d, a) of 6, a. 

Let A = )(y=, Ai , 2 be a weak ordering on A, (A, 2) be independent and trisplittable, 
and DI ,..., On a set of representation functions for (A, 2). Then for each i < n the 
following jive lemmas hold: 

LEMMA 6.1. If b - a >: e - f then O{(b) - @i(a) 3 Gi(e> - @g(f ). 

Proof. For notational simplicity, assume that A = A, x A, and i = 1. By 
hypo&&,, b - a >r e -f. Therefore, by Definition 5.3 let C, d E A2 be such that 

c >s d and bd > UC and fc > ed. Then @r(b) + @a(d) > @I(U) I- @Z(C), i.e., 

Q%,(b) - Q&z) 3 @dc> - %P,(d)> and al(f) + R(c) 3 D,(e) + R(d), 

i.e., @a(c) - D,(d) >, QI(e) - Q1( f >. Thus, @l(b) - @~(a) 2 R(e) - %(f ). 

LEMMA 6.2. Suppose that Oi(b) > ai and (b, c, d, u) is un i-trisplit of b, a. Then 
c&(b) > Gi(c). 

Proof. For notational simplicity, assume that A = A, x A, and i = 1. Since 
(b, c, d, u) is an 1-trisplit of b, a, b >r c. Thus O,(b) > @r(c). Suppose that Q,(b) = 
Q1(c). A contradiction will be shown. Since (b, c, d, u) is an i-trisplit of b, a, b - c >1 
c - d and b - d >1 d - a. Thus, by Lemma 6.1 (i) O,(b) - C&(C) > Q1(c) - Q,(d) 
and (ii) Q,(b) - a,(d) > G,(d) - QI(u). S ince G,(b) = QI(c) and @r(c) > Q,(d), by (i) 
we conclude that @r(c) = G,(d). Thus Qp,(b) = D*(d). Since Qi,(b) = @r(d) and 



ADDITIVE CONJOINT MEASUREMENT 423 

@l(d) 3 @I@>, bY ( ii we conclude that @r(d) = @r(a). Thus @i(b) = @r(a), a ) 
contradiction. 

LEMMA 6.3. Suppose that Q,(b) > Qt(u) and (b, c, d, u) is un i-trisplit of b, a. Then 
$$&(b) - cDi(u)] >, cPi(b) - 0$(c) and @I$(b) - Di(u)] > Di(d) - $(a). 

Proof. For notational simplicity, assume that A = A, x A, and i = 1. Since 
(b, c, d, a) is an i-trisplit of b, a, c - a >i b - c. Therefore, let e, f  E A, be such that 
e >a f, cf > ue, and ce > bf. Thus, 

(1) @dc) + %( f  J 2 @&I + %(e), and 

(2) @dc) + %(4 3 @db) + %(f ). 

Adding (1) and (2) and subtracting the common term, @a(e) + @a( f  ), of both sides of 
the resulting inequality, we get 

(3) 2%) 3 @,(4 + @P,(b). 

Thus, 

(4) 4(u) - R(b) 2 -2%(c). 
(5) 2@,(b) - @du) - @,(b) 3 2@,(b) - 2%(c), 
(6) @,(b) - R(u) Z WW - W>l, and 
(7) 33W4 - @Ml 3 @P,(b) - @I(C). 

Similarly it can be shown that -&[QI(b) - nbl(u)] 3 OI(d) - @,(a). 

LEMMA 6.4. Suppose that ai > ai( and b, , b, , b, ,... are such that for each 

j E I+ there is u cj such that (b, bj+l , 3 , c. bj) is an i-trisplit of b, b, . Also suppose that 

x >iy and ai = ai( Then for each j E I+, b - bj >i x - y. 

Proof. For notational simplicity, suppose that A = A, x A, and i = 1. By 
repeated applications of Lemma 6.2 one can easily show that for each j E I+, 
Q,(b) > @,(bJ. Since (b, bi+l , cj , bj) is a I-trisplit of b, bj , b - bj >i b - bj+l . Thus 
let e, f in A, be such that e >a f  and bf > bj e and bj+Ie > bf. Since, by hypothesis, 
2 is a weak order, either ye > xf or xf 2 ye. If xf 2 ye, then 

(1) @dbj+J + @&> 3 @db) + %(f ), and 
(2) @I(4 + @2(f) t @1(y) + @z(e), 

which by adding (1) and (2) and then subtracting the common term, O,(e) + @a( f  ), 

from the resulting inequality yields 

(3) Wj+d + @&4 3 @,(b) + @I(Y), 

and, thus, 

(4) @l(X) - @l(Y) 3 @i,(b) - @#Ji+d9 
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which-since @i(x) = @i(y)-yields 

(5) @,(b) = @ilVj+& 

which contradicts Q,(b) > @l(bj+l). Thus ye > xf. Since bf > bje, we conclude that 
b-bj>,x-y. 

LEMMA 6.5. Suppose that Qi(b) > Di(a), x >$y, Qi(x) = Di(y), and Y, ,..., ul, is 
a set of representutionfunctionsfor (A, 2) such that Yi(b) > Y*(U). Then Y,(X) = Y&V). 

Proof. Since Di(b) > Qi(u) and (A, 2) is trisplittable, we can find b, = U, b, , 

b s ,..., ci , cs ,..., such that for each j E I+, (b, bj+l , ci , bj) is a trisplit of b, bj . By 
Lemma 6.4, for each j E I+, b - bj >i x - y. Therefore, by Lemma 6.1 for each 
jEI+, 

(1) Y#) - Y&Q 3 Yri(x) - ul,(y>. 

Thus, by Lemma 6.3 for each j E I+, 

(2) W’i(b) - Yi(bj)l b Y<(b) - Ydh,,). 
Therefore, for each j E I+ 

(3) $j[Yi(b) - yi(b,)] 3 yi(b’i(b) - ‘U,(bj+,) 3 ‘u,(x) - y,(r). 

Thus, Yi(x) = ul,(y). 

THEOREM 6.3. Let A = )(y=, Ai , 2 be a weak ordering on A, {A, 2) satisfy the 
Jinite cancellation axioms, (A, 2) be bounded by b, , a, ,..., a, , and (A, 2) be 
trisplittuble. By Theorem 6.2 let D1 ,..., am and YI ,..., Y,, be sets of representation 

functionsfor (A, 2) such that @,(b,) = Yl(b,) = 1, @r(uJ = Yi(u,) = ... = @,(aJ = 
lu,(u,) = 0. Then CD~ = Yl , Qz = Yz ,..., Qp, = Y,, . 

Proof. To simplify notation, we will assume that A = A, x A,. Let B, = B, = [0, l] 
andB=B, x B,.Define~‘onBasfollows:~s~‘utifandonlyifr+s>u+t. 

Suppose that xy >’ uv. We will show that for some a, b E A, xy >’ Q+(a)Q$(b) >’ uv. 

Let x + y - (u + v) = E > 0. For simplicity we will assume that x # 0 and y # 0. 
These cases will follow by an analogous argument. We will first show that for some 
u~A~,xy>‘~~(u)y>‘uv.Letx,besuchthatx>x,>Oandx-x~<~.Then 
since xiy > uv, we need only find some a E A, such that x > al(a) > x1 . Let 
6 = x - x1 . Let Y = inf{@,,(c) 1 @r(c) 3 x and c E A,) and s = SUP(@~(C) 1 x1 3 @i(c) 
and c E Al}. Then r - s > 6. By the definitions of inf and sup, let c, d E A, be such 
that @i(c) > Y, s > Q,(d), @i(c) - Y < S/100. Let 6, = @i(c) - a,(d). Then 
S+S/50 > 6, > 8. Let (c, e, f ,  d) be a 1-trisplit of A,. By Lemma 6.3, @i(c) -@i(e) < +S, 
and @Jf ) - Q,(d) < & . Therefore, by Definition 6.4 +S, > @r(e) - @i(f) = 
[@r(c) - @r(d)] - [@i(c) - @r(e)] - [@i( f ) - Q1(d)]. Therefore, since @r(c) - Gi,(d) = 6, , 
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either Q1(c) - @r(e) > @, or al(f) - Q,(d) > @, . Without loss of generality 
suppose that Q1(c) - @r(e) > $8, . Th en 48, > @r(c) - G,(e) > $8, . It then easily 
follows that x > Q1(c) > x, which we wanted to show. Thus, if xy >’ uv then for some 
a E A, , xy >’ @i(a)y >’ UV. Similarly, it can be shown that since @,(a)~ >’ UV, for 

some b E A, , xy >’ @r(Q)y >’ @i(u) a,(b) >’ uv. 
For i = 1, 2, define 01~ on Bi as follows: ai = SUP,,~ ?Pi(a) where D = {u j a E Ai 

and x > GJ~(u)}. Note that for each ub E A, ol,[@,(u)] = Yi(u) and aa[@,(b)] = Y,(b). 

Suppose that xy >’ uv. Let ub E A be such that xy >’ @i(u) D,(b) >’ uv. Then by 
the definition of 01~ and 0~~ , ~(4 + 4~) > 4@Ml + 4%(41 = y&4 + Y,(b) > i 
al(u) + ~Jv). In other words, 01~ , a (Y is a set of strict representation functions for 
(B, 2’). But (B, 2’) satisfies Lute’s axioms for additive conjoint structures [see 

Krantz et al., 1971, Chapter 61. It follows from the uniqueness theorem for such 
structures [see Krantz et al., 1971, Chapter 61 that the only set of strict representation 
functions /I, , /3a for (B, 2’) such that /Ii(O) = /3,(O) = 0 and &( 1) = pz( 1) = 1 is the 
set of identity functions. Thus for each xy E B, ai = x and +(y) = y. Therefore, 

for i = 1, 2 and each a E A, , Qi(u) = ~~[@~(a)] = Y,(u). 

THEOREM 6.4. Let A = )(b, Ai, 2 be a weak ordering on A, and (A, 2) 

satisfy the finite cancellation axioms, be trisplittuble and be Archimedeun. Then (A, 2) is 
un additive conjoint structure with a set of strict representation functions Q1 ,..., Qp,. 
Furthermore, Y, ,..., Ym is another set of representation functions for (A, 2) if and only if 
there is a positive real number r and real numbers t, ,..,, t, such that for i = l,..., n, 

CPi = rYi + ti . 

Proof. To simplify notation, we will assume that A = A, x A, . By Theorem 6.1, 

let (*Re, + , ., 2) be an ordered field extension of the reals and ~1~ , 01~ functions from 

A,, A, into *Re such that for each xy, uv in A, 

xy > uv if and only if 01r(x) + oar > ai + aa( 

Let b, a in A, be such that b >1 a, and let c be in A,. Define pi, & as follows: 

PI = [a1 - 441/blv4 - KIWI and 82 = 01~ - aa( Then it is easy to show that 
pi(u) = 0, /3,(b) = 1, pz(c) = 0, and for each xy, uv in A, 

xy > uv if and only if A(x) + MY) > Mu> + h(v). 

We will now show that for each xy in A, pi(x) and pa(y) are finite. First, suppose that 
y  E A, and y  is not finite. A contradiction will be shown. Without loss of generality, 

suppose that /&(y) > 0. Then PC(y) > t f  or each t E Re. Since (A, 2) is trisplittable, 
let (y, e, f ,  c) be a 1-trisplit ofy, c. Then it can be shown by a proof similar to Lemma 6.3 

that HP,(y) - Pdc)] = %(Y) > MY) - A(e). Since #4(r) > 2t for each t E Re, 
$&(y) > t for each t E Re. Since pz(e) > /3,(y) - @s(y) = #I,(y), we can conclude 
that /3,(e) > t for each t E Re. That is, /3.Je) is not finite. We will now show that 
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&(y) - /J(e) 2 1. Suppose not. Then /&(y) - /Is(e) < 1. and since j?%(y) - ,t&(e) > 
B2(4 - P2(f ), 2 > W2(r) - B&)1 + UU4 - A(f)1 = M.Y) - f%(f) > Pd.0 - A(4 
In otherwordsj 4 > [B2(r> - A(f)1 + IMf I- B&l = A(Y) - MC> = t%(r) > 0. 
But this is impossible since pa(y) is not finite. Thus, /3,(y) - j&(e) 2 1 = p,(b) - /$(a). 

In summary, if y E A, and pa(y) is not finite and p,(y) > 0 then there is a yr E A, such 

that Y >2 y1 h cj B2(yl) is not finite and ay 2 by, . Therefore, by repeating this 
argument, we can find y1 , y2 , y3 , y4 ,... such that y >2y1 >2 y2 >2 . . . . and for each 
i E I+, ya >2 c and ayi 2 byi+l . This contradicts the Archimedean axiom for (A, 2). 
Therefore, we have shown that if xy E A then p2(y) is finite. To show that &(x) is 
finite for each xy in A, we only have to apply a similar argument. (Note that since for 
each element x of A, /12(x) is finite and that there are elements g, h in A, such that g > h, 
the violation of the Archimedean axiom takes the form: there are X, , x2 ,... such that 

$>l~z>l*-* and for each i E I+, x& 2 x,+ig.) In summary, for each xy E A, &(x) 
and ,3,(y) are finite. Therefore, for each xy E A, let @i(x) = “PI(x) and Q2(y) = ‘#12(y). 
Then by using the methods of Theorem 6.2, one can easily verify that @I , @a is a set 
of representation functions for (A, 2). Note that 1 = Q,(b) > al(a) = 0. 

We will now show that Or, , @a are a set of strict representation functions (A, 2). 
Assume not, i.e., assume that a 1 a 2 , blb2 are in 4 ala2 > blb2 , and 4(a1> + Qj2(a2) = 
@,(b,) + @,(b,). A contradiction will be shown. Since (A, 2) is trisplittable, at least 
one of the following two cases hold: 

Case 1. Let e, E A, be such that a, >r e, and e1a2 > b,b,. Since ala2 > e,a, > b,b,, 

@dal> + Q2(a2) = R,(eJ + Q2(a2) = cP,(bJ + Q2(b2). Thus @&4 = @&d. Since 
(A, 2) is trisplittable, let (b, u, V, a) be a I-trisplit of b, a. (Recall that 0,(b) > Ql(a).) 
Since u - a >r b - u, by Definition 6.3 let d, f be in A, and such that d >2 f and 
ud > bf. Since (PI(u) + Q,(d) > Q,(b) + Q2( f) and by Lemma 6.2 Ql(b) > Ql(u), 

we can conclude that Q,(d) > Q2( f ). S ince {A, 2) is trisplittable, let dl , d, ,..., and 

Cl , c2 ,***> be such that for each i E I+, (d, d. %+r , ci , di) is a 2-trisplit of d, f. Since 
by Lemma 6.2 Q2(di+,) - @,(d#) > 0 = QQa,) - cPl(el) for each i E I+, we can 
conclude that @,(e,) + @,(di+,) > @,(a,) + @,(dJ for each i E I+. Since 2 is a weak 
order, e,d,+l > a,di for each i E I+. Since d >2 di for each i E I+, this contradicts the 
Archimedean axiom (Definition 2.4). 

Case 2. Let e2 E A, be such that ale2 > b,b, . By an argument similar to Case 1 
the Archimedean axiom can be contradicted. 

7. APPROXIMATION BY FINITE STRUCTURES 

DEFINITION 7.1. For each i E I+ let Yi be a nonempty set and Fi a function from 
Yi into Re. Suppose that for each i, j E I+ such that i < j, Yi _C Yti and Y = lJ$,r+ Yi . 
Then, by definition, F = lim,+, Fi if and only if F is a function from Y into Re such 
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that for each x E Y and each positive real number Z, there is a q E I+ such that x E Y, 
and for each i > q, IF,(x) -F(x)/ < 6. 

DEFINITION 7.2. Let & be an algebra of subsets on X and 2 be a reflexive relation 
on 8. Then (X, 8, 2) is said to be afinite qualitative probability structure if and only if 
{X, 8, 2) is a qualitative probability structure and & is a finite set. 

Let A = )(y=, Ai and 2 be a reflexive relation on A. Then (A, 22) is said to be a 
$nite additive conjoint structure if and only if {A, 22) is an additive conjoint structure 
and A is a finite set. 

THEOREM 7.1. For each i E I+, suppose that (X, bi , &) is a finite probability 
structure and that Pi is a probability representation for (X, 8, , &>. Suppose that for 
each i, j E I+ such that i < j, Ei C 6’i and kzi C 29. Let 6 = (JiGI+ Gi and 2 = (JiGI+ ki. 
Then the following three propositions are true: 

(1) GK 8, X> h as a weak probability representation; 
(2) ;f ki is a weak order on ~9’~ for each i E I+ and <X, G, 2) is trisplittable, then 

(X, 8, 2) has an unique weak probability representation P and limi+m Pi = P; and 
(3) if ki is a weak order on li for each i E I+ and (X, 8, 2) is trisplittable and 

Archimedean, then (X, 8, 2) has an unique probability representation P and 
P = lim,,, Pi. 

Proof. (1) Since for each in 1+(X, &i, &) is a finite probability structure, for 
each i E 1+(X, bi, &) satisfies the finite cancellation axioms. Thus, (X, 8, 2> 
satisfies the finite cancellation axioms. Therefore, by Theorem 5.2 (X, cf, 2) has a 
weak probability representation. 

(2) Since for each i E I+, Xi is a weak order on Gi and 2 = (JisI+ ki, it is easy 
to show that 2 is a weak order on 8. Since (X, G”, 2) is trisplittable, by Theorem 5.5 
let P be the unique weak probability representation for (X, 8, 2). Suppose that 
lim,,, Pi # P. We will show a contradiction. Since lim,-,, Pi + P, let a E 8, J be an 
infinite subset of I+, and E a positive real number such that for each in _T, 
1 P(a) - Pi(a)1 3 E. Let 9 = {CY 1 J - 01 is a finite subset of J}. Then it is easy to show 
that 9 has the finite intersection property. By Theorem 4.1, let +‘/ be an ultrafilter on J 
such that % >_ 9. Let (*Re, +, ., 2) be the a!-ultrapower of (Re, +, ., 2). For 
each x E 6, let Qz be the function from J into Re such that for each i E J, Qz(i) = P,(x) 
if x E bi and Q5(i) = 0 if x 6 &‘i. Then for each x E 8, Qz E *[O, I] where *[O, l] = 
{FE *Re 1 0 5 F 5 l}. Since for each x E B Q5 is finite (Definition 4.5), let Q be the 
function from & into Re such that for each x E 8, Q(x) = “(QJ. Then by Theorem 4.5, 
for each x E 8, Q(z) E [0, I]. We will now show that Q is a weak probability representa- 
tion for (X, 8, 2). (i) Since {i E J I P,(X) = I} = {i E J I Qx(i) = l} = JE 9, Qx N 1. 
Therefore, by Theorem 4.5 Q(X) = “(Qx) = 1. Similarly, Q(a) = 0. (ii) Suppose that 
x,yE~andx>y.ThenletqE]besuchthatforeachiE]suchthati3q,x,yEdi. 

480/I I/4-7 
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Then {i 1 i E J and Q%(i) > Q,(i)} > {i 3 Q 1 i E J and P,(x) > P,(y)} = {i 1 i E J and 
i 3 Q} E %. Therefore, as members of *Re, Q. > Q, . Therefore, by Theorem 4.5 
Q(x) = “(QJ 3 ‘(QJ = Q(r). That is, Q(x) > Q(y). Similarly it can be shown that 
if u, z, E d and u N v then Q(u) = Q(w). (iii) Suppose that w, z E C? and w n x = 0. 
Let p E J be such that for each i E J and such that i > p, w, z E bi . Then {i 1 i E J and 
QWV,(i) = SW(i) + Qz(i)} I {i > p / i E J and P,(w u x) = P,(w) + Pi(z)} = {i j i E ] 

and i 3 p} E a. Thus, QW;, N QW + 8% . Therefore, by Theorems 4.5 and 4.6 

Q@ u 4 = “(Qd = “(Qw + QA = “(Qw> + “(QJ = Q(w) + SC+ That is, 
Q(w u 4 = Q(w) + Q(4. BY (i), (ii), and (iii) we have shown that Q is a weak 
probability representation for (X, b, &. Since for each i E J [ P,(a) - P(a)/ 3 E, 
(in J 1 1 Qa(i) - P(a)] > E} = {i E J j I P,(a) - P(a)1 > C} = J E a. Thus, in 
(*Re, +, ., X), I Qa - P(u)] 2 E. Since ‘(Qa) = Q(a), by Theorem 4.4 we can 
conclude that 1 ‘(QJ - Q(u)1 < c/2. Therefore, I Q(u) - P(u)1 > c/2. That is, Q # P. 
This is impossible since P is the unique weak probability representation for (X, b, 2). 
Therefore, we can conclude that lim,+, Pi = P. 

(3) Since for each i E I+ & is a weak order on bi and (X, &, 2> is trisplittable, by 
(2) there is an unique weak probability representation P for (X, b, 2) and 
P = lim,+, Pi . Since (X, 6, 2) satisfies the finite cancellation axioms and is 
Archimedean, by Theorem 5.4, P is a probability representation for (X, d, 2). 

For notational simplicity, the following theorem for additive conjoint measurement 
will be stated for the case of two components. Similar theorems are true for the general 
case of n-components, n 3 2. The proof of Theorem 7.2 is similar to the proof of 
Theorem 7.1 and will be omitted. 

THEOREM 7.2. For each i E I+, let Ai = Bi x Ci , xi be a rejexive relation on Ai , 
and (Ai , Xi) be a Jinite additive conjoint structure with a set of strict representation 

functions Gi , Yi . Suppose that a,b, , a,b, are in A, and for each i, j E I+ such that 

i < j, Ai Z Aj , & C & , A = &I+ Ai, 2 = lJieI+ & , @i(bJ = 1, and ai = 
Yi(uz) = 0. Then the following three propositions ure true: 

(1) If(A, 2) is bounded by b 1 , a 1 , a2 then there is a set of representation functions 

for (4 2). 
(2) If  (A, 2) is trispZittabZe and bounded by b, , a, , a2 and for each i E I+, ki is 

a weak order on Ai , then there is an unique set of representation functions ds, Y for 
(A, 2) such that @(b,) = 1 and @(al) = Y(u,) = 0. Furthermore, @ = limi+m ai and 
Y = limi+W Yi . 

(3) If (A, 2) is trisplittable and Archimedean and for each i E I+, & is a weak 

order on Ai , then there is an unique set of strict representation functions, @, Y, for (A, 2) 
such that @(b,) = 1 and @(al) = Y(a,) = 0. Furthermore, @ = lim Gi and Y = lim Yi . 

It has been shown by Scott and Suppes [1958] that the finite cancellation axioms 
(Definition 2.6) are not derivable from the kth cancellation axiom for any k E I+. 
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8. HISTORICAL NOTE 

The formulation of the finite cancellation axioms (Definition 2.6) and the proof of 
the representation theorem (Theorem 2.5) appear in various forms in Scott [1964], 
Tversky [1964], and Adams [1965]. 

The discovery of necessary and sufficient conditions for finite qualitative probability 
structures is due to Kraft et al. [1959]. Scott later reformulated and proved these 
results in Scott [1964]. 

The ultraporudct construction was introduced in Log [1955]. Many uses of ordered 
field extensions of the reals for the elicitation of properties of the reals can be found in 
Robinson [ 19661. 

Axioms, representation theorems, and uniqueness results for qualitative probability 
structures have been considered by Savage [1954], deFinetti [1937], Koopman 
[1940a, b], and Lute [1967]. All of these axiom systems use logically stronger assump- 
tions than those that are presented in Section 5 to prove essentially the same theorems. 
The above papers only consider Archimedean structures. 

Additive conjoint structures have been considered in various forms by Adams and 
Fagot [1959], Debreu [1960], AczCl, Belousov, and Hosszli [1960] and Aczel, Pickert, 
and Rab [1960], Lute and Tukey [1964], and Lute [1966]. The above papers use 
stronger assumptions than those presented in Section 6. Lute and Tukey [1964] 
consider a representation theorem for the non-Archimedean case. 

REFERENCES 

ACZBL, J., BELOUSOV, V. D., AND Hosszii, M. Generalized associativity and bisymmetry on 
quasigroups. Acta Mathematics Academiae Scientiarum Hungaricae, 11, 1960. 

A&L, J., PICKERT, G., AND RADO, F. Nomogramme, Gewebe und Quasigruppen. Mathematics, 

2, 1960, 5-24. 
ADAMS, E. W. Elements of a theory of inexact measurement. Philosophy of Science, 32, 1965, 

205-228. 
ADAMS, E. W., AND FAGOT, R. F. A model of riskless choice. Behavioral Science, 4, 1959, l-10. 

BELL, J. L., AND SLOMSON, A. B. Models and ultraproducts: An introduction. Amsterdam: North 
Holland, 1971. 

DEBREU, G. Topological methods in cardinal utility theory. In K. J. Arrow, S. Karlin, and 
P. Suppes (Eds.), Mathematical methods in the social sciences 1959. Stanford: Stanford University 

Press, 1960. Pp. 16-26. 
DE FINETTI, B. La prevision: Ses lois logiques, ses sources subjectives. Annales de I’Institut Henri 

Poincare. Section B, 7, 1937, l-68. 
HGLDER, 0. Die axiome der quantitlt und die lehre vom mass. Berichte ueber die Verhandlungen 

der Koeniglichen Saechsichen Gesellschaft der Wissenschaften, Mathematisch-Physische Klasse 53, 

1901, l-64. 
KRAFT, C. H., PRATT, J. W., AND SEIDENBERG, A. Intuitive probability on finite sets. The Annals 

of Mathematical Statistics, 30, 1959, 408-419. 



430 LOUIS NARENS 

KRANTZ, D. H., LUCE, R. D., SUPPES, P., AND TVERSKY, A. Foundations of measurement, Volume I. 
New York: Academic Press, 1971. 

KOOPMAN, B. 0. The axioms and algebra of intuitive probability. Annals of Mathematics, 41, 
194Oa, 269-292. 

KOOPMAN, B. 0. The bases of probability. Bulletin of the American Mathematical Society, 46, 
1940b, 763-774. 

LOS, J. Quelques remarques, thCorkmes et problemes sur les classes dkfinissables d’algbbres. In 

Mathematical interpretations of formal systems. Amsterdam: North Holland, 1955. Pp. 98-l 13. 
LUCE, R. D. Two extensions of conjoint measurement. Journal of Mathematical Psychology, 3, 

1966, 348-370. 
LUCE, R. D. Sufficient conditions for the existence of a finitely additive probability measure. 

The Annals of Mathematical Statistics, 36, 1967, 780-786. 
LUCE, R. D., AND TUKEY, J. W. Simultaneous conjoint measurement: a new type of fundamental 

measurement. Journal of Mathematical Psychology, 1, 1964, l-27. 
NARENS, L. Measurement without Archimedean axioms. Philosophy of Science, in press. 

ROBINSON, A. Non-Standard Analysis. Amsterdam: North Holland, 1966. 

SCOTT, D. Measurement models and linear inequalities. Journal of Mathematical Psychology, 1, 
1964, 233-247. 

SCOTT, D., AND SUPPES, P. Foundational aspects of theories of measurement. Journal of Symbolic 

Logic, 23, 1958, 113-128. 

TVERSKY, A. Finite additive structures. Technical Report MMPP 64-6, University of Michigan, 
Michigan Mathematical Psychology Program, 1964. 

RECEIVED: August 17, 1973 


