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A B S T R A C T .  In t h i s  paper various topologies on c l o s e d  s u b s e t s  of a  topologi- 
ca l  s p a c e  a re  considered.  'The in te r re la t ionsh ips  between t h e s e  topologies a re  
explored, and severa l  appl ica t ions  a re  given. T h e  methods of proof a s  well  a s  
some intrinsic definitions assume a familiarity with A. Robinson's nonstandard analysis. 

E. Michael (l'opo1ogie.r of spclces of  subset.^, Trans .  Amer. Math. Soc. 71 
(1951), 152-182), K. Kuratowski (Topology,  Vols. I  and 11, Academic P r e s s ,  
New York, 1968), Id. Vietor i s  ( B e r i c i ~ e z t ~ r i ~ e r  Ordnung, Monatsh. Math.-Phys. 
33 (1923), 49-62), and o t h e r s  have  cons idered  methods of pu t t ing  topologies on 
c l o s e d  s u b s e t s  of a  topological  space.  T h e s e  topologies h a v e  the  property that  
if the  underlying topological  s p a c e  i s  compact  then the topology of c l o s e d  sub- 
s e t s  i s  a l s o  compact. In general ,  however, t h e s e  topologies  of c l o s e d  s u b s e t s  
a re  not compact. In t h i s  paper,  a  topology of c l o s e d  s u b s e t s  of a  topological  
s p a c e  i s  cons t ruc ted  that  i s  a l w a y s  compact. T h i s  topology i s  ca l led  the  corn- 
pac t  topology and h a s  many p l e a s a n t  features.  For  c l o s e d  s u b s e t s  of compact  
llausdorff s p a c e s ,  th i s  topology a g r e e s  with Vietoris '  topology. For arbitrary 
s p a c e s ,  there a re  in te res t ing  connec t ions  between the compact  topology and 
topological convergence of s u b s e t s ,  including general ized vers ions  of the Rol- 
zano-N'eierstrass theorem. 

1. ['rrlirninarirs. Throughout th i s  paper topologies a r e  specif ied by giving a 

s e t  together with i t s  c losed  s u b s e t s .  Thus ,  if (X, I?) i s  a  topological s p a c e ,  then 

" X 5 '  will denote a  s e t  and "I"' will  denote the family of c l o s e d  s u b s e t s  of X. If 

(.Y, I ') i s  a  topological s p a c e  and A C X then AC will denote the closure of A ,  

and A- the complement of A in X. 

We wil l  basical ly  follow A. Robinson's  treatment of topological s p a c e s  that 

i s  given in L81. (The symbol " e " , however, has  a spec ia l ized  use.)  Among the 

more important concepts  of nonstandard ana lys i s  that wil l  be used in this  paper  

are the following: 

(1) Concurrent rclntions. The relation R ( x ,  y )  i s  s a i d  to  be a concurrent T C -  

lation if and only if for e a c h  finite s e t  A ,  if for e a c h  a  E A there i s  a  y s u c h  that  

R(n, Y ) ,  then there i s  a z s u c h  that  for each  a  E A ,  R(a,  z ) .  
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(2) Enlargements. L e t  be a full  mathematical s t ructure.  That  i s ,  8 i s  a 

higher order mathematical s t ructure that i s  composed of ob jec t s  of type z for 1 - 
0, 1 ,  2 , .  . . . The ob jec t s  of type 0 are the  elements  of a glven s e t .  The  ob jec t s  

of type z > 1 are a l l  poss ib le  n-ary relat ions between ob jec t s  of lower type. L e t  

L  be a language that d e s c r i b e s  91. We assume that L h a s  constant  symbols cor- 

responding to each element  of 91. L e t  L'  be the language L together with a new 

constant  symbol a R  corresponding to e a c h  concurrent relat ion R in  8. L e t  the s e t  

of sen tences ,  6 ,  of L'  be defined as follows: R(a, a R )  t 6 if and only i f  R i s  a 

concurrent relation in  91 and a i s  an element of ?I that i s  in  the domain of R .  Of 

course,  K(u, y )  i s  the relat ion in  L that  corresponds to R and a i s  the constant  

symbol that  corresponds to a .  L e t  be the  s e t  of true s e n t e n c e s  of 91 in the lan- 

guage L. Then  3 U 6 i s  a cons i s ten t  s e t  of sen tences  in the language L ' ,  and 

a n  e n l a ~ ~ e m e n t  of 8 i s  a Henkin model of the s e n t e n c e s  3 u 6. In particular,  a n  

enlargement of 91 i s  a n  elementary extension of ?I. In th i s  d i scuss ion ,  ?I i s  ca l led  

the s tandard  model. 

(3) *-notatzon. Le t  91 be a s tandard model  and*?^ a n  enlargement of 91. If A 

i s  a n  object  in  a then *A i s  the object   in*?^ that  corresponds to the cons tan t  sym- 

bol .A in the language L. If B i s  an element of *?I, and for some A in ?I, B = *A, 

then B i s  s a i d  to be s tandard.  (Sometimes the  word "standard" will  be used  re- 

dundantly for emphasis.) 

(4) Monads. Le t  ?I be  a s tandard model of a topological s p a c e ,  * a  a n  enlarge- 

ment of a ,  and x be  a point in  :I. Then the monad of x i s  nufA*ir where h i s  

the family of open s u b s e t s  in the  s tandard model that  contain the point x .  If a i s  

a s tandard point,  and in the  enlargement, b i s  in  the monad of a ,  we write a b. 

Note that by th i s  definition, a .̂ b implies that  a i s  a s tandard point. However, 

if the topological s p a c e  i s  Hausdorff, then the monads of d i s t inc t  standard points  

have empty intersect ion,  and i t  wil l  be convenient to  express  that  x and y are  in 

the same monad in th i s  c a s e  by writing x e y. If x i s  a point in  *z and x i s  in 

the monad of some standard point then x i s  sa id  to be near-standard. By a funda- 

mental theorem of A. Robinson,  a topological s p a c e  i s  compact  if and only if in 

every enlargement of t h e  s p a c e  e a c h  point i s  near-standard. 

Since compactness  and near-standardness are intimately related,  an intriguing 

possibi l i ty  a r i s e s :  If one could define a relat ionship of "near-s tandardness"  

among ob jec t s  of a s tandard s e t ,  *A, in the enlargement in  such  a way that e a c h  

object  in  *A i s  "near-standard," then one might be able  t o  define a compact topol- 

ogy on A in the s tandard model by using this  notion of "near-standardness." For  

example, le t  X be the s e t  of points of a topological  s p a c e  and h the family of a l l  

c losed  s u b s e t s  of X. Then in the enlargement we want t o  define a relat ionship of 
I t  near-s tandardness"  among the members of *I. That i s ,  if A E *1 we want to find a 

Oil E I such  that  *('A) i s  "near-s tandardUto A. One obvious possibi l i ty  i s  tha t  
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'A = Ix E X ~ X  * y for some y e A{. In $3 we wil l  s e e  that this  d o e s  indeed define 

a n  interest ing compact topology on A. H ~ w e v e r ,  a  technical  difficulty a r i s e s :  We 

must be ab le  to  verify that  if A E *A then ' A  i s  a  c losed  s u b s e t  in  the s tandard 

model. If A i s  s tandard,  th i s  i s  a lways the c a s e .  A.  Robinson h a s  shown in [8, 

Theorem 4.3.121 that if the s tandard model i s  a  f i rs t  countable s p a c e  then 'A i s  

c losed.  For arbitrary topological s p a c e s ,  however, a model more powerful than a n  

enlargement i s  needed to show this .  In the next sec t ion  th i s  model i s  constructed.  

Since this  i s  the only resul t  of $2 that i s  used in t h e  subsequent  s e c t i o n s ,  the 

reader may s k i p  the lengthy construction on the  f i rs t  reading of th i s  paper. 

It should be noted that  W. A. J .  Luxemburg in [5, Theorem 3.4.21 constructs  a  

model (by a  different method than in $2) in which 'A i s  a lways closed.  By using 

the methods of H. J .  Keisler,  a n  internal  s e t ,  A, of a n  enlargement can  be  given 

which i s  such  that  'A i s  not c losed .  (See Example 3.4.3 in  [51.) 

2. Special enlargements. Le t  X, ,  be  a  topological s p a c e  and ?I,, a  model of 

X,,. For  e a c h  natural number n,  l e t  ?In+ be an enlargement of the s t ructure an. 
Let  ?I,= U n c o ? I n ,  where o i s  the s e t  of natural numbers. Then 91, i s  a n  enlarge-  

2 ment for !Lz for each  i  e o . (  ) 

Definition 2.1. ?Iw i s  ca l led  a s p e c i a l  enlargement of a,,. 
Notation. S ince  for each  i 5 w ,  ?Ii i s  a  model of a  topological s p a c e ,  le t  Xi  

be the (internal) topological s p a c e  of ai. T h a t  i s ,  l e t  X i  be the extension of X,, 

in  the model ai. 
Notation. Suppose that  V C X i  for some i e a. V need not bi. an internal sub-  

s e t  of Xi in  the model ?[;. Since a i+  i s  a n  enlargement of the s t ructure ?Ii, 

there i s  a n  internal  s u b s e t  of Xi+ in the model ?I i+ , that  corresponds to  V. T h i s  

internal s u b s e t  i s  denoted by i V .  Thus  if U i s  a  s u b s e t  of X,,, o U  i s  the name of 

the s e t  that corresponds to U .  This  correspondence,  of course,  depends upon the 

model. Thus  in a,,, ol! corresponds t o  U ,  while in "c,, o U  i s  the name of some 

s e t  V that i s  the extension (in ? I l )  of U .  Note that  if V,,, V , , .  . . , V, a re  the in- 

terpretations of o U  in ?I,,, ? I 1 , .  . . , ?lo respect ively,  then V,, C V, C . . . C V,. 

Once aga in ,  le t  U be a  s u b s e t  of X,, .  Since  U C X I ,  , U  i s  a  name of a  s e t  V 

that i s  a n  internal  subse t  of X2 in the model a2 .  V i s ,  of course,  a n  extension 

(in t12) of I ! .  The relat ionship of o U  and i s  given in the following theorem: 

Theorem 2.1. I /  U C X, ,  then ?I2 /= c o[~ .  

Proof. It i s  true about the model % that " U  i s  a  s u b s e t  of oU." Since ?I2 

i s  a n  enlargement of the s t ructure g l ,  ?I2 preserves this  truth. In the  language 

appropriate to  E l ,  this  s a y s  that  " , U  C ,,[I. " 
7 

( - )  Abraham R o b i n s o n  in ( :om~iur . t i f i rcr~ior~ o f  groups arzci  ring^ untl r ~ o r ~ \ t a n t l a r c i a n a l -  

j \ i c  ( in  J.  S y m b o l i c  L o g i c  34 (1909),  576-588) a l s o  u s e s  t h e  union o f  a  d e n u m e r a b l e  

5 e q u e n c e  o f  e n l a r g e m e n t s  t o  e l i c i t  c e r t a i n  c o m p a c t i f i c a t i o n  p r o p e r t i e s .  
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Slmllarly, one c a n  in general  show that if I '  C Y o  then :lz+ C oL1. Then 

by uslng elementary equivalence between models, the  fo l low~ng theorem c a n  e a s i l y  

be s h o a n :  

Theorem 2.2. I /  0 5 I < 1 5 w and U rs n s u b s c t  o/ A then ! I I  /= C Ot. 

Definition 2.2. If x  E ,Yo and i 5 o, then Cli(x), the monad o/ x in  ?IZ, i s  de-  

fined a s  follows: y  E pi(x) if and only if for each  open s u b s e t  ll of Xo,  if x E U 

then ?Ii 1 y E OU. Note that if i  < j 5 o and ?Ii b ), E 011 then ai 1 ), C oll .  Thus 

i f  I < j 5 w then pi(x) C pi  (x). 

Definition 2.3. If A i s  a  s u b s e t  of Xo, l e t  

'A = Ix E 'Y0jp,(~) n A f @\.  

Definition 2.4. L e t  S(1') be the predicate  that  s a y s  " V  is a  s u b s e t  of Xo." 

Theorem 2.3. I /  ?I, S ( 4 )  and 4 i s  a  name o/  the s e t  A in the rnodcl ?I,, then  

'A i s  a  c losed  s u b s e t  o/ Xo. 

Proof. Suppose that  8, S(.\) and 4 i s  a  name of the  s e t  A in a,,. Since ?lo 
i s  a  union of a  chain o f  models, there i s  an i t w s u c h  that  ?x i  b 5(-\). L e t  x be an 

accumulation point of 'A. If U C Xo, le t  U' be the interpretation of o l  in :Lie 
L e t  A '  be the interpretation of  4 in ? I I .  L e t  R( l r ,  ),) be  the following relat ion:  

" U  i s  an open s u b s e t  of X o  and x E I!' 

and ) , E  1 7 ' a n d y  € A ' . "  

Then R(U, y )  i s  a  concurrent relat ion on ?Ii. For suppose  that  U 1 , .  . , Un are  

such  that 3 y l R ( U l ,  ) , I )  a n d . .  . and 3 y n R ( l T n ,  yn). L e t  U = n Ui. Then U 
i s  a n  open subse t  of ,Yo and .Y E I.'. S ince  x i s  a n  accumulation point of O.4, 

?I,', 1 oU n f @. By elementary equivalence,  ?Ii ,I1 n 4 f 0. Therefore, there 

i s  a  y  s u c h  that :!li 1 (x € oU and ? E 011 and Y F I). In other words, x € I:', y E u ' ,  
y t '4 '. Since for j = I ,  a ,  n ,  I' C Ui, R(U,, ),) holds. 

Since R(L', y )  i s  a  concurrent relat ion on the s t ructure yli and i s  a n  en-  

largement of ?li, there i s  a  y o  such  that  for a l l  open s u b s e t s ,  U ,  of .Yo such  that  
' 9 "  

x U ,  21,') R(;l!, yo) .  Therefore by Theorem 2 .2 ,  C ( x  € ,I1 and ) ,"  oLl and 

y o  E 4 ) .  Since th i s  i s  true for e a c h  open s u b s e t  C' of ,Yo  such  that x € I ' ,  

y  E p,'?(x) and y o  E A. Hence x € 'A. 

3 .  'l'he compact topology. Throughout the r e s t  of th i s  paper we will  a ssume 

that a l l  enlargements a re  spec ia l  enlargements. 

Le t  ('Y, I') be a  topological s p a c e .  (Recal l  that  r i s  the family of c losed  

s u b s e t s  of . Y . )  If . I  6 *I' let  

O.4 - 1)  ; .Sithere is an .Y 6 A such  that  y  = xi. 

By Theorem 2 . 3 ,  O . 1  6 I-''. 

'1'hcort.m l3.1. l i  :I c I' then '(*A ) = A. 
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proof. Assume iZ 6 r. Let  x E A. Then x E *A.  S ince  x i s  s tandard ,  

x E ' (*A).  Therefore,  A C '(*;\). Let  x E '(*A). Then there i s  a  y E *A such  

that ), i s  in the monad of x .  Let  L' be a n  arbitrary s tandard open s e t  with x E U. 

Since ), i s  in the monad of x ,  y E *U.  Therefore, *L' n * A  f 0. By elementary 

equivalence,  L' .? A f 0. Thus  x i s  an accumulation point of A. Since A i s  closed, 

x  E A. Hence O(*A)IA.  

Definition 3.1. If Y C C, 'I' i s  s a i d  t o  be compact if and only if for e a c h  

A E * Y ,  0',2 E Y. 
Definition 3.2. Le t  c = { Y / Y  C C and Y i s  compact{. 

Theorem 3.2. (C, e) 2s a topological s p a c e .  

Proof. (a)  @, C E (?. 
(b) Let  A, \V E c and A t *(A u y ) .  Then  A E (*A U *y) .  Thus  A E * h  or 

A E *Y. Since A and Y are compact,  th i s  means that  'A E h or 'A € \V. There-  

fore, 'A (A u Y) and (A u y )  € (?. 

(c) Le t  hi,  i  E I, be in (? and A E * ( n  i , lh i ) .  Since * ( n i e l h i j  = 

n , * h i  and I  C *I, A t n i c l i A i .  Since for each  i  t I, h i  i s  compact,  i t  fol- 
i €  1 

lows that 'A E hi. Therefore 'A E I ~ ) ; , ~ A ~ .  Thus niEl h i  t (?. 
Definition 9.2. The topology (? on r i s  cal led the compact topology. 

Example 3.1. Le t  X be the c l o s e d  unit d i sk  in the Eucl idean plane. Let  h be 

the famrly of a l l  s q u a r e \  that a rc  contarned rn X and  that have area 2 x. Then h 
i s  a  compact family. 

Proof. If A i s  a  square and A C *X and a rea  of A 2 '/: then 'A i s  a  square and 

'A C ,Y and a rea  of 'A > '/2. (The compactness  of X i s  needed to ensure that 'A 

i s  a  square.)  

Example 9.2. Let ,Y be the c l o s e d  unit d i sk  rn the Euclrdean plane. Le t  D he 

a  lordan curve and  r  a  posrtrve r e a l  number. Let hDor  be the famrly of a l l  lo rdan  

curves E such  that  E has  a r e a  2 T ,  E  X, and  there 2s a n  affrne transformatron T 

such  that T(D) = E. Then 2s a compact famrly. 

Proof. Let  A E Then 4 = T(D) where T i s  a n  affine transformation of 

the form 

Since e a c h  point of :I h a s  a t  most unit d i s tance  from the origin, a l ,  b l ,  c l ,  a 2 ,  b 2 ,  

c 2  are  a l l  finite numbers. Since A has area 2 T, a l b 2  - a 2 b l  i s  not infinitesimal. 

For each  finite (nonstandard) rea l  number u, le t  Ou be the s tandard real  number 
0 5uch that O z i  % u. Then ' a l ,  ' b l ,  'a2,  'b2,  O r l ,  and c 2  are  s tandard r e a l  num- 

bers  and Ou10h2 - Otr,'bl f 0. Thu5 ~f 5 1s t h e  transforrnatlon d e f ~ n e d  by 

chen S i s  affine and S(n) - ':I. It is e a s y  to  prove that the area of 'A i s  infini- 

tesimally c lose  to area of :I. Th is  implies  that the a rea  of 'A 1 r. Thus  'A E 

'DJ. 
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Example 3.3. Let X be a lrnear topological space and A the lamily of all 

closed convex subse ts  of X .  Then L!!, i s  a compact family. (Note that neither com- 

pactness nor boundedness i s  assumed.)  

Proof. Let A E *A and a ,  b E ' A .  Then  there are c and d in A such that a N 

c and h N d .  Since A i s  convex,  for each t ( i n  the enlargement) such that 0 _( t  5 
1 ,  (c t  + d( l  - t ) )  E A.  Therefore,  ' ( c t  + d ( l  - t ) )  6 ' A .  By an easy  argument about 

near-standardness, i t  fol lows that (at + h( l  - t ) )  6 ' A  for each standard t E LO, I ] .  

Thus  ' A  E A. 

Example 3.4. Let  ( X ,  r )  be a topological group and h the family o/ closed 

subgroups o/ ( X ,  r). Then h is  a compact /amily. 

Proof. Let  A E *A. We need only to show that ' A  h. ' A  i s  closed.  T o  

show that ' A  i s  a group, let x o ,  y o  E ' A ,  x ,  y E A ,  x o  N x ,  and y o  N y. Then  

~ ~ - y ~ ~ x .  y. S i n c e A i s a g r o u p , ~ .  y € A .  Thus  x o . y 0 E 0 A .  Since x i 1 "  

x - I  and x -  ' E A ,  it fol lows that x i 1  E ' A .  Thus  ' A  i s  a closed group. 

Example 3.5. Mahler /amilies o/ lattices. Let  Rn be Euclidean n-space. 

Each x in  Rn can be represented by  an ordered n-tuple ( x l , .  . . , x n )  o f  real num- 

bers. Let { a l ,  .. . , a n ]  be a se t  o f  linear independent vectors in Rn and so  A = 

l h l a l  +. . .+ hnanlA1, .  . . , An are integers) .  Then  A i s  said to  be an n-dimensional 

lattice generated by ( a l , .  . . , u n ) ,  and ( a l , . .  . , a n )  i s  called a basis  /or A. Since 

( a , ,  . . , ant are independent, the determinate lai j \  i s  not 0. I f  t h l , .  . . , b n )  i s  

another basis  for A then ( b ,  , . . . , b n ]  i s  also independent. Let  d ( A )  be the  great- 

e s t  lower bound o f  the positive determinates o f  the form \ b .  . \ ,  where ( b  . . , bnj 
1 I 

i s  a basis  for A .  Let 

i n f  
l A  = aE(n - (o] , l l a l I '  

where llall i s  the norm o f  the vector a. A family,  h ,  o f  n-dimensional lat t ices i s  

said to  be a Mahler jamrly i f  and only i f  for each A E h there are positive real 

numbers r and s such  that d ( A ) <  r and IAI 2 s .  A .  Robinson in 191 shows that i f  

h i s  a Mahler family and A E *A then ' A  E h. Hence a hlahler /amrly i s  a compact 

/amily. 

Theorem 3.3. Let ( X ,  r )  be a topologrcal space .  B E *I' can be (onsrdered 

rn two u a y s :  a s  a closed subset  O / * X  a n d a s  a pornt rn the space ( * r ,  *(?). Con- 

srder i3 as  a closed subset  o/ *X and let A = ' B .  Then  rn the space (*r, *(?), B 

I S  near-standard to * A .  

Proof. Assume i3 i s  not near-standard to  *A. Then  there i s  a compact family 

h in  C such that B E *A and *A E *(A%),  where 3- i s  the complement o f  A .  There-  

fore,  *A ,t! *A. Since A i s  compact, O B  = A € A.  Therefore A € h and *A ,& *A. 

T h i s  contradicts elementary equivalence between the standard model and the en-  

largement. 
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Theorem 3.1.. ( F ,  C) zs n compact spacc.  

Proof. By Theorem 3 .3  each point o f  * F  i s  near-standard. 

T h e  condition ' " f  A € *A then ' A  6 , l o i s  sa t i s f ied  by many important famil ies  

o f  closed subse ts .  It i s  also an easy  condition to ver i fy .  This  coupled with Theo-  

rem 3.4 then gives a powerful method o f  establishing compactness properties for 

collections o f  famil ies  o f  subsets-as the following example will show. 

Example 3.6. Let ( X ,  r) be a compact Hausdorff space.  T h e  function n i s  

said to  be a dynamical sys tem on ( X ,  r) i f  and only i f  the following two condi- 

t ions hold: 

( 1 )  T I  i s  a continuous function from .Y x R onto X ,  where R i s  the real number 

sys tem,  

( 2 )  i f  z = n ( x ,  t )  and w = TI(z, t ' )  then w = TI(x, t + t ' ) .  Then  for each x X, 
q t )  = n ( x ,  t )  i s  a continuous function in the variable t ,  and for each t € R ,  

n t ( x )  = n(x ,  t )  i s  a continuous function in the variable x.  If, in addition, there i s  

a t o  E R such that for each x E X there i s  a t ' l  t o  such that TIx(t) = n x ( t  + t ' )  

for each real number t ,  T I  i s  said to be Periodic. T h e  notion o f  orbit i s  one o f  the 

fundamental concepts in the theory o f  dynamical sys tems .  For each x € X ,  A x  = 

l y l y  = n x ( f )  for some t E R )  i s  called the orbit o/ x ~rnder n. Since y 6 i f  and 

only i f  x € A y ,  X i s  partitioned by  the family o f  orbits that are determined by  a 
C 

given dynamical s y s t em  on ( X ,  F ) .  I f  .f i s  a family o f  dynamical sys tems  on the 

space ( X ,  F ) ,  7 i s  said to have a jixed orbit i f  and only i f  there i s  a set  A such 

that for each I1 in ?, there i s  an x in  X such that A i s  the orbit o f  x under n. The  

following compactness theorem can now be proved: 

I f  (,Y, F )  zs a compact Nausdorfj space ,  ? rs n famzly o/ periodzc dynamzcal 

sys tems  on ( X ,  F ) ,  and each jznzte suhfamzly of y has a /zxed orbzt, then ? has n 

fzxed orbzt. 

Proof. Let  T I  E y ,  h the family o f  orbits determined by  T I ,  and A € A. Then  

for some x in X ,  A = ] n x ( t ) j t  E R ) .  Since TI  i s  periodic, there are t l  and t 2  such 

that A = ] n x ( t ) l t  E [ t l ,  t 2 ] ) .  Since A i s  the image o f  a compact se t  under a con- 

tinuous function, A i s  compact and therefore closed.  T h u s  ~ ? r  C F .  Let D € *A, 

x E * x ,  and D = ( *TIx(t)jt  € *R) .  Since X i s  a compact Hausdorff space ,  let x o  be 

the unique member o f  X such that x o  N x.  Let  B be the orbit o f  x o  under n. 
Then  B = O D .  For i f  z E B ,  then there i s  a t in R such that z = n ( x o ,  t )  = TIt(xo). 

Since T I t  i s  a standard continuous function,  z = * n t ( x 0 )  - *TIt(x)  = *TIx(t)  E D .  

Thus  B C O D .  T o  show O D  C B ,  let z € O D .  Then  z - * n ( x ,  11) for some 11 E *R.  

Since T I  i s  periodic we may suppose that 11 i s  f ini te .  Let uo  be the  real number 

that i s  near-standard t o  11. Since ( X ,  r) i s  Hausdorf f ,  z = n ( x O ,  u,). Thus  z E B 
and O D  C B .  Since B = O D ,  O D  E A.  Hence h i s  a compact family. For each IT 
in  7 let h(n) be the family o f  orbits determined by T I .  I f  $ C ? then !: has a fixed 



6 2 LOUIS NARENS [ k c e m b e r  

orbit if and only if n,,,, ( n )  & 0. Since e a c h  finite subfamily of ti h a s  a  fixed 

orbit and h(II)  E e for each  11 in 7 ,  i t  then follows from the compactness  of 

( r ,  C )  (Theorem 3.4) that  n,,, h ( n )  f @. 
Example 9.7. L e t  (X, r )  be the  dzscrete  s p a c e .  T h a t  zs, l e t  r he  t h e  /amzly  

o /  a l l  s u b s e t s  o/ ,Y. T h e n  ( r ,  e )  rs a compac t  Hartsdor// s p a c e .  

Proof. By Theorem 3.4, ( r ,  e )  i s  compact.  T o  s e e  that  ( r ,  e )  i s  a l s o  a  

Hausdorff s p a c e ,  le t  A, l? 6 r and A 4.B.  Without l o s s  of general i ty  we may let  a 

be  a  point of X such  that  a A and a ,d B. Let  A = { D  E r]a E Dl and \V = 

{D E r i a  ,d D). Then A and 'V are  in e. Thus  in t h e  s p a c e  ( r ,  e ) ,  h- and 'V- are  

open s e t s  with B E h- , A E yY ,  and '1- f' 'V-= @. 
Some c losed  families of the d i sc re te  s p a c e  are: {AlA C ,Y and A has  l e s s  than 

n members) where n i s  a  posi t ive integer, and having l e s s  then n members a l lows  

the c a s e  of having no members; { A I D  C A )  and {AlA C D )  where D i s  a  s u b s e t  of 

,Y. Observe that {AIA C X and A h a s  exact ly 2 members! may not be c losed  in the 

compact topology. 

Ilefinition 3.3. A point x in the topological s p a c e  X i s  s a i d  to  be zsolated if 

and only if X - {x! i s  a  c losed subse t  of X. 

Theorem 3.5. (X, r )  I S  compac t  i/ and  on ly  I /  @ I S  a n  i so la t ed  point o /  t he  

s p a c e  ( r ,  C). 

Proof. Suppose (X, r )  i s  compact.  Let  A = { A I A  E r and A f @ I .  If A E *A 

then ' A  i s  c losed .  Since (X, r )  i s  compact and A f @, 'A i s  nonempty. Thus  

' A  h. Therefore h i s  a  closed subset of ( r ,  C). Since h = I- - {@I, @ i s  i so-  

la ted.  

Suppose that  @ i s  an isolated point of ( r ,  c). Then  h = {AIA 6 I- and A f @I 
i s  a  c losed s u b s e t  of r. Let  x E *X. It wil l  be shown that  x i s  near-standard. In 

the enlargement, le t  'V = {A \A 6 * r  and x E A 1 and B - n 'V. Then  B E *A. Since 

h E e ,  OR E h. Therefore 'B f @. Let  y E 'B and I :  a n  arbitrary open s e t  that  

contains  y .  We wil l  show that  x E *I?. For suppose  x ,k *I / .  Then  x f *I/- and 

*U" E * r .  By the definition of R, B C *I/: However, s i n c e  y E OR, *U n H f @- 
a contradiction. Therefore x E *u. S ince  I' i s  an arbitrary open s e t  containing y ,  

i t  follows that  x  i s  in the monad of 1 .  Thus  (X, r )  i s  a  compact s p a c e .  

Theorem 3.6. I /  (X, r )  zs a l o c a l l y  compact  T  s p a c e  t h e n  ( r ,  C) i s  a Haus- 
3 

dor//  s p a c e .  

Roof.  Let  A ,  B E r and A f R. Without l o s s  of general i ty ,  assume that  a € A  

and a $ R. S ince  (X, r )  i s  a  locally compact T 3  s p a c e ,  le t  U and V be open 

s u b s e t s  of ,Y such  that  a E IT, R C V ,  I' n V = @, and Uc, the closure of U, i s  com- 

pact .  l r C n  V = @. For if x E Uc r'l V then, s i n c e  V i s  a n  open s u b s e t  of X, V f? 

I1 f @-a contradiction. In part icular ,  I r C n  B = @. L e t  h = I D  €  ID C 11-1 and 
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Y ( D  t I'lD n I:' f 01. LZ E e. Since I:' i s  compact,  Y E e. Since '4 E h-, 
B E '4'-, and iZ-n Y-= ( D  E  ID n L! f 0 )  n ( D  t r l D  n I!' = 01 = 0, i t  follows 

that  (r, e )  i s  a Hausdorff space .  

Definition 3.5. L e t  (,Y, r )  be a topological space .  For  e a c h  finite family of 

open s u b s e t s  of X, Go,  G I , .  . . , Gr2 ( n  2 0)' l e t  

%(Go, G I , .  . . , Grl) = (,,I c 11'/,4 C and for i  = 1 , .  . . , n ,  G, n ,,I f (dl. 

The I 'ictor~s topo log)  on 1' i s  the topology on 1 '  which h a s  famil ies  of t h e  form 

%(Go, G I , .  . . , G,) a s  b a s i c  open s e t s ,  where G o , .  a * ,  G, a re  an arbitrary, finite 

number of open s u b s e t s  of X. (See [3, pp. 160-1671 and [ l l l . )  L e t  0 denote the 

col lect ion of closed famil ies  of the Vietoris topology. 

Theorem 3.7. I /  (X, r )  I S  co,npact thcn 0 C c'. 
Proof. Suppose 1 E 0 and A E *.A. L e t  %(Go, . . , G,) be an arbitrary, b a s i c  

open s e t  in the Vietor is  topology such  that 'A $(Go, . .  . , G,). Tha t  i s ,  'A C 

G o  and for i = 1 , .  . a ,  n ,  Gi n 'A # @. L e t  1 5 i 5 n and x i  E Gi n 'A. By the def- 

inition of monad, in the enlargement le t  y i  be such  that  y i  E A and x i  N ?,i. By 
the definition of monad, y i  6 *Gi. Hence for i = 1 , .  . , n, *Gi A f 0. Let  y E A .  

S ince  (X, r )  i s  compact,  le t  x E X and s u c h  that  x N y. Since x E 'A ,  x E Go. 

Thus  by the definition of monad, y E *Go. Hence A C *Go. Thus  A E 

*%(*Go, . . . , *G,). Therefore in the enlargement, *A (7 *%(*Go, . . . , *G,) f @. 
Hence h fl %(Go, . . . , Gn) f 0. Thus  in  the Vietoris topology, 'A i s  in  the  clo- 

sure  of h. Since i s  c losed  in the Vietoris topology, 'A t h. Therefore h E ?. 

Theorem 3.8. I /  (X, r )  is a compact Hartsdor// spacc thcn = e. 
Proof. By Theorem 3.7, 0 C C. Let  Y 6 c. L e t  E be  an accumulation point 

of \V in the Vietoris topology. It wil l  be shown that  E E v. Let  R(U, Cf) be  the 

following relat ion:  

, , 0 i s  a n  open s u b s e t  of X, % i s  a f ini te  family of s u b s e t s ,  

U fF, and for each  V E 7 ,  V i s  an open s u b s e t  of X and 

V r i  E f  0." 
C C C 

Then R(I!, cf) i s  a concurrent relation: for if R(I!l, .f . . . , R(Ir,, .f,z) hold in 

the s tandard model, then R(Ir l ,  T ) ,  . . . , R(U,, 7 )  a l s o  hold in the s tandard model, 

where 7 = Uk 7;. Therefore, let $ be an element  of the enlargement s u c h  that  

for a l l  s tandard I' in the domain of R,  R(*I' ,  g) i s  true in the enlargement. Since 

$ i s  (nonstandardly) f in i te ,  let 9 = ( G I ,  G 2 ,  . . .  , G p ) ,  n h e r e  p i s  a (nonstandard) 

natural number. L e t  S( I r ,  G) be  the following concurrent relat ion:  
I I G and I' are open s u b s e t s  of .Y and E C G C L'." 

In the enlargement, l e t  G o  be such  that  for a l l  s tandard U in the domain of S, 

s(*/I, Go). Then *E E ( K ( G ~ ,  G I , .  . , GD). Since * E  i s  a n  accumulation point of 
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*Y in the "vietor is  topology, % ( G ~ ,  G , ,  - . , Gp) "I *Y f @. Let  D 6 

!%(G.~ ,  G I ,  0 . .  , Gp)  f i  *ye We will show that  O D  = E. L e t  x t O D .  Assume x ,d E. 

A contradiction will  be sliown. Since ('Y, r )  i s  a compact Hausdorff s p a c e ,  there 

a re  open s u b s e t s  of X, L;, and (I2,  such  that  x t L r , ,  E C L;2, and L;l n II2 = 0. 
Since G o  C *U2, *I', G o  = 0. Since D C Go,  *Ill  n D - @. However, s i n c e  x t 

OD, there i s  a y E D such  that  x y. By the definition of monad, y 6 * v l .  Hence 

*L  r D f @. A contradiction. Thus  x t E. Therefore O D  C E. L e t  z E E. Sup- 

pose  z k O D .  A contradiction wil l  be shown. Since (X, r )  i s  a compact  Hausdorff 

s p a c e ,  there a re  open s u b s e t s  V and W of X such  that  x E V, OD C I$', and I' n H = 

@. Since *I' 6 g, *I' D f @. Let  v E*V 0 D. By the compactness  of (X, r), 
le t  u be  a s tandard element such  that  u v. Then u t OD.  S ince H is a n  open 

s e t  containing u and u I,, by the definition of monad, 7, 6 *I$'. Hence " V  n *I$' f 
@. Therefore, V n 12' f @, a contradiction. Hence E C O D .  Thus  we have shown 

t:' = O D .  S ince E C and D 6 *\V, O D  = t:' E Y. Thus  f ??. Therefore C ?. 

'Fhtorrm 3.9. l /  (Y, I?) I S  not a compac t  s p a c e  t h e n  C f C. 

l'roof. Since %(@) = ( @ I ,  (@I i s  an open s e t  in the  Vietoris topology. By 

Theorem 3.5, (@!  i s  not an open s e t  in  the compact topology. 

The following example wil l  more clearly show the differences of the \lietoris 

topology and the compact topology. 

Example 3.8. L e t  (X, r )  be the Eucl idean plane. L e t  h be the family of a l l  

A n ,  where n i s  a natural number, such  that An  i s  the union of two perpendicular 

l ines ,  one of which i s  the Y-axis, and the other a line through ( 0 ,  n ) .  Let  D be a n  

accumulation point of h in the Vietoris topology. R1e first note that  D i s  not a sub-  

s e t  of the Y-axis: for if D were a s u b s e t  of the Y-axis, then for V = ( (x ,  y)l - % < 
x < Xi, D 6 %(v) ,  and for e a c h  A 6 A,  A k %(V), thus contradicting that  D i s  a n  

accumulation point of A. Next we note that  if h 6 D n (Y-axis)-, and L; i s  the open 

d i sk  about h of radius %, D E %(X, I'), and s i n c e  I! in te r sec t s  a t  most one member 

of h, a t  most one member of A i s  in  %(X, I'), thus making it impossible  for D t o  be 

a n  accumulation point of A .  Thus  h contains  a l l  of i t s  accumulation points  in the 

\lietoris topology. Therefore iZ 6 CQ'. Let  p be an infinite naturalnumber.  Then 

A t *A but the Y-axis = 4 A .  Hence A 4 C. Observe that if 'V = 2 u ( Y -  e 
ax i s !  then '? i s  a compact family. 

4 .  Iletric. spaces .  

1)efinition 1.1. L e t  (X, r) be  a metric s p a c e  with metric p. If x i s  in X and 

A i s  in  r then the drs tancc jrorn x t o  4 ,  p(x, A ) ,  i s  defined a s  fol lows:  

p(x, A )  = $f4 P(X' Y). 

The  diameter  o j  X, 6(X), i s  def ined  a s  f o l l o ~ s :  

6(X) = s u p  p(x, y). 
x , y  Z'Y 



19721 TOPOLOGIES OF CLOSED SUBSETS 65 

( X ,  r )  i s  sa id  to be bounded if and  only if the diameter of X  i s  finite.  If A ,  B E F  

then the  d ~ s t a n c ~ ~  /707/2 A t o  B ,  p ( A ,  A ) ,  i s  defined a s  follows: 

( 1 )  i f  A  @ and B  f 0 le t  a = s u p x c A  p(x ,  R )  and b = s u p x E B p ( x ,  A )  and 

p ( A ,  R )  = sup la ,  bl ;  

(2 )  if A  = @ a n d  B  $ 0 le t  p ( A ,  B ) =  p ( B ,  A ) =  6 ( X ) +  1 ,  
( 3 )  if A  = B  = 0 l e t  p ( A ,  B ) =  0 .  

Theorem 1.1. I /  ( X ,  I?) I S  a metrzc space  1 ~ 1 t h  metrzc p  and A ,  B ,  D  E r then  

the io l /oz~zng  s ta tements  are true:  

( 1 )  p (A ,  B )  E L O ,  MI (m can  o n l )  be assumed  zn unbounded s p a c e s ) ,  

( 2 )  p ( A ,  5 )  = p ( B ,  A ) ,  

( 3 )  p ( A ,  B) L p ( A ,  D) + p ( B ,  Dl ,  
( 4 )  p ( A ,  R ) =  0  z i a n d  on11 zi A  = B ,  

( 5 )  z /  A  f @ t h e n  p ( A ,  @) = d ~ a m e t e r  01 X.  

The proof of this theorem i s  left to the reader. 

L)efinition 4.2. If ( X ,  r )  i s  a bounded metric s p a c e  with metric p  then, by 

Theorem 4.1, p  def ines  a metric on r. T h i s  metric is  cal led the Nausdorii  metrzc 

on I'. L e t  H = ( A l h  i s  a c losed  s u b s e t  of I- in the  topology determined by the 

Hausdorff metric).  H i s  cal led the Hausdor// topolog)  on r. 
Theorem 4.2. I /  (,Y, r )  I S  a hounded m e t r ~ c  space  then  (I?, fo 2s a bounded 

nletrzc spa t  c .  

['roof'. Immediate from Definition 4.2. 

'I'hcorem 1.3. I /  ( X ,  r) I S  a bounded metrzc s p a c e ,  e 2s thc compact topoloRL 

on r ,  and f( the Hausdorii  topolog)  o n  r, t h e n  C C f(. 

Proof. Suppose ( X ,  r )  i s  a bounded metric s p a c e  with metric p,  h C, and 

in the Hausdorff topology, A  i s  a n  accumulation point of 3. That  i s ,  for e a c h  pos-  

i t ive rea l  number r, there i s  a B in h such  that  A  f B  and p ( A ,  B )  < r. Therefore, 

in the enlargement, there i s  a B in *A such  that  *'4 f B  and *p(*14, B)"O. But 
w * 
p( A ,  B )  0  if and only if for e a c h  x *A there i s  a ) E B  s u c h  that  *p(x ,  ) )  0  

and for each v E B there i s  a z E *A such  that  *p(v ,  z) " 0. Thus ' ( * A )  = ' 5 .  
3 * 

Since ' ( * A )  = A (Theorem 3.1), A  = ' 5 .  Since h i s  i n  ( and B  i s  in *A, ' B  = 

A E h. Thus contains  (in the topology fi) a l l  of i t s  accumulation points .  There-  

fore A E H. 
Theorem 4.1.. I /  ( X ,  r )  I S  a compact nletrzc s p a c c  thcn C = 3-(. 

Proof'. Assume (?(, I?) i s  a compact metric s p a c e  with metric p. By Theorem 

4.3, C' Z H. Let  h E H. Suppose that in the enlargement A E *2, and in the  s tan-  

dard model, ' A  4 A. A contradiction wil l  be shovin. Since ' A  ,k h and 3 E H, 
there i s  a s tandard posi t ive r s u c h  that  for e a c h  B  E h,  p( 'A,  B )  > r. Therefore, 
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in the enlargement, *p(*(OA), A) > r. Since X i s  compact,  if ) E A there i s  a n  
* * o  

x f 'A such  that  *p(x, j )  0. Therefore,  for e a c h  j E A ,  p ( j ,  ( A)) = 0. Hence,  
* 0 s i n c e  * p ( * ( ' ~ ) ,  A) > r, there is  a  z E ( A) such  that  *p(z, A) > r. S ince  (X, r )  

i s  compact,  there i s  a  I, E ?: such  that  v z. Thus  *p(ti, A) > r. Hence i, 4 'A. 
* 0 But, by Theorem 3.1, '(*( 'A))= 'A, and s i n c e  z E ( A) and v z ,  I ,  E '(*('A))= 

'A. A contradiction. Therefore we can conclude that H C C and thus H = e. 
Corollary ?..1 (Vietoris). I/ (X, r )  i s  a  compact metric s p a c e  then (T', H )  i s  

a compact metric s p a c e .  

Definition 4.J. Let  (X, I?) be a  metric s p a c e  with metric p. If for each natural 

number n,  An E I?, then {Anln i s  a  natural number! i s  sa id  to  be a  Cauchy sequence 

if and only if for e a c h  rea l  number r  > 0, there i s  a  natural number n such  that  for 

a l l  natural numbers m and p, if m,  P > 72 then p(Am, A p )  < r. 
Definition 4.4. Le t  (X, r )  be a  metric s p a c e  with metric p. If An E r for 

e a c h  natural number, then A = LimA if and only if limn4,p(A, An)  = 0. 

Example 3.1. Let  (X, I?) be  the Eucl idean plane,  x n  the point (n, O), and 

A = {x,!. Then  LimAn does  not exis t .  Tha t  i s ,  there i s  no A such  that  A = 

LimAn.  In particular,  @ f Lim A n. 

Theorem 4.5. Let  (X, r )  be a  metrlc s p a c e ,  {A,! a  sequence  o/ c l o s e d  s u b -  

s e t s  o{ X, and A = LimAn.  Then {or each  znj~nzte  natural number p, A = 'A 
P' 

hoot ' .  L e t  p  be a  metric for (X,  r ) .  If r  i s  a n  arbitrary, s tandard,  posi t ive,  

r e a l  number, then from Definition 4.4 it  follows that *p(*A, *Ap) < r. Hence 
* *  * 
p( A, A p )  P 0. Therefore,  p('(*A), 'A ) = 0. Since '(*A) = A, p(A, Onp) = 0. 

0 
P 

Tha t  i s ,  A = A 
P '  

Definition 1.5. Let  (X, r )  be  a  metric s p a c e  with metric p. Then (X,  r )  i s  

s a i d  to be unz/orml) locall) compact i f  and only if for e a c h  r  > 0 and e a c h  x 6 X, 
{ y  E Xlp(x, 1) < r! i s  compact.  

Theorem 1.6. Let ( A ,  I?) be a  unz/ormJ) local l )  compact metrzc s p a c e  a n d  {A,! 

be a  C a u c h j  sequence  of c l o s e d  s u b s e t s  of X. Then LlmA, exzsts .  In {act,  {or 

r,aclr zn/znzte natural  number p, Llm An = O A ~ .  

Proof'. Le t  p  be a  metric for (X,  r ) .  In the enlargement, le t  p  and q be two 

infinite natural numbers. It then follows from the definition of Cauchy sequence  

that *p(A A ) 1. 0. Hence 'A = 'Aq. Le t  A = 'A, and suppose that  A 
P '  4 P 

LimAn. A contradiction wil l  be shown. Since A f LimAn,  it  is  not the c a s e  that  

limn -,p(A, An)  = 0. Hence there i s  a  posi t ive rea l  number r  such  that  p(A, A,)? 

r  for infinitely many natural numbers n. Since e a c h  subsequence  of a  Cauchy s e -  

quence i s  a  Cauchy sequence ,  we may suppose ,  without l o s s  of general i ty ,  that  

{A,! i s  a  Cauchy sequence  and ?(A, A n )  2 r  for e a c h  natural  number n. Then at  
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l e a s t  one of the following two c a s e s  holds:  

(1) for some x in  A, p(x, A,) >_ r  for infinitely many n, 

(2) there i s  a n  mo such  that for a l l  n > mo, there i s  a n  x n  An s u c h  that  

p(x,, A 12 r. * 
Assume c a s e  (1). Then for some inf ini te  natural number t ,  p(x, A,) > r. But 

s i n c e  O A ~  = A, *p(x, A t )  " 0. A contradiction. C a s e  (2) i s  a l s o  impossible .  For  

l e t  m be a natural number such  that m > mo and for a l l  s, n > m, p(As, A n )  < r. 
* * 

Then for some infinite natural number t, p(  Am, At) < 'Ar. In particular, *p(xm, At) 

< '4 r. L e t  a E At  and be such  that  *p(xm, a )  5 '4 r .  By hypothesis ,  B = { z  E 

X lp(xm, 2)s 1/: T I  i s  a compact s e t .  Since A E *B, l e t  a. be a s tandard point in 

B s u c h  that  a. = a .  Then a. E 'At = A. Therefore, p(xm, A) 5 r / 2 .  A contradic- 

tion. 

Definition 4.6. Le t  (X, r )  be a metric s p a c e  and A C r. A i s  s a i d  to  be com- 

plete  if and only if whenever {An]  i s  a Cauchy sequence  such  that  for e a c h  n, 

An E A, LimA, e x i s t s  and LimA, E A. 

Note that t h e  definition of completeness  for families of c losed  s u b s e t s  does 

not assume that the underlying s p a c e ,  (X, r), i s  bounded. Since the Hausdorff 

topology i s  only defined for bounded s p a c e s ,  the above notion of completeness  ap- 

p l ies  to some nonmetric s p a c e s .  

Theorem 4.7. If (X, r )  is  a uniformly locally compact metric s p a c e  and h E C 
then A i s  a complete /amily. 

Proof. Suppose that  (X, r) i s  a uniformly local ly compact metric s p a c e  with 

metric p and h E C. Also suppose that  {A,] i s  a Cauchy sequence such  that  for 

e a c h  natural number n, An E A. In the enlargement, l e t  p be an infinite natural 

number. Then Ap E *A. Le t  A = O A ~ .  By Theorem 4.6, A = LimAn. Since A E 

C, A = O A ~  E A. Thus  A i s  complete. 

Example 4.2. An example o/ a compact /amily that i s  not a complete lamily. 

L e t  (X, r )  be the rational numbers with the usual  metric p(x, y)  = ( x  - y ( .  Le t  

h = !!x](x E X ]  u { @ I .  Then A i s  a compact family. Le t  { a n ]  be a sequence  of 

rat ional  numbers that  converges to $2. L e t  An = {a,]. Then for e a c h  natural num- 

ber n, An E h. {A,] i s  a Cauchy sequence ,  but L imAn d o e s  not exis t .  Therefore 

h i s  not a complete family. 

Example 4.3. An example o/ a complete /amily o/ c l o s e d  s u b s e t s  o/ the Eu- 

cl idean plane that i s  not a compact larnily. Le t  (X, r )  be the Eucl idean plane 

with i t s  usual  metric, p. L e t  A be the s e t  of a l l  l ines .  To  show that A i s  a com- 

p le te  family, le t  {An]  be  a Cauchy sequence  such  that for each natural number n, 

An E A. Le t  m be a natural number such  that for a l l  natural numbers n,  q > m, 

p(An, A*) < 1. Thus  if n > m, An i s  paral le l  t o  Am. (Otherwise, p(Am, A,) = m.) 

In the enlargement, l e t  p be a n  infinite natural number. Then * p ( * ~ m ,  A p )  < 1. 
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Hence '4 i s  a line contained in *X that  i s  paral le l  to *A,. Since *p(*Am, A D )  < 
1, 'Ap i s  a l ine paral le l  to  Am. Hence 'Ap t h. By Theorem 4.6, L imAn ex-  

i s t s ,  and,  by Theorem 4.5, L imAn = 'Ap. Therefore i s  complete. i s  not com- 

pac t ;  s ince  if q i s  an infinite natural number and A i s  the line through (q,  0) par- 

a l l e l  t o  the  Y-axis, then A € *A but 'A = @ $! A. 

Theorem 4.8. Let  (X, I?) be a compact metric space  and A C r. T h e n  A i s  a 

compact family if and only  if A i s  a complete family. 

Proof. Assume h i s  a compact family, Then,  by Theorem 4.7, A i s  a complete 

family. Assume that  A i s  a complete family. Le t  p be  a metric for (X, r ) .  Le t  

A 6 *A. We will  first show that  * p ( ~ ,  *('A)) * 0. Suppose that  there i s  a s tan-  

dard r > 0 such  that *p(A, *('A)) 2 r. Then ,  s i n c e  (X, r )  i s  compact,  

p('A, '(*('A))) > r. By Theorem 3.1,  '(*('A)) = 'A. Hence p(OA, ' A ) >  r ,  which 
* * o  i s  impossible .  Thus p(A, ( A)) * 0. Let  An = ( B  E h l p ( ~ ,  'A) 5 l / n ) .  Since 

A *A, for e a c h  s tandard natural number n ,  the sen tence  " * A ~  f @" i s  true in 

the enlargement for each s tandard natural number n. By elementary equivalence,  

"An 4 gB9 i s  true in  the s tandard model for a l l  natural numbers n. By the axiom 

of cho ice ,  choose An E An. Then (A,! i s  a sequence  of members of h and 'A = 

LimAn. Since every convergent sequence  i s  a6Cauchy sequence ,  {A,\ i s  a Cauchy 

sequence .  Since A i s  complete, L imAn = 'A E A. Thus h i s  compact.  

5 .  Topological limits. 

Definition 5.1. L e t  (X, r )  be a topological  s p a c e  and (Ai! be a sequence  of 

c losed  s u b s e t s  of X. Then liminflAi\, lim s u p l A i \ ,  and l imAi  are  defined a s  fol-  

lows : 

(1) x 6 liminf )Ai )  if and only if for e a c h  open neighborhood I' of x ,  U n A i  f 
0 for a l l  but finitely many natural numbers i ,  

( 2 )  x 6 l imsupjAi \  if and only if for each  neighborhood U of x ,  U n Ai  f 0 
for infinitely many natural numbers i ,  and 

(3) if lim inf (Ai\  = lim s u p  !Ai\ = A then we  s a y  that A = limAi. 

l imAi  i s  ca l led  the topological limit of the sequence  (Ai].  

Theorem 5.1. I /  (X, r )  i s  a topological space  and (A i s  a sequence  o/ 

members of then  liminf A;, l imsupAi ,  and l imAi ,  i /  i t  e x i s t s ,  are members of 

r. 
T h e  proof i s  left to  the reader. 

Definition 5.2. Let  (X, I?) be a topological s p a c e  and h C r. A i s  sa id  to 

be  a l imit family if and only if for each  sequence  of c losed  s u b s e t s  of X, (Ai ) ,  if 

Ai E h for each  i  and A = l imAi then A E A. 2 wil l  denote the s e t  of limit fami- 

l i es .  

Theorem 5.2. Let  (X, r )  be a topological s p a c e .  T h e n  ( r ,  2 )  i s  a topologi-  
c a l  space .  
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Proof. By Defini t ion 5.2, r f 2 and 0 t 2. Suppose that  h and '3! a r e  in  2. 
It will  be shown that h U Y i s  in 6. Suppose that  {Ai)  i s  a sequence s u c h  that  

A = l imAi,  and for e a c h  i ,  Ai  f (A UY).  Let  I l  = { i ( A i  t h )  and l 2  = { i l ~ ~  f Y]. 

Since I I  U l 2  i s  the s e t  of natural numbers, e i ther  I I  or I 2  i s  infinite. Without 

loss  of generality suppose  I I  i s  infinite. Then I B ~ ~  = { A i ( i  f 11) i s ,  in a natural 

way, a subsequence of !Ai), and Bk t A for e a c h  k ,  and A = l imBk.  Since h f 2 ,  

i t  follows that A f h. Thus A E ( h  U'3!) and we have shown that  (A U \V) t 2. 
Suppose 9 C 2. It wil l  be shown that ( n 3 )  E 6. Suppose that {Ai)  i s  a sequence 

of closed s u b s e t s  of X, A = l imAi, and Ai f n9. Then for e a c h  h t 3, Ai  t A. 

S ince  A is a limit family, A f A. Thus A E n 9. Therefore n3 is a limit fam- 

ily. 

Theorem 5.3. Let  (X, r )  be a topological s p a c e  a n d  {Ai{ a sequence  o/ 

c l o s e d  s u b s e t s  o j  X. Then, l imAi  = A i/ and  only if there i s  a n  injinite natural  

number p such  that /or a l l  q > p, q a n  injinite natural  number, 'A = A. 
4 

Proof. Assume that  l imAi  = A. L e t  s be a n  arbitrary, infinite natural number. 

L e t  x f 'As. It wil l  be  shown that  x E A. For  suppose  that  x 4 A .  Then there 

is an open neighborhood U of x such  that  U in te rsec t s  only finitely many Ai. 

(Otherwise x would be  i n  l i m s u p A i  and therefore in A.) Let  t  be t h e  largest  nat- 

ural number such  that  U n At  f @. Then the following s tatement  i s  true in the 

s tandard model: 
t I if u i s  a natural number and v > t  then U n Av = @." 

* Thus in the enlargement, U n As = @. Since x t 'As, l e t  y be such  that  y f As 

and x y.  From the definition of monad i t  then follows that  y t *u. Thus  *U n 
As f 0 ,  a contradiction. Therefore, x t A and 'As C A for each infinite natural 

number s. Now suppose  that a f A. L e t  R(V, W) be  t h e  following relation: 

''V and W are  open s u b s e t s  of X and a f W C V." 

Then R(V, W) i s  a concurrent relation: if I w ~ R ( v ~ ,  W . , 3 w n R ( v n ,  Wn) hold, 

then R(V1, W), . - , R(v,, W) hold, where W = nn Vi. Therefore, in the en- 
z =  1 

largement, there i s  a Z such  that R ( * v , z )  holds for a l l  open s u b s e t s  V of X s u c h  

that  a f V. Thus  Z i s  an open subse t  of *X and Z C monad of a .  Since a f *A, 

a t* l i rn infAi .  T h u s ,  in the enlargement, Z n Aq = @ for a l l  natural numbers q 

such that q 2 P for some natural number p .  Without l o s s  of generality, i t  may b e  

assumed that p i s  inf ini te .  Thus a E ' A ~  and A C 'Aq. Therefore, there i s  a n  in- 

finite p such  that  for a l l  q > p, 'Aq = A. 

Assume that  p i s  a n  infinite natural number and for a l l  q > p ,  'A = A .  It 
4 

will  be shown that  A = l imAi. Le t  x t A, U a n  open neighborhood of x, and q a n  

infinite natural number such  that q > p. Since x E 'A l e t  y t Aq and s u c h  that 
4 '  

x N y. Then,  by the definition of monad, it  follows that y f *U n A That  i s ,  
4' 

*U n Aq f @. Hence t h e  following sentence i s  true in the enlargement: 
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"there i s  a natural  number n such  that  for a l l  natural numbers 

m,  if m > n then *U n Am f @." 
Hence in the s tandard model, by elementary equivalence,  i t  follows that U n A i  f 
@ for a l l  but finitely many i. Since th i s  i s  true for e a c h  open s e t  that  contains  x ,  

x E lim inf A;. Thus  we have shown that A C liminf Ai  C l imsupAi .  In order to  

show that  lim s u p  Ai C A, le t  a E lim s u p  A i. As before, let R(v, W) be the con- 
current relation: $ 'v  and W a re  open s u b s e t s  of X and a € W C V." Then in the 

enlargement, there i s  a Z such  that  for a l l  open s u b s e t s  V of X that contain a ,  

R(*v, Z )  holds. Thus  Z i s  a n  open s u b s e t  of *X and a € Z and Z i s  contained in 

the monad of a ,  Since a € * l i m s u p A i ,  l e t  s be a natural  number that i s  larger than 

p and such  that Z n As f @. Since a i s  s tandard,  a € O A ~  = A. Therefore 

l i m s u p A i  = l i m i n f A i  = A. 

Theorem 5.4. Let  (X, r )  be a topological s p a c e .  Then e C 2. 

Proof. Le t  A E C, (A,] a sequence of members of A,  and A = l imAn.  By 
0 Theorem 5.3, there i s  an infinite natural  number p such  that A = Ap. Since A P E  

*A and A E C ,  O ~ p  = A E A. Therefore,  A E f .  
Example 5.1. An example o/ a compact Hausdor// s p a c e  (X, r )  and  a limit 

family A,  A C r ,  s u c h  that A i s  not a compact /amily. Le t  o l  be the f i rs t  un- 

countable ordinal,  X = (a la i s  a n  ordinal and a 5 o 1, and r the col lect ion of a l l  

s u b s e t s  of X that  a re  closed in the order topology of X. Then (X, r )  i s  a compact 

Hausdorff space ,  and X h a s  the property that if (an] i s  a sequence  of countable 

ordinals then there i s  a countable ordinal P such  tha t  an < P for e a c h  n. Thus if 

(an] i s  a sequence  of countable ordinals  and a = l i m a n  then a i s  a countable or- 

dinal .  Le t  A = ((alla € X - ( o l ] ) ,  (A,] be a sequence  of members of A, A = 

l imAn,  and an such  that  an E An. By Theorem 5.3, le t  p be an infinite natural num- 

ber such  that A = 'A Since A p  f 0 and (X, r )  i s  compact,  O A ~  = A f d. Thus  P '  
l e t  a € A. Then e a c h  neighborhood U of a in te rsec t s  a l l  except  finitely many An;  

that  i s ,  a l l  except  finitely many ai are in  U. Therefore, a i s  a limit point of the 

sequence  lai]. a i s  the only such  limit point: s i n c e  if P i s  a limit point of the 

sequence  (an] and 0 f a ,  then, s i n c e  (X, r )  i s  a Hausdorff s p a c e ,  there a re  d i s -  

joint neighborhoods C' and V of a and respect ively,  e a c h  of which contains  a l l  

but f ini te ly many ai-which i s  c lear ly impossible. Therefore, a i s  the only member 

of A and a = h a n .  But then a i s  countable. Thus  A E A and A E f .  However, 

A 4 e. For in the enlargement, there i s  a p E *X s u c h  that  for e a c h  a E X - ( a 1 ] ,  

a < p < ol .  That  i s ,  there i s  a 'Pcountable  ordinal" P in  the  enlargement that i s  

larger than e a c h  standard countable ordinal.  It then follows that  o l  N P. Thus  

(6) E *A and O I / 3 ]  = w l  $ A. 

Theorem 5 . 5 .  I /  (X, r )  i s  a compact metric s p a c e ,  A C r ,  and A i s  a limit 

jamily, then A i s  a complete /amily. 
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Proof. Suppose A i s  a limit family. Le t  p be a metric for (X, r) and ( A n {  be  

a Cauchy sequence  of members of A. Then for some infinite natural  number p ,  and 

a l l  infinite natural numbers q > p, O A ~  = l imAn.  L e t  A = 'A = l imAn.  Suppose 
4 

A f LimAn. Then limn ,'p(A,, A ) f  0. Thus  the following s tatement  i s  true in 

the standard model: "r > 0 and for each  natural number m there i s  a natural num- 

ber n 2 m such  that  p(An, A )  >_ r." Hence in the enlargement for some s > P, 

* p ( ~ S ,  *A))> r .  Since  (X, r) i s  compact,  i t  follows that  p ( O ~ s ,  '(*A))> r. But 

s i n c e  '(*A) = A (Theorem 3.1), p ( O ~ S ,  A ) > _  r. Since  s > p, 'As = A. Thus 

p(A, A) > r-an impossibility. Therefore, l imn- (An, A) = 0 and A = Lim A,. Thus  

A i s  complete. 

Example 5.2. Let  (X, r )  be  the rational numbers with metric p(x, y )  = 

1 %  - y ( .  Le t  (x,) be a Cauchy sequence of rat ional  numbers such  that  limx, = 

$. For e a c h  natural number n, l e t  An = (xn{ .  Let  a = ( @ )  u ( A n ( n  i s  a natural 

number{. Then h i s  a limit {amily that i s  not a complete family. 

Example 5 .3 .  L e t  (X, r )  be  the  Eucl idean plane and h the family of l ines  

that are contained in X. Then ,  by Example 4.3, h i s  a complete family. h i s  not 

a limit family: s i n c e  if for e a c h  natural number n, An i s  the line through (n, 0 )  

paral le l  to the Y-axis, then l imAn = @ 4 A. Thus  A i s  a complete jamily of a lo- 

cal ly  compact s p a c e  that i s  not a limit family. 

Theorem 5 .6 .  Let  (X, I?) be a compact metric s p a c e  and A C r. Then the 

following three s ta tements  are  equivalent: 

(1) h i s  a compact family, 

(2) iZ zs a limit {amily, 

(3) h i s  a complete family. 

Proof. By Theorem 5.4, (1) implies (2); by Theorem 5.5, (2) implies (3); by 

Theorem 4.8, (3) implies (1). 

Definition 5.3.  If (A,) i s  a sequence of closed s u b s e t s  and there i s  a n  A 

such  that  A = l imAn,  then (A,) i s  sa id  t o  be I-convergent. If (A,) are  closed 

s u b s e t s  of a metric s p a c e  and there i s  a n  A s u c h  that  A = LimAn then (A,) i s  

sa id  t o  be L-convergent. 

The Bolzano-Weierstrass theorem s a y s  that in the space  LO, 11 every sequence 

of points  has  a convergent subsequence .  Several  authors have invest igated gen- 

eral izat ions of th i s  theorem for s e q u e n c e s  of functions and s e t s .  (See 13, p. 3401, 

[13, p. 111, 114, p. 1241, and 112, p. 2291.) For  s e t s ,  the general  version of the 

Bolzano-Weierstrass theorem h a s  the  following form: Every sequence  of closed 

s u b s e t s  h a s  a n  [-convergent subsequence.  The usual  method of proof i s  to assume 

the second axiom of countability and construct the limit (to which the correct sub-  

sequence wil l  converge) by means of a diagonal  argument. Using nonstandard 

ana lys i s ,  the problem i s  in the opposite direction: The limit can  be immediately 
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found; the problem i s  to  find a subsequence that coverges to  i t .  T h i s  method o f  

proof by nonstandard analysis will also allow us  to  describe exac t ly  those fami- 

l ies  o f  subsets  that have the Bolzano-Weierstrass property. Th i s  method then be- 

comes a powerful tool for finding and proving theorems that involve convergence 

o f  subsequences o f  sequences o f  closed subse ts .  

Theorem 5.7.  Let ( X ,  r )  be a compact metric space ,  A  a complete family, 

and (A,] a sequence oj  members o j  A. Then there i s  an L-convergent subsequence 

o j  (A ,] ,  ( ~ ~ 1 ,  such that L i m B i  i s  in A. 

Proof. Let p be a metric for ( X ,  I?). Let p be an inf ini te  natural number and 

A = ' A  Suppose that no subsequence o f  (A,] L-co?verges t o  A .  A contradic- 
P' 

t ion will be shown. For, in the standard model, the following sentence i s  then 

true: "there i s  a natural number m and a real number r > 0 such that for all nat- 

ural numbers n such that n > m, p(A,, A )  2 r." Therefore,  in the enlargement, 

* ( A ~ ,  A )  r .  Since ( X ,  r )  i s  compact and ' A p  = A ,  this  i s  impossible. Thus  

we have shown that (A,)  has an L-convergent subsequence,  ( B ~ ] ,  a n d L i m B i =  A .  

Since ( X ,  r )  i s  compact and A i s  complete,  by  Theorem 4.8, h E e. Therefore,  

since A € * A ,  L i m B i = A =  ' A  € A .  
P P 

Example 5.4 (The  Blaschke convergence theorem). Let Y be a linear topologi- 

cal  space and X a compact subse t  o j  Y .  Suppose that X together with i ts  relative 

topology r i s  a metric space. Then ,  i j  (A ,]  i s  a sequence o j  nonempty, closed 

convex subsets oj  X, then (A,) has an L-convergent subsequence within X that converges 

to a nonempty, closed convex subset  oj  X. 

Proof. Let A  = (A IA  i s  a nonempty, closed convex subset  o f  X). Let A 6 *A. 

Then  by  Example 3.3, ' A  i s  a closed convex subset o f  X. Since ( X ,  r )  i s  com- 

pact and A f @, ' A  f @. Thus  ' A  6 A  and h i s  a compact family. By  Theorem 

4.7, A  i s  a complete family. By  Theorem 5.7, (A,]  has an L-convergent subse- 

quence that converges to a member o f  A .  
Example 5.5. Let A D t r  be a s  in Example 3.2 ( the jamily o j  al l  Jordan curves 

in the closed unit disk oj  the Euclidean plane that have area 2 r and that are the 

image o j  an ajjine transjormation applied to the Jordan curve D ) .  Let (A,) be a 

sequence oj  members o j  AD,r .  Then (A,]  has a subsequence that L,-converges 

to a member o j  A D , r .  
Proof. By Example 3.2 and Theorem 4.7, AD, ,  i s  complete. By Theorem 

5.7, the desired conclusion then fol lows.  

Definition 5.4. Let ( X ,  r )  be a topological space and A  C r .  i s  said to 

be a Bolzano-Weierstrass jamily i f  and only i f  each sequence o f  members o f  A  has 

an 1-convergent subsequence that converges to  a member o f  A. @ will denote the 

collection o f  all Bolzano-Weierstrass famil ies .  

In the literature, what i s  here called Bolzano-Weierstrass famil ies  are o f t en  
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referred to a s  "compact families," and should not be confused with our use  of the  

term '"ompact family." 

Theorem 5.7. @ C C. 

Proof. Le t  h E @ and {Ai! be  a sequence  of members of h such  that  l imAi= 

A. Since A E m ,  there i s  a subsequence  of {Ai{,  ( ~ ~ 1 ,  such  that  l i m B i  i s  in A. 
But lim B i  = A. Hence A E h and h E 2. 

Let  (X, I?) be a topological space .  Unlike e and 2 ,  @ d o e s  not a lways form 

a topology on r. In fact ,  for many interest ing s p a c e s ,  r k @-as i s  shown by W. 

Sierpigski in the following theorem of [lo]: 

Theorem 5.8. Assume the  continuum hypothes i s .  Le t  (X, I?) be a nonsepar- 

able metric space .  T h e n  r @. That  i s ,  there i s  a sequence of c losed  s u b s e t s  

of X that has  no I-convergent subsequence .  

K O  Proof. Since 2 = N 1 ,  l e t  { s { ~ < ~ ~  be a well-ordering of a l l  infinite s e -  

quences  of natural numbers, where a l  i s  the first uncountable ordinal. Since 

(X, r )  i s  not separable ,  there i s  a posi t ive r e a l  number, d ,  and a transfinite s e -  

quence of points of X, {xy]y<. i l ,  such that for a l l  y < p < o ,, p(xy ,  xp) 2 d ,  

where p i s  the metric for (X, r ) .  For  e a c h  natural number k, l e t  

E - {xyll/  < a l  and k E sy{. 
k - 

It will  be  shown that  E o ,  E l ,  E 2 ,  a * . ,  E k , .  . . form a sequence  of c losed  s u b s e t s  

of X that  h a s  no convergent subsequence.  Since p(x, y )  > d ,  for e a c h  x ,  y E E k ,  

E k  i s  a c losed  subse t  of X. L e t  E k  E k l , .  . , Ek, , .  be a n  arbitrary s u b s e -  
0 ' 

quence of E o ,  E l , .  , E k ,  . L e t  a be the countable ordinal such  that S,= 

{ k o ,  k 2 ,  . . , k 2 i , .  . f .  Then for each  natural number i, xa E E Thus  x,E 
k2i '  

lim s u p E k  ,. L e t  U be the open bal l  about x, of radius d .  ,Then,  by construction, 
I 

for e a c h  natural number i, (i n E k 2  = @. Thus  xa 4 lim inf Eki .  Therefore 

Eke, E k l , .  . , E k i , .  ' .  i s  not 1-convergent. 

Definition 5.5. L e t  (X, r )  be  a topological s p a c e .  (X, r) i s  s a i d  t o  be  s e c -  

ond countable if and only if there i s  a sequence of open s u b s e t s  of X that  form a 

base  for the topology on X. Such a sequence  i s  cal led a fundamental s y s t e m  of 

open s u b s e t s  of X. 

Theorem 5.9. lf (X, r) i s  a second countable topological  space  then  e = 

@ = S .  

Proof. (i) Suppose h E e. L e t  (Ai )  be  a sequence  of members of A,  p be 
0 a n  infinite natural number, and A = A Let  ? be a fundamental sys tem of open 

P' 
s u b s e t s  of X. Le t  Vo, V, ,  . , Vn, be those members of 5 s u c h  that  for each 

n ,  Vn n A f @; l e t  WO, W1,. , Wn,. , be those members of 5 such  that  for 

each  n ,  *w, n A p  = @. (We are  taci t ly  assuming that  there a re  infinitely many 
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members V of g and infinitely many members W of 3 such  that  V n A f @ and * ~ n  

A p  = @. Even though th i s  i s  not a lways the c a s e ,  the proof presented here i s  s u f -  

ficiently general  t o  allow for t h e  other c a s e s  with only s l ight  notat ional  modifica- 

t ions.  The reader may prove t h e s e  additional c a s e s ,  if he wishes . )  Define Bn a s  

follows: 

l jn  i s  the element of the sequence {Ai]  that  h a s  l e a s t  

index and i s  s u c h  that  for a l l  j 5 n,  Bn n Vj f $ 
and Bn f l  W .  = $. 

I 

We will show that Bn ex is t s  for e a c h  natural number n. We f i rs t  note that it  fol- 

lows from the definition of monad that for e a c h  standard natural number i, * v i  n 
A p  f @. Let  n be a standard natural  number. The s tatement  

I t  for i = 0 , .  . a ,  n, Ap n *I/;  @ a n d  AD fl *\$Ii QIu 

i s  then true i n  the enlargement. Therefore, the s tatement  
P I  there i s  a natural number I , )  such  that  for i = 1 , .  . , n,  

A m f l * v i f  @ a n d A m n  *Clii=@" 

i s  a l s o  true in  the enlargement. Thus  the s tatement  
e c there i s  a natural number m such  that  for i = 1,. . . , n, 
Am n Vi f (8 and A m n  - (8" 

i s  true in the standard model. The ex is tence  of Bn immediately follows. L e t  

x E A. Let  V be a fundamental open s e t  s u c h  that x E V. Then V = Vk for some 

k. Hence for a l l  i 1 k, V n B i  f @. Therefore x E lim inf Bi. Thus A C lim inf Bi. 

Now le t  y 4 A. Le t  S o ,  S , ,  , S n ,  , be the fundamental open s e t s  that con- 

tain y. Let  Tn = ny= , Si. L e t  q be  an arbitrary, infinite natural number. Then 
0 T q  C monad of y. Since A = A p ,  it  follows that  T q  f l  A p  = @. Therefore for some 

stand-ird natural number j ,  * T ;  n Ap = $. (Otherwise the s e t  of infinite n a t w a l  

numbers could be shown t o  be a n  internal set-which it i s  not.) Hence for some 

fundamental open s e t  W ,  y 6 W and *W fl Ap = @. Let  b be s u c h  that  W = W b .  Then 

for i 2 h ,  B i  fl W ,  = @. Thus y 6 l i m s u p  Bi. Hence lim s u p B i  C A. Since 

l i m s u p B i C A  C l i m i n f B i ,  l i m H i = A .  Therefore A ~ ( 8 .  
(ii)  By Theorem 5.7, l? C 2.  

( i i i )  Let  \I' c 2 and D E *Y. L e t  Yo, Y 1 , .  a + ,  Y n , . . .  be fundamental open 

s u b s e t s  of X such  that for each  natural number n,  OD n Yn f @, and Z o ,  Z , ,  . . . , 
Zn,. be the fundamental open s e t s  such  that for e a c h  n, D n * Z n  = @. L e t  n 
be a n  arbitrary, s tandard natural number. Le t  Yn = I E  E Y /  for i = 0 , .  . . , n,  E n 
Y i  k @ and E n Z i  = @I. Since OD n Y i  f @ for each  s tandard i ,  it follows from 

the defini t ion of monad that for e a c h  standard i, D n *Yi  f @. Thus  D E * y n .  

Hence in the enlargement * y n  f @. Therefore 'II, f @. Therefore, by the axiom 
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of choice,  l e t  D n  6 Y,. Let  t  be an infinite natural  number. We w i l l  show that  

OD = OD,. Let  v OD.  Let  G o ,  G I , .  . . , G m , .  q ,  be the fundamental open s u b s e t s  

of X that contain v .  For e a c h  s tandard natural number m ,  let Hm = Gi. Then 

Hm i s  a n  open s u b s e t  of X and v E Hm. Therefore l e t  V  be a fundamental open 

s u b s e t  of X s u c h  that  v 6 V  and V  C Hm. Then V  = V k  for some standard natural 

number k. Since D ,  n *vk  (8, D ,  n * H ~  f 0. Since f a  e a c h  standard natural 

number m ,  D ,  n * H ~  f @, it follows that there i s  a n  infinite natural number s  such  

that  D ,  r~ Hs f (8. (Otherwise the s e t  of infinite natural numbers would be inter- 

nal.) Since Hs C monad of v ,  v  € OD,.  Therefore OD C OD,. Now assume z ,d O D .  

Then for some open s u b s e t  Z of X ,  z E Z and Z fl OD = @. Then there i s  a s tand-  

ard natural number g such  that x 6 Z and Z  C Z. Since t  i s  a n  infinite natural 
g g 

number, D ,  n * Z g  = @. Hence z # OD,.  Therefore O D  , C O D .  Thus  we have shown 
0 ' 0  = D ,  for e a c h  infinite natural number t .  By Theorem 5.3, l imDn = O D .  Since 

D n  6 VI for e a c h  natural  number n and y € 2,  lim D n  = OD 6 v. Hence \V 6 e. 
Example 5.6 (The Mahler compactness  theorem). Le t  (X,  r) be ~ u c l i d e a n  n-  

s p a c e ,  A a Mahler /ami ly  of la t t i ces  (Example  3 .5) ,  and ( A i {  a s e q u e n c e  of mem- 

bers  of A .  T h e n  (A;{ h a s  a n  1-convergent s u b s e q u e n c e . ( 3 )  

Proof. By Example 3.5, A € e. Thus ,  by Theorem 5.9, A E c. 
Example 5.7. Let  ( X ,  r) be a  s e c o n d  coun tab le ,  t opo log ica l  group and (Al! 

a s e q u e n c e  of c l o s e d  subgroups of X .  T h e n  ( A i )  has  a  ~ u b s e q u e n c e  that  l-con- 

verges  t o  a  c l o s e d  subgroup of X .  

Proof. Le t  A be the family of c losed  subgroups of X .  By Example 3 ,4 ,  A E 

e. Thus  by Theorem 5.9, A E 0. 
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