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a b s t r a c t

Investigating the interactions between universal and culturally specific influences on color categoriza-

tion across individuals and cultures has proven to be a challenge for human color categorization and

naming research. The present article simulates the evolution of color lexicons to evaluate the role of two

realistic constraints found in the human phenomenon: (i) heterogeneous observer populations and

(ii) heterogeneous color stimuli. Such constraints, idealized and implemented as agent categorization

and communication games, produce interesting and unexpected consequences for stable categorization

solutions evolved and shared by agent populations. We find that the presence of a small fraction of color

deficient agents in a population, or the presence of a ‘‘region of increased salience’’ in the color stimulus

space, break rotational symmetry in population categorization solutions, and confine color category

boundaries to a subset of available locations. Further, these heterogeneities, each in a different,

predictable, way, might lead to a change of category number and size. In addition, the concurrent

presence of both types of heterogeneity gives rise to novel constrained solutions which optimize the

success rate of categorization and communication games. Implications of these agent-based results for

psychological theories of color categorization and the evolution of color naming systems in human

societies are discussed.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Human color categorization has a long history of empirical
investigation by psychological scientists (see Hardin and Maffi,
1997 for a survey of perspectives), and is a research area that
continues to attract active empirical interest (e.g., Davidoff et al.,
1999; Roberson et al., 2000, 2005; Kay and Regier, 2003; Jameson,
2005a; Regier et al., 2005, 2007; Sayim et al., 2005; Lindsey and
Brown, 2006). The empirical literature suggests that, on one hand,
there is a good deal of universality in color categorization across
cultures, whereas, on the other hand, a considerable amount of
variation is also observed. A long-standing debate in the field has
been whether specific universal tendencies exist in the ways
different human linguistic societies categorize and name percep-
tual color experiences, and if so, to what factors (e.g., physical
environment, human biology, perception, social features) might
such tendencies be attributed. A major challenge for the area
continues to be the development of a theory that would account
for universal patterns seen in color categorization data while
ll rights reserved.
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explaining any differences observed. This is a fascinating problem
that has recently attracted the investigative interests of computa-
tional scientists (Belpaeme and Bleys, 2005; Steels and Belpaeme,
2005; Dowman, 2007; Komarova et al., 2007a; Puglisi et al.,
2007).
1.1. Two perspectives on human color categorization

One widely held perspective is that the commonalities of color
categorization across individuals and cultures are largely ex-
plained by human perceptual color processing, and universal
features of individual psychological processing believed to under-
lie perceptual color experience. This ‘‘universalist’’ view implicitly
places the causes for observed color categorization systems within

the individual observer. The universalist view has historically
been successful in characterizing color categorization similarities
across a number of ethnolinguistic groups (Kay and Regier, 2003;
Kay, 2005; Kuehni, 2005a, b; Regier et al., 2005; Lindsey and
Brown, 2006), but less successful identifying the sources of the
considerable variation in color categorization and naming that is
seen across ethnolinguistic groups.

A different view is that socio-cultural factors contribute
substantially to the ways color appearance is categorized and
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named by different ethnolinguistic groups (Davidoff et al., 1999;
Roberson et al., 2000, 2005). This ‘‘culturally relative’’ view
suggests that to the degree that two societies share similar
environmental, pragmatic and social circumstances, two such
societies are more likely to exhibit color categorization systems
that resemble one another, unlike systems from two different
societies which do not share any environmental, pragmatic or
social circumstances. Thus, in contrast to the universalist
perspective, this socio-cultural perspective places a large empha-
sis on factors outside the individual observer such as demands
from social practices, environment, and so on. Also implicit in this
latter view is the suggestion that at least some of the features that
are shared among individuals in a given ethnolinguistic group,
stem from commonalities specific to human society as it interacts
with color in the world, rather than shared due to a common
human individual perceptual processing basis.

Although historically these two views1 have been put forth as
somewhat mutually exclusive positions, scenarios necessarily
exist in which the universal perceptual processing view and the
socio-cultural view both play substantial roles during the
development and use of color categorization systems in everyday
communications among observers.

1.2. Some challenges in color categorization research

A specific challenge confronting human color categorization
research is to model the phenomenon in such a way that both
universal individual features and socio-cultural features can
contribute in tractable ways to color naming and categorization
behaviors in a given ethnolinguistic group. Building one such
empirical theory, general enough to serve as a model across
ethnolinguistic groups while convincingly demonstrating how the
different features trade off in the process of naming and
categorization, has historically proven to be a difficult task.

A different, equally important, challenge is to find methods
that, essentially, look across time, permitting the investigation of
the evolutionary dynamics that were present during the devel-
opment of a society’s color categorization system. For this an
evolutionary approach seems needed to study dynamically
imposed pressures and how those pressures are responded to by
a system and by the individuals using that system. Historically,
diachronic analyses have been used to address these issues (e.g.,
Kay, 1975), but such investigations are difficult as they depend
greatly on the accuracy of very sparse, subjective historical
sources of information.

These two challenges (the empirically based modeling of the
interplay between universalist and relativist influences, and the
need to examine the evolutionary dynamics of color categoriza-
tion) are substantial obstacles to understanding human color
naming and categorization phenomena even now. This article
presents an investigative approach that addresses these chal-
lenges by idealizing two features inherent in human color
categorization phenomena which have raised recent interest in
the empirical literature: namely (i) color categorization under
variation in individual color perception and (ii) color categoriza-
tion under color space variation.

1.3. Idealizing two realistic influences on color categorization

The first feature, namely, potential variation in individual color
perception and its influence on color categorization systems,
1 Which typically appear in the literature as polarized extremes of the debate,

but which are more akin to distant points in a continuum of possible explanations

that involve a variety of potentially influential factors.
originates from within the individual observer, representing what
is generally viewed as a universalist type influence. Individual
variation in color perception, while generally addressed in color
vision science, has only recently played a role in the empirical
color categorization literature (Sayim et al., 2005; Jameson,
2005d; Kuehni, 2005a, b), and the views on the impact of such
variation are mixed. Jameson (2005a–d) recently discussed
possible scenarios in which individual observer color perception
variation might trade off with aspects of communication prag-
matics arising outside observers in social situations of commu-
nicating about color. The present article explores such scenarios
by formalizing simplified models of individual color perception
variation and incorporating those models into individual category
learning and population communication games. This provides a
systematic way to assess the impact of idealized color perception
variation on color category solutions.

The second feature idealized in our study, namely, the
heterogeneity of color utility, potentially involves both cultural
and environmental components, and therefore represents a
relativistic influence. Realistically, several different sources
may produce variation in color stimuli. Two such sources are:
(a) environmental differences in color category exemplar fre-
quency (i.e., frequency of green category exemplars may be
greater in the rain forest compared to that for violet category
exemplars), potentially expressed as a nonrandom sampling, or a
heterogeneous ‘‘color diet’’; (b) differences in pragmatically
defined category ranges across the available color category
exemplars (e.g., a nutritionally valuable reddish-orange exemplar
may establish a trend for a more refined categorization, or a region
of increased salience (RIS), compared to less valuable bluish
category). Type (a) color stimulus variations were studied by
Steels and Belpaeme (2005), Komarova et al. (2007a, b) and
Dowman (2007). In the present article we introduce a novel
investigation of type (b) heterogeneity and its effects on
categorization.

The formal approach used here is based on the recent work of
Komarova et al. (2007a, b), where our agent-based, evolutionary
game-theoretic model of human color categorization was devel-
oped. We consider idealized populations of agents with different
color perception abilities. Here individuals learn to categorize
simulated colors by playing ‘‘discrimination-similarity games,’’
and also learn to communicate the meaning of categories to each
other. Population heterogeneity is introduced by varying, across
agents, the ‘‘psychophysical transform’’ between the physical
space of color stimuli and agents’ perceptual spaces. The form of
color stimulus heterogeneity used here is implemented by
defining a RIS in the color stimulus domain.
1.4. Aims of the article

The present article aims to address several goals. First, using
highly idealized models of real world phenomena, to develop
investigative methods for examining possible trade offs in
scenarios in which universal perceptual processing and socio-
cultural factors both play substantial roles in the development
and in the use of color categorization systems. Second, to examine
the suggestion of Jameson (2005d) that nonrandom population
heterogeneity will have a substantial impact on agent-based color
category learning and on communicating population color
category solutions, as well as figure prominently in the commu-
nication pragmatics (Jameson, 2005a, b). And third, to directly
investigate the suggestion (Jameson, 2005a) that color salience
(whether imposed by environmental scene statistics or through
culturally imposed color sampling or salience) represents an
important constraint on the development and use of a color
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categorization system that is shared by individuals in a color
observing population. Finally, although these investigations focus
on agent-based categorization, we intend this approach to be used
to complement the empirical study of human color categorization
by providing a means to examine the theoretical plausibility of
competing explanatory theories and hypotheses arising from the
empirical literature.

The rest of this paper is organized as follows: In Section 2 we
briefly review the phenomenology of population and color
stimulus heterogeneity in ethnolinguistic societies. Section 3
describes the mathematical framework for modeling color
categorization and explains how the two types of heterogeneity
are incorporated. Section 4 examines the role of population
heterogeneity in color categorization in our simulated environ-
ment, while Section 5 studies color stimulus heterogeneities. In
Section 6 we investigate the interaction of the two types of
heterogeneity, and provide conclusions and a discussion in
Section 7.
3 The genes for the short-wavelength-sensitive photopigments arise through

autosomal inheritance, linked to chromosome 7, and is not an X-chromosome-

linked trait (see Sharpe et al., 1999, p. 44).
4 Compared to Steels and Belpaeme (2005), the definition of an agent in the

present investigation does not involve adopting the rich set of human color

perceptual features that is typically used in investigations of color learning in

simulated individuals. Rather our agents are only endowed with a primitive ability
2. Population and color space heterogeneities: a brief
phenomenological description

This section gives the rationale underlying the idealized
individual color perception variation used in our agent popula-
tions, and the rationale for the color stimulus variation we
implement.

2.1. Observer heterogeneity and color categorization

Human trichromat color processing is, in general, the norm;
although observer heterogeneity exists, seen as varying degrees of
color vision anomaly across different populations. Normal
trichromacy is initiated by the absorption of photons by three
classes of cones in the human retina which have peak sensitivities
in the long-wavelength (L), middle-wavelength (M), and short-
wavelength (S) regions of the electromagnetic spectrum
(see Cornsweet, 1970 for details). As a result, any real world color
stimulus can be specified by three numbers representing the cone
responses, and all colors visible to the color-normal observer are
contained in a three-dimensional color space. While normal
trichromat color processing arises from this trivariate neural
signal that originates in the human retina, some forms of human
color processing deficiency arise from an impoverished neural
signal. The most common forms of impaired color vision
processing2 occur when, for example, an individual lacks a full
complement of the three photoreceptor classes typically found in
the normal observer; such individuals are called dichromats

(Nathans et al., 1986a). Several forms of dichromacy exist,
each lacking one of the retinal photopigments: That is, the
L-photopigment type in protanopes, the M-type in deuteranopes,
and the S-type in tritanopes (Nathans et al., 1986b). For these
dichromatic observers any color stimulus essentially initiates only
two cone responses, and all colors that they can discriminate are
captured in a two-dimensional color space. Compared with
trichromatic vision, dichromatic vision entails a loss of discrimi-
nation and often a reduced color gamut. For the modeling of
observer heterogeneity in the present article, such deficiencies are
thought of as resembling a loss of a dimension of color space
compared to normal trichromatic processing.

Color deficiencies affect a substantial number of people world
wide, although exact proportions vary among groups of different
2 Setting aside for this discussion, rarer forms such as acquired or congenital

achromatopsia.
racial ancestry. In Caucasian groups, for example, it occurs in
about 8% of males and only about 0.4% of females (Sharpe et al.,
1999, p. 30). Communities that are isolated, or have a restricted
gene pool, sometimes produce high proportions of color blind-
ness. Examples include rural Finland, Hungary, and some of the
Scottish islands. In the United States, about 7% of the male
population—something on the order of 20 million men—and 0.4%
of the female population either cannot distinguish red from green,
or see red and green differently (Sharpe et al., 1999, p. 30). It has
been found that more than 95% of all variations in human color
vision involve receptors in males with peak sensitivities in
spectral regions associated with reds and greens. Due, in part, to
a difference in the inheritance mechanisms, it is very rare to find
deficiencies in males or females for the blue end of the spectrum.3

It is important to note that while throughout the present
investigations we refer to dichromat agents, the model we assume
here is an extreme simplification of the discrimination model
found for human dichromats under realistic circumstances.
Nevertheless, as a starting point for introducing population
heterogeneity into the present investigations, it is a very useful
simplification, because (i) it is more realistic than implementing a
form of random observer variation (Steels and Belpaeme, 2005,
p. 517),4 (ii) it is in part justified by simplified models of human
behavior (Cornsweet, 1970, p. 184) and (iii) it is consistent with
empirical results for dichromats (e.g., Shepard and Cooper, 1992).
As the present results show, our method proves to be an
appropriate investigative tool for understanding the ways popula-
tion heterogeneity plays out in simulations of individual and
population color categorization behaviors. We emphasize that our
methods of evolving categorization systems do not intend to
model how humans learn to categorize colors or how human color
categorization systems came about. Nevertheless, the present
results are informative with regard to experimental results
concerning color categorization and theoretical explanations
given for the frequently seen similarities between separately
evolved human systems of color naming.

2.2. Color space heterogeneity and color categorization

Perceptually, colors vary continuously, and are generally
ordered in three dimensions, with hue and saturation as polar
coordinates of a color circle, and brightness as the third
dimension. Human color naming reflects this perceptual structure
in various ways. For example, in human color naming, each name
describes a portion of color space that is a connected set. In other
words, in the majority of empirically observed cases, from reliable
and consistent participants, the meaning of a color name will
almost never be a set of colors that can be partitioned into
disconnected subsets. (Possible exceptions to this connected-set
tendency are puzzling cases found in data from nonindustrialized,
pre-literate, informants, for which the observation may be due to
some form of random participant uncertainty regarding empirical
task instructions, experimental error, actual disconnected sets of
denotata, or some combination of these.) In the great majority of
cases, colors that are perceptually very similar—that is, colors that
to carry out color discriminations. Endowing our agents with only the simplest

of discrimination abilities permits a more direct assessment of the influences of

reinforcement learning and between agent communication on the formation of

any category structures observed.
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Fig. 1. Dimensions of a three-dimensional color solid consisting of color samples

(or chips) arranged by approximately uniform color differences along each of the

three Munsell dimensions: an angular dimension of hue for representing

nonachromatic colors (with two axes—yellow-to-blue and green-to-red—given

to orient the color circle); a vertically oriented linear dimension of value (lightness

or brightness); a radial linear dimension of chroma (saturation) on which

maximum vividness of color is achieved on the hue circle, and colors decrease in

vividness in the direction of the achromatic axis, to become devoid of color at a

neutral point N.
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are very ‘‘close’’ to one another in the perceptual color space—will
almost always be described by the same name, while different
names will generally denote dissimilar colors.

Fig. 1 schematically depicts the dimensions (hue, value and
chroma) widely accepted for the representation of human color
experience. Such dimensions when configured as a color stimulus
solid reflect the standard form of the stimulus spaces used in
human color categorization research (e.g., Munsell color order

system, Nickerson, 1976). Despite being of potential pragmatic
importance, essentially no stimulus space used in human color
categorization research incorporates any additional dimensions,
such as texture, shimmer, gloss, etc.

When talking about color order systems, a useful concept is
‘‘perceptual uniformity’’. A system is said to be perceptually
uniform if the distances separating each stimulus on a given color
order system dimension is linearly related to the cognitive

distances separating each stimulus in an observer’s internal color
appearance similarity space (Nickerson, 1979). While almost all
physical color order systems like the Munsell system aim to model
perceptually uniform color differences along the three dimensions
illustrated, they only approximately achieve such perceptual
uniformity, and in all perceptual uniformity is only dimension-
specific, and is not achieved when dimensions interact.5

Variations in color appearance spaces generally do not
involve omissions or extensions of any of the features mentioned
above, but rather involve differences in how the three-
dimensional color space is sampled or perceived. As suggested
earlier, color space heterogeneity can manifest itself in several
ways: it can arise from an environmental color bias (e.g., a bias
for green foliage in rainforests; in the literature this kind of
sampling is exemplified by ‘‘visual diet’’ discussions), or from
an observer’s visual mechanisms (e.g., a built in bias that does
not distinguish green foliage from red foliage), or from some
nonuniformity in pragmatic salience (e.g., a pragmatically tuned
bias that benefits the successful identification of ripe nutritious
fruit).

In the present investigations we constrain our study of the
Fig. 1 space to the circular dimension of hue. The hue circle is a
good choice as the initial categorization domain studied because
it is a natural one-dimensional reduction of the entire color space,
being the outcome of dimension reduction of spectral functions
having any possible spectral form to three dimensions (Kuehni,
5 Or, in other words, the Euclidean metric fails when assessing judged color

appearance similarity for stimuli varying along more than one dimension.
2003; Kuehni and Schwarz, 2008). We also manipulate this hue
dimension stimulus sampling by examining cases where different
regions of the color space carry a different pragmatic weight for
our simulated observers compared to the rest of the color space.
This obviously idealizes the third type of environmental color bias
mentioned above. Thus, in a portion of the present investigations
we define a RIS in the hue circle, where the pragmatic importance
of the colors distinguishes it from the remaining colors on the hue
circle.

Clearly, our choice of a hue circle as the stimulus domain on
which categories are formed is a minimalization of what is
typically considered the color appearance space of normal human
observers. In the present paper, we use the hue circle stimulus in
order to investigate if color categorization is influenced by
increased complexity of communication scenarios, and to study
the trade offs between stimulus variability and simulated
observer variation. A higher-dimensional stimulus space is a
subject of our further investigations.
3. Mathematical framework for modeling categorization

Here we present a mathematical formulation of the key
notions such as ‘‘perceptual space’’, ‘‘color categorization’’,
‘‘optimal categorization’’, etc., and define a dynamical process of
color categorization in a population of simulated observers. Many
of these concepts have been first developed in our recent paper
(Komarova et al., 2007a, b) and are briefly reviewed here. In
addition, a novel mathematical concept (presented in the next
subsection) incorporated here is a transformation from the
physical space of stimuli to the perceptual space, which allows
us to introduce observer heterogeneity in the model.6

3.1. Physical and perceptual spaces

The stimuli (color chips) are taken from a physical space which
is the same for all the viewers. The physical space can be modeled
for instance as a (discrete) circle. Each chip is characterized by a
coordinate along the circle, with numbers from 1 through n, such
that chip number n is next to chip number 1. As a model for such a
circle we can for instance take a numbered physical set of chips
from the Munsell set.

A viewer observes the color chips. As a result, the stimulus is
represented in the viewer’s ‘‘perceptual’’ space, which is indivi-
dual for each viewer. This is modeled as a transformation from the
physical space to the perceptual space which represents the
individual’s subjective impression of the color chip,

i!FðiÞ; 1aipn,

where F is the psychophysical function that maps stimuli to
perception.

For example, in our modeling of the perceptual space of a
dichromat, reddish and greenish chips generally appear the same.
In the simplest model used here, the transformation between the
physical space to the perceptual space of a dichromat collapses a
hue circle to a line with coordinates 1 through n=2þ 1, such that

i!FðiÞ ¼
i; ipn=2þ 1;

nþ 2� i; i4n=2þ 1:

(
(1)

In a more general model we assume that a subset of size l chips
collapses onto another subset of the same length, opposite to it.
Namely, define the confusable regions to be two connected sets of
6 E.g., see Cornsweet (1970) for a general discussion of this psychophysical

function.
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Fig. 2. Examples of the psychophysical transformation from the physical space to

the perceptual space which represents the individual’s subjective impression of

the color chip, formula (2). (a) l ¼ 1, (b) 1olon=2� 1 and (c) l ¼ n=2� 1.
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length l centered around n=4þ 1 and 3n=4þ 1:

n

4
�

l� 1

2
þ 1pip

n

4
þ

l� 1

2
þ 1,

3n

4
�

l� 1

2
þ 1pip

3n

4
þ

l� 1

2
þ 1.

We set the following transformation:

i!FðiÞ ¼
nþ 2� i;

3n

4
�

l� 1

2
þ 1pip

3n

4
þ

l� 1

2
þ 1;

i; otherwise;

8<
: (2)

see Fig. 2. In general, the parameter l varies between 1 and
n=2� 1, and defines the degree of the agents’ color perception
impairment (with low values of l corresponding to mild impair-
ment, and high values of l corresponding to a large degree of
impairment). The previous simple model (Eq. (1)) is obtained from
the more general model by setting l ¼ n=2� 1. We can say that
in case l ¼ n=2� 1 the circle collapses onto a horizontal line
(Fig. 2(c)), and for 1plon=2� 1 it transforms into an 1-shaped
object (Fig. 2(b)), with only one confusable pair of chips in the
extreme case of l ¼ 1 (Fig. 2(a)).

Note that the transformation from the physical space to the
perceptual space of an agent with unimpaired color perception, or
a ‘‘normal observer,’’ is simply the identity transformation:

i!FðiÞ ¼ i; 1pipn (3)

(as long as the physical stimulus space being considered is one
that approximates a perceptual ordering as, for example, the
Munsell color stimulus space aims to normatively achieve).

All transformations defined above, as well as all meaningful
transformations in the context of this study, possess an invariant
set, Id ¼ fi1; . . . ; ind

g, such that FðIdÞ ¼ Id. The integer nd is the size
of the perceptual space of dichromats. In general, we have ndpn.

The dichromat perceptual space described, and the psycho-
physical transform modeled by formula (2) are idealizations of
actual dichromat observers. For the points made in this article
these idealizations are appropriate and sufficient. Investigations
of dichromat models which incorporate more realistic features are
employed in a forthcoming article (Jameson and Komarova, 2008).

3.2. Color categorization

The color categorization of each agent is a vector function from
the individual, perceptual space of each viewer (defined as the
viewer’s invariant set) to ½0;1�m, where m is the total number of
color categories used. We can represent it as nd vectors, f1; . . . ; fnd
,

where each fk is a point in an m-dimensional simplex. In other
words, the m entries of each of the vectors are nonnegative and
sum up to one. The meaning of such vectors is that for each
perceived signal, they give the probabilities that the viewer will
categorize it into each of the m color categories.

A categorization is called a deterministic categorization if each
vector fk, 1pkpnd, contains a component equal to one. This
means that the corresponding chip is categorized to a color
category with certainty. We will see that both deterministic and
probabilistic categorization solutions are meaningful in the
context of heterogeneous populations.
3.3. Discrimination-similarity game and the similarity range

Our categorizing algorithms are based on the following idea:
Colors that are highly similar perceptually to one another are
highly likely to belong to the same category. More specifically it is
based on the following three principles: (i) categorization is
important; (ii) to be useful, categorization should attempt to
minimize ambiguity and (iii) when color is a salient or meaningful
cue for categorization, two randomly chosen objects that have
similar color appearances are more likely to be categorized
together than are two objects that have dissimilar colors. These
three principles are captured by a similarity range parameter
called k-similarity (defined below), used in individual and
population discrimination-similarity games.

In general, the discrimination-similarity game proceeds as
follows: Two chips are randomly drawn from a (common)
physical stimulus space. For every game, the psychophysical
transformation that maps the stimulus chips to that agent’s
perceptual space is performed. Then, an agent probabilistically
assigns a color category to each chip, by using its individual
categorization function.

Next, we need to assess whether the game is a success or a
failure. For the purposes of this analysis, it is assumed that we are
in a situation where color is used as the basis for pragmatically
categorizing stimuli. This is done by means of the pragmatic
quantity ksim. This quantity applies to chips in the physical space.
If the two chips are less than ksim units apart then they probably
have similar properties (and it pays off to categorize them in the
same class). If they are farther than ksim apart then they are
probably very different and a viewer is better off putting them
into different classes.

It is important to emphasize that the range ksim is not another
perceptual version of ‘‘just noticeable difference’’ (or jnd). Colors
that differ by a perceptual jnd are well within the similarity range,
as are adjacent chips in the Munsell color system described
earlier. In general, some colors within the ksim range are easily
distinguished perceptually by any agents. The notion of ksim

intends to capture the importance of categorizing two chips as
being ‘‘different’’ rather than ‘‘the same.’’

By applying the ksim-test to the two physical chips we can
say whether they are ‘‘close’’ or ‘‘far’’ apart from a pragmatic
categories standpoint. A game is successful if (a) two chips that
are pragmatically close are assigned to the same color category by
the agent or (b) two chips that are pragmatically far apart are
assigned to two different categories by the agent. The game is a
failure otherwise.

By using the rules above, we can define the success rate, S, for a
given color categorization. Given a categorization, let us play N

rounds of the discrimination-similarity game. Then

S ¼ lim
N!1

Number of successful games

N
.
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In other words, S is the probability for a given color categorization
that a game is successful.

3.4. The optimal color categorization

Our earlier studies (Komarova et al., 2007a, b) have identified
the class of color categorizations that maximize the success rate of
the discrimination-similarity game for agents modeled as normal
observers (transformation (3)), with a homogeneous stimulus
space. Let us suppose that the sampling procedure for the chip
stimuli obeys the uniform distribution. Define the optimal
number of categories, mopt , as an integer number close to the
value

m ¼ n½2ksimðksim þ 1Þ��1=2. (4)

Then if the chips are points on an interval, then the following
categorization maximizes the success rate: chips

ði� 1Þn

mopt
þ 1;

ði� 1Þn

mopt
þ 2; . . . ;

in

mopt

belong to color category vi, where 1pipmopt and for all iaj, viavj,
see Fig. 3(a). If the chips are arranged on a circle, then the
following categorization maximizes the success rate: the circle is
divided into regions

1;
n

mopt

� �
;

n

mopt
þ 1;

2n

mopt

� �
; . . . ;

ðmopt � 1Þn

mopt
þ 1;n

� �
,

all the vectors f i with i inside the same region are identical to each
other and have only one nonzero component. Any vectors f i and f j

with i and j belonging to different regions are different from each
other. Also, any shift of this pattern along the circle also yields an
optimal categorization, see Fig. 3(b). There is no other categoriza-
tion that has the success rate equal or bigger than those achieved
by the above categorizations.

3.5. Individual dynamics with the reinforcement learning algorithm

The optimal categorizations described above have been found
theoretically. However these results require the assumptions of
(i) population homogeneity which forces the transformation
F to be an identity function, (ii) unbiased sampling of the
color stimulus space in discrimination-similarity games and
(iii) homogeneity of color space with regard to pragmatic
importance (or ksim). Therefore it is important to design a
numerical method which finds the optimal color categorization
in different (i.e., less symmetrical) systems.

To achieve this goal, we have come up with the rules for
individual and group learning dynamics which converge to a
categorization close to optimal. Here we describe the individual
learning dynamics with the reinforcement learning algorithm.
Fig. 3. Some optimal categorizations for (a) an interval and (b) a circle. White, gray

and black circles represent the m ¼ 3-color categories and n ¼ 21.
Suppose many rounds of the discrimination-similarity game are
played with an individual agent equipped with some initial color
categorization. For successful games the agent earns a successful
update of its color categorization, and for cases of categorization
failures an unsuccessful update is earned. For such situations we
adopt rules for a ‘‘uniform’’ reinforcement learner, briefly
described below (see Komarova et al., 2007a, b for details).

Each color chip i is associated with a vector Xi whose m

components are integer numbers that add up to some constant, L:Pm
j¼1 ½Xi�j ¼ L for all 1pipn. Then the categorization components

are defined as normalized entries of these vectors:

½f i�k ¼ ½Xi�k=L.

Let us suppose a learner plays a game with chips i and j, and
assigns them to categories vi and vj, respectively. In case of a
successful game, a successful update is applied to the color
categorization of both chips. This means that for each chip i and j,
the successful category is strengthened by a certain amount, Dþ,
and at the same time all other nonzero categories are reduced by a
net amount equal to Dþ. If a categorization fails, then for both
chips, the value of the category associated with the chip decreases
by an amount D�, and all other categories are enhanced by the
amount D�=ðm� 1Þ.

Here is a more precise definition of the algorithm. If the game
is a success, the following operation is performed regarding the
component i of the categorization:

½Xi�vi
! ½Xi�vi

þ Dþ; ½Xi�k ! ½Xi�k � d�k ; kavi,

where

Dþ ¼
X
kavi

d�k

and quantities d�k are defined as follows:

d�k ¼
1=ðm� 1Þ; ½Xi�kX1=ðm� 1Þ;

½Xi�k; otherwise:

(

In case of a failure, the categorization of chip i is updated as
follows:

½Xi�vi
! ½Xi�vi

� D�; ½Xi�k ! ½Xi�k þ dþ; kavi,

where we define

D� ¼
1; ½Xi�vi

X1;

½Xi�vi
; otherwise

(

and dþk ¼ D�=ðm� 1Þ.
Similar operations are performed regarding chip j.

3.6. Population dynamics

In order to model interactions in a population of individuals,
we use the following rules for population dynamics. At each round
of the game we draw two chips and also pick two observers. Both
observers play the game. Three outcomes are possible.

If both players are unsuccessful, they both perform the
reinforcement update for the failure scenario described above.

If one of the players is successful and the other one is not, the
successful viewer is assigned the role of a teacher, and the
other one—the role of a learner. The learner updates his color
categorization for the stimuli in question in accordance with that
of the teacher, which represents the process of learning of one
agent from the other. This is done according to the following rule:

½Xi�vðTÞ
1
! ½Xi�vðTÞ

1
þ dlearn; ½Xi�vðLÞ

1
! ½Xi�vðLÞ

1
� dlearn,

where vðLÞ1 is the category chosen by the learner for chip i, vðTÞ1 is
the category chosen by the teacher for the same chip, and we
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define dlearn ¼ 1 if ½Xi�vðLÞ
1
41, and dlearn ¼ ½Xi�vðLÞ

1
otherwise. Simi-

larly, the learner updates the component corresponding to chip j.
The teacher performs the usual successful update described
earlier.

Finally, if both players are successful, then the teacher is picked
at random. Again, the teacher performs a successful update while
the other player ‘‘learns’’ from the teacher.
3.7. Numerical simulations

As our main tool we used computer simulations of population
dynamics, using the rules presented above. Typically, we start
from a random categorization for all players, and simulate rounds
of the discrimination-similarity game for randomly chosen pairs
of agents. Eventually, in many circumstances, a common (i.e.,
shared by most of the agents) and relatively stable categorization
appears. Below we will use the following terminology: a ‘‘round’’
is one discrimination-similarity game played by one pair of
agents. A ‘‘run’’ is a sequence of rounds terminated according to
some rule (e.g., after a given number of rounds, or once a stable
shared categorization is achieved).

A population of agents can be heterogeneous. This means that
a given number of players are dichromats, whereas the rest are
normals. All the parameters of simulation are defined in Table 1.
Table 1
Definitions for all the parameters of the model

N Total number of agents

Nd The number of agents that are dichromats

n Total number of chips

m The maximum number of color categories

ksim Parameter defining the pragmatic utility of chips

L Parameter of the reinforcement learner algorithm

l Confusable region length for dichromats
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Fig. 4. Examples of color categorizations of individuals. The horizontal axis represents t

the probabilities to use a given color category for a given chip. The color assignment o

random color categorization of an agent, near the beginning of a simulation. (b) The colo

dichromat, after 108 runs. The parameters are m ¼ 6, L ¼ 12, ksim ¼ 6, N ¼ 100, Nd ¼ 2
For illustration we present one example of a run, where a
population of N ¼ 100 individuals with Nd ¼ 2 dichromats
performed 108 rounds of the game, see Fig. 4. The outcome
consists of N categorization functions (one for each of the N agents
in the population). In Fig. 4, the bar charts show the color
categorization of three individual agents. The horizontal axis
represents the 50 chips that form a hue circle. The color bars
correspond to the probabilities ½fi�k, that is, the probabilities with
which a given chip is assigned to a given color category. In Fig. 4(a)
we show a typical ‘‘random’’ color categorization near the
beginning of a simulation. Each chip has a similar chance to be
categorized into any of the 6-color categories. Note that the color
code used in the charts is arbitrary and does not correspond to any
actual color categories of humans.

Fig. 4(b) shows a typical color categorization of a normal
individual after 108 runs. We can see that the first five chips are
almost always classified as ‘‘blue,’’ the next group of about six
chips—as ‘‘purple,’’ etc. This categorization is close to optimal,
that is, it subdivides the hue circle into a number of nearly equal
parts which are all deterministically categorized into different
categories. Note that some nondeterministic categories are
observed near the color boundaries. We believe that this is a
realistic outcome, as there is a lot of variation in color naming at
category boundaries even among normal observers. Color cate-
gory assignments have been empirically shown to change in
normal individuals depending on both internal and external
circumstances, such as varying the surrounding context in which
perceptually identical colors are judged and named (Sayim et al.,
2005). Fig. 4(c) shows a color categorization of a dichromat and is
discussed in Section 4.1.
3.8. Population results: the ‘‘winning category’’

It is clear that a collection of 100 individual color categoriza-
tions contains a lot of information and is difficult to visualize for
10%
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90%
00%
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30 35 40 45 50

he 50 chips, and the vertical bars of each color correspond to the values ½f i�k , that is,

f the bars is arbitrary and does not correspond to any real color categories. (a) A

r categorization of a normal person, after 108 runs. (c) The color categorization of a

.
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Table 2
A hypothetical example of color categorization counts that illustrates the winning

category concept

1st 2nd 3rd Borda score

G nðGÞ1 ¼ 45 nðGÞ2 ¼ 0 nðGÞ3 ¼ 55 sG ¼ 90

B nðBÞ1 ¼ 35 nðBÞ2 ¼ 65 nðBÞ3 ¼ 0 sB ¼ 135

P nðPÞ1 ¼ 20 nðPÞ2 ¼ 35 nðPÞ3 ¼ 45 sP ¼ 75
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all agents. Therefore, we need a different way to represent and
interpret population categorization results. It is useful to
introduce the following quantities.

For each player, for each color chip, we define the ‘‘most likely’’
color category, the ‘‘second most likely’’ color category, etc. The
most likely color category is the category that the player most
frequently assigns to the chip, the second most likely category is
the second most frequent category (for the particular agent), etc.
As a result, the color categories are ranked for this chip for each
player, from 1 to m.

Then, for each chip, we define the winning category. This can be
done in a variety of ways. Here we will present the following
general method. Suppose that for a given chip, color category k is
the most likely category for nðkÞ1 agents, it is the second most likely
category for nðkÞ2 agents, etc. If an agent does not use a certain
category at all, we disregard such category and do not include it in
the count. For this chip, we assign a numerical ‘‘score’’ to all
categories, 1pkpm, according to formula:

sk ¼
Xm
i¼1

xin
ðkÞ
i ; 1pkpm,

where the values xi are numerical ‘‘weights’’, and the summation
is over all ranks of categories, from 1 to m. The winning category
for this chip is the one with the highest score.

The result of the operation of identifying the winning category
will of course depend on the choice of the coefficients. Here we
concentrate on two examples:
�
 If we take x1 ¼ 1 and xi ¼ 0 for all i41, then the winning
category is the ‘‘most popular’’ color category. That is, the
winner is the color category that for the plurality (but not
necessarily the majority) of the population is the most likely
(as defined above) color for a given chip. This is similar to the
simple plurality voting system. The corresponding score will be
referred to as the plurality score, see Saari (2008).

�
 Alternatively, we choose xi ¼ m� i, and obtain the so-called

Borda count (with truncated ballots). The Borda count method
with truncated ballots is a standard procedure used in choice
and decision theory and voting literature, see Saari (2008) for
an overview of methods from the area. The corresponding
score will be referred to as the Borda score.

Finally, we can calculate the ‘‘degree of agreement’’, which is
measured as the proportion of the population using the winning
(as defined above) color for each chip. This varies between 1=m

and 1, and the closer it is to 1, the better the agreement.
Both the plurality method and the Borda method have

advantages and disadvantages. The plurality method will give
the best degree of agreement, as it is defined here. However, it
disregards a larger amount of information about individual
categorization functions, which is an important consideration
here. For example, it may happen that even though 45% of the
agents use category 1 as their most likely category, the majority of
the population (the other 55% of the agents) never use it and use
categories 2 or 3 instead. The Borda method seeks to find a
category which is in some sense a compromise, a category which
the largest majority will find to be least disagreeable, even if not
their favorite.

To be more concrete, let us consider the following example.
Suppose 45 out of 100 agents categorize a given chip as G (for
‘‘green’’) with probability 50%, as B (for ‘‘blue’’) with probability
30%, and as P (for ‘‘purple’’) with probability 20%. In other words,
these agents have categorization vector ð50;30;20Þ. Next, suppose
that 35 agents have categorization ð5;70;25Þ and the remaining
20 agents—categorization ð5;25;70Þ. We can calculate the values
nk for the color categories G, B and P; they are presented in Table 2.
The plurality score is given by the ‘‘1st’’ column in Table 2; it is the
largest for the G category, so the green category is ‘‘the most
popular color’’ for the chip in question. The Borda score is
presented in the rightmost column of the table; it is the largest for
the B category, so B is the winner in the Borda sense. Thus, by this
example, different winning categories are produced by the
plurality score method compared to the Borda score method. This
occurs, largely, because the Borda score computation considers
frequency information from ranks other than just the top-most
ranked category, the latter being the basis for the plurality score.

Fig. 5 illustrates the two types of count by presenting the
plurality and the Borda winning categories for n ¼ 50 chips after
10;000, 20;000, etc. rounds of games. We can see that at the
beginning, when the degree of agreement in the population is low,
the two scores disagree, and as the degree of agreement becomes
high, they tend to give very similar results. After less than 105

rounds, the population converges to a nearly optimal categoriza-
tion (of six nearly equal color categories in this particular case),
the degree of agreement is very high (not shown) and the two
scores give nearly identical results (except perhaps some color
chips right at the category boundaries).

This result is general, because as a nearly optimal solution gets
established in the population, the categorization functions of
individual agents become nearly deterministic, which means that
only one value of the categorization function is nonzero, and the
two counts (the plurality and the Borda counts) yield identical
results. Because the emphasis in this article is interpreting
stabilized, near-optimal solutions, below we present the simpler
plurality analyses which, for the cases we consider here, produces
the same results as the Borda score.

To summarize, instead of N bar-charts of the type presented in
Fig. 4, only two graphs are sufficient to represent results of a
population run: a line graph showing the winning color for each
chip, and another graph showing the degree of population
agreement for each chip. An example is presented in Fig. 6. This
figure shows the color categorization assignments for each chip
determined by a population of agents (as in Fig. 4), calculated
according to the plurality score, with a smaller inset graph
showing the degree of agreement among the agents.
4. Heterogeneous populations

4.1. Modeling dichromat and normal observers as agents

As described earlier, in real human populations individual
categorization functions of normal observers and color deficient
observers differ substantially. Similarly, in the present simulations
the individual categorization results of normal and dichromat
agents are different. Figs. 4(b) and (c) show the categorization of a
normal observer and a dichromat, respectively, after 108 rounds of
the game. In this example, two out of 100 agents are dichromats
with psychophysical transformation (1). The color categorization
of the normal observer is close to an optimal categorization with
m ¼ 6. The categorization of the dichromat agent is such that
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Fig. 5. The winning color category for chips 1–50 along the horizontal axis, according to the plurality (top numerical sequence of each pair) and the Borda score (bottom

numerical sequence of each pair), for different numbers of rounds. The parameters are the same as in Fig. 4, with the exception that N ¼ 10 and Nd ¼ 1.
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Fig. 6. A typical outcome of a heterogeneous population simulation, which is the

winning color category for each of the n ¼ 50 color chips. The inset shows the

degree of agreement in the population. The parameters are the same as in Fig. 4;

with the exception that the number of rounds is 107.

7 It is important to emphasize that in categorization studies, uniformly

assuming the exact same standard observer model for all individuals, whether in a

simulated agent population or a actual observer population, will have regularizing

and constraining influences on categorization results that may distort the

agreement that would be found if normal variation was assumed. Thus, examining

even subtle population heterogeneity using simulation can give insights into the

regularizing influences that may occur when modeling data or simulation results.
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chips 1–5 and chips 45–50 are categorized as ‘‘blue’’, and chips
22–29 are classified as ‘‘yellow’’. These two categories coincide
with those of a normal observer, being opposite each other on the
hue circle, and correspond, given the model implemented, to a
nonambiguous region of the color stimulus. On the other hand,
the categorization of chips 6–12 and 39–44 oscillate between
categories ‘‘cyan’’ and ‘‘purple’’, and the categorization of chips
13–21 and 30–38 oscillates between categories ‘‘purple, ‘‘red’’ and
‘‘green’’. Such nondeterministic categorization of these chips is
attributable to the red–green confusion region specified by the
psychophysical function F, Eq. (1).

The fact that our model allows for nondeterministic categor-
ization solutions becomes very important when simulating color
deficient agents in the population. The color categorization of
chips inside the confusable region is necessarily probabilistic for
our simulated dichromats (that is, it contains nontrivial prob-
abilities for more than one color term for chips in that region),
which is a realistic model for such a color deficient observer. Also,
our model allows for disconnected color categories. For example,
in Fig. 4(c) we can see that regions around chips 20 and 30 are
almost deterministically classified as ‘‘green’’, whereas a region
around chip 25 is ‘‘yellow’’. Such disconnected color regions are
not observed for our simulated normal agents from homogeneous
populations, and they are not part of the theoretically obtained
optimal solution class for normal agents. However, such categor-
izations are realistic for dichromats, because of a different
topology of the color deficient’s stimulus space, where discon-
nected regions in the hue circle become identified with one
another, forming collapsed shape resembling an ‘‘8’’ digit (rather
than a circular contour resembling a zero).

The outcome of a given run depends on the proportion of
dichromats present in the population. We have found that as long
as the fraction of dichromats is less or about 20%, the resulting
categorization (that is, the structure of the winning color terms) is
close to the optimal one found for a homogeneous population of
normal agents (see Fig. 6). If the number of dichromats is much
greater than that then the population converges to an impover-
ished categorization system where the ‘‘confusable’’ (for dichro-
mats) colors correspond to the same color term.

Even though for small percentages of dichromats the resulting
common categorization is close to optimal, population hetero-
geneity still plays a subtle but important role in population color
category solutions.7 To illustrate this, we consider the boundaries
of color category regions for each run. Category region boundaries
are defined as any color chip location for which the winning
category of the chip to the immediate right is different from that
for the given chip. For example, in Fig. 6 the boundaries of color
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terms are at 5, 10, 19, 28, 36 and 46. Given this definition, we can
now examine how color boundaries are influenced by population
heterogeneity.
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1%

Fig. 7. The role of dichromats in population color categorization. Each row (a)–(f)

represents a fixed percentage of dichromats, from 0% to 10% (the fractions of

dichromats are marked on the right-hand side of the figure). Each histogram

represents the positions of color categories for 4, 5- and 6-category solutions

(columns 1–3, respectively). The horizontal axes of the histograms are the 50 hue

circle chips, and the vertical axes shows how frequently a color boundary was seen

established at a given chip. The vertical axes are all scaled to one to represent

relative frequencies. The parameters are: n ¼ 50, m ¼ 6, N ¼ 100, ksim ¼ 6, L ¼ 12,

the number of rounds is 107 for each run; the number of runs performed for each

figure (a)–(f) is 500.
4.2. Symmetry breaking

Let us first perform a number of runs with zero dichromats in
the population (a homogeneous normal population). For each run,
a sufficient number of rounds of the game is played such that the
population converges to a shared, near-optimal categorization. We
record the positions of the color boundaries for each run. It turns
out that for the parameters chosen (see the legend of Fig. 7), the
population always converges to one of three categorization types,
containing either four, five or six categories. Homogeneous normal
population results for 500 runs are presented in Fig. 7(a) as three
histograms, each corresponding to one of the three categorization
types. The histograms show that the frequencies of color
boundaries are unsystematically, more or less uniformly, dis-
tributed among the chips. In other words, even though for every
random simulation, the evolutionary process leads to an optimal
categorization (with color categories of approximately equal
length), the actual boundaries of the categories in homogeneous
normal populations can be located anywhere around the circle,
reflecting a rotational invariance (or rotational symmetry) feature
previously noted by Komarova et al. (2007a, b).

Next, we include one, two,. . ., ten dichromats in the total
population of N ¼ 100 agents, Nd ¼ 1;2;3;5;10, Figs. 7(b)–(f). Like
in Fig. 4, in this experiment we will use the most extreme case of
dichromats, which is characterized by the largest length of
confusable region, l ¼ n=2� 1, see transformation (2) and Fig. 2(c).
We can see from the graphs in Fig. 7 that the presence of dichromats
removes the rotational invariance from the situation. Now, the
boundaries of color categories are not uniformly distributed. Even
1% of dichromats in the population makes a clear difference in color
boundary distributions, especially for outcomes with four categories,
Fig. 7(b), the left column. And, generally, the larger the percentage of
dichromats, the stronger their influence. For example, in Fig. 7(e),
with 5% of dichromats, we can see that the distribution of
boundaries in the presence of five categories has four clear bumps.
Similarly, as the percentage of dichromats grows, 6-category
outcomes also acquire well-defined boundary preferences.

The graphs in Fig. 7 suggest that the presence of dichromats
leads to the phenomenon of symmetry breaking. In a homo-
geneous population of normals, category boundaries are placed
with equal probability anywhere along the circle (note that the
size of categories, i.e., the relative positions of boundaries with
respect to one another, remain roughly the same). This is seen
from the empirically obtained, uniform (modulo the noise)
distribution of the boundary positions in Fig. 7(a). This distribu-
tion becomes very nonuniform as the percentage of dichromats
increases. In Fig. 7(f) for 4-term categories, the boundaries occur
more or less at only four fixed locations. The other figures also
suggest that the presence of dichromats leads to established,
preferred, boundary locations. We say that the heterogeneous
populations’ solutions are less symmetrical than those by
homogeneous populations. This is because an arbitrary rotation
of any categorization from a homogeneous population of normals
would yield another, equally likely and equally ‘‘optimal’’ solution,
while an arbitrary rotation of a typical categorization in Fig. 7(f)
will lead to a categorization which happens with a very low
probability (unless the angle of rotation is carefully chosen, e.g.,
equals np=2 with an integer n in 7(f), 4-category solutions), and is
suboptimal, i.e., it has a lower success rate.

The phenomenon observed here can be characterized as
explicit symmetry breaking (as opposed to spontaneous symmetry
breaking observed often in pattern formation studies). This is
because the ‘‘laws’’ underlying the system’s behavior are no longer
symmetrical for heterogeneous populations. While all points
along the color circle are in some sense equivalent for normal
agents, dichromat agents have regions of confusion, or ambiguity,
in addition to non-ambiguous regions in the stimulus space. These
both contribute to the regularization of boundary locations in a
heterogeneous population consisting of normal and dichromat
agents. This is discussed further in the next section where we look
at the exact patterns of symmetry breaking.

Before we analyze the solutions found by heterogeneous
populations in detail, we briefly report on some results pertaining
to the statistics of mixed population categorization. In Fig. 7, the
frequencies (see the vertical axes of each histogram) were scaled
to one. In fact, the relative frequencies of 4-, 5- and 6-category
outcomes change as the percentage of dichromats changes, see
Fig. 8. While the number of 6-term categorizations decreases,
the number of 4-term categorizations more than doubles, as the
fraction of dichromats increases from 0 to 10%. This explains why
the data in the rightmost column of Fig. 7 is very unsystematic. This
also demonstrates that another effect of dichromats in a population
is a changed likelihood for various types of categorization.

4.3. Categorization solutions from heterogeneous populations

Throughout this article, ‘‘solution’’ refers to an end-state color
categorization scheme established by a population simulation.
Such solutions may be of different ‘‘types’’. For instance, they may
contain a different number of color categories on the hue circle.



ARTICLE IN PRESS

N.L. Komarova, K.A. Jameson / Journal of Theoretical Biology 253 (2008) 680–700690
Or, they may have the same number of categories but a different
arrangement of ‘‘long’’ and ‘‘short’’ color categories along the hue
circle.

In the previous section we saw that the statistics of
categorization solutions is affected by the presence of dichromats
in the population. To explain the observed nonrandom distribu-
tion of color boundaries in mixed populations, we note that it is
transformation (1) (or (2)) that breaks the rotational symmetry.
This transformation identifies what we call an axis of no confusion,
or ANC. This axis crosses the color stimulus space at i ¼ 1 and
i ¼ n=2þ 1 (note that these are the centers of the two connected
invariant sets in the stimulus space).
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Fig. 9. Simulation results for a heterogeneous population (normal and dichromat age

category solution, (b) the 6-category solution, (c) the 5-category ‘‘short–long’’ solution, (

N ¼ 10, Nd ¼ 1, l ¼ n=2� 1, n ¼ 50, the number of rounds is 107.
Here is how the position of the ANC regularizes the positions of
category boundaries in a population of normals and dichromats
with l ¼ n=2� 1. If the percentage of dichromats is sufficiently
large, an emerging shared categorization will tend to contain two
color categories centered around the ANC (or, more precisely,
around the points where the axis crosses the circle). These two
color categories (we could think of them as ‘‘yellow’’ and ‘‘blue’’
categories) contain color chips that the dichromats can identify in
a nonambiguous manner. These color categories are identically
used by the dichromat and normal agents in the same population,
see the ‘‘blue’’ and the ‘‘yellow’’ color categories in Figs. 4(b) and
(c). Other categories (unless they are contained entirely within the
invariant set of transformation (2)) will be different for the
dichromats and the normals, Figs. 4(b) and (c).

In what follows, we present a case-study of color boundaries
for a population of N ¼ 10 individuals containing Nd ¼ 1 dichro-
mats with l ¼ n=2� 1, n ¼ 50, L ¼ 12, m ¼ 6 and ksim ¼ 6, such
that mopt � 5:5. It turns out after 107 runs, a mixed population
always comes up with one of four different solution types, as
shown in Figs. 9 and 10.

Two of the solutions contain an even (4 or 6) number of equally
sized categories, Figs. 9(a) and (b) and 10. In both cases, the
solutions are oriented in such a way that there are two categories
centered around the ANC.

Interesting results are observed when the optimal number of
categories in a heterogeneous population is an odd number. There
is no obvious way for the population solution to arrange the
categories such that two opposite categories correspond to the
chips that the dichromat can classify without confusion. In this
case, the population comes up with two different solution types.
In one group of solutions, there are five non-equal categories, such
that the categories on the left of the input line (Fig. 9(c)) are
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nts), and a homogeneous color utility. The four types of solutions are: (a) the 4-

d) the 5-category ‘‘long–short’’ solution. The parameters are m ¼ 6, L ¼ 12, ksim ¼ 6,
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shorter than those on the right.8 The second group of solution is
similar, except the shorter categories are on the right and the
longer ones are on the left (Fig. 9(d)). We can see that in both of
these solutions, there are two color categories centered around
the points where the horizontal ANC crosses the color circle (the
axis is not shown in the figure). In both cases this is achieved by
shortening two of the five categories.

4.4. Varying the degree of agents’ color perception impairment

So far we have only examined the extreme case of dichromats,
namely, those with transformation (2) which collapses a circular
stimulus space onto a line, with only two (diametrically opposite)
nonconfusable color chips, see Fig. 2(c). Next let us explore how
the degree of color deficiency, modeled by the parameter l, the
length of the confusable region, affects the population categoriza-
tion solutions.

In Fig. 11 we demonstrate how different values of l change the
results, by running simulations with (a) l ¼ 2 (a transformation
similar to that in Fig. 2(a)), (b) l ¼ 8 (Fig. 2(b)) and (c) l ¼ 18 (close
to Fig. 2(c)). For simplicity, only 4-category solutions are
presented in Fig. 11. In Fig. 11(c), just like in the extreme case of
dichromats studies in the previous section, the ANC plays an
important symmetry breaking role. The psychophysical transfor-
mation (2) with large values of l splits the stimulus space into a
wide ‘‘ambiguous’’ part and two short ‘‘nonambiguous’’ regions
around i ¼ 1 and i ¼ n=2þ 1. This is where the ANC crosses
the color circle, see Fig. 11(c), the dashed horizontal line at the
bottom of the figure. These special points tend to be placed in the
middle of color categories, which defines the observed pattern in
Fig. 11(c).

On the other hand, Fig. 11(a) shows a different type of solution.
There, transformation (2) defines a large non-ambiguous set
(most of the circle) and two short ambiguous regions, around
chips 13 and 38, or the ‘‘12 o’clock’’ and the ‘‘6 o’clock’’ in the
diagram at the bottom of Fig. 11(a). Thus, instead of the ANC, we
can talk about the ‘‘axis of confusion’’ (AC), which is denoted by a
dashed vertical line. The points where the AC crosses the circle
tend to contain color boundaries, which defines the observed
pattern in Fig. 11(a).
8 Note that we are still considering a circular stimulus space, and the terms

‘‘left’’ and ‘‘right’’ are used simply for reference to the horizontal axes of Fig. 9.
The general tendency is that confusable regions repel bound-
aries, and non-confusable regions attract boundaries. As is seen
from the examples of Figs. 11(a) and (c), these tendencies may be
opposing. However, in certain cases one of them is stronger
than the other. For example, a very narrow confusable region
(Fig. 11(a)) anchors color boundaries to well-defined locations,
while large nonconfusable regions cannot impose much of a
constraint onto category centers. Similarly, a very narrow
nonconfusable region (Fig. 11 (c)) pins down color category
centers, while large confusable regions cannot anchor boundaries
to a certain location. Fig. 11(b) shows a case when both
countervailing tendencies seem equally strong. In this case, we
observe a lot of irregularity in the system, and also the boundary
location distribution has a characteristic shape of four fuzzy
double-humps.

In the next Section we will illustrate our discussion with
strongly impaired dichromats, where l is not too far from
l ¼ n=2� 1. By using similar methods, the results can be extended
to small values of l.

To summarize our findings for heterogeneous populations, we
note that the presence of dichromat observers leads to certain
changes in the shared population categorization. In particular
(a) it may lead to category number changes, (b) it may affect the
uniformity of category sizes and (c) it influences category
statistics, resulting in category boundaries acquiring preferred
positions, and different solution types changing their likelihood.

Finally, although here we focus on the learning and evolution
of color categories among artificial agents—and do not investigate
human categorization phenomena—these results have implica-
tions for human color naming research. The present results
support those shown by Komarova et al. (2007a) by showing
through mathematical analyses and simulations that the simplest
forms of discrimination and communications are sufficient for the
evolution of color naming systems using simple learning
algorithms.
5. Heterogeneous color utility

Besides investigating categorization solutions under idealized
variations of observer populations, we also investigate idealized
forms of color heterogeneity. To explain the notion of hetero-
geneous color utility, we envisage a situation where differences in
shades of some reddish fruits convey a large qualitative difference
for the observers (e.g., some shades of red may signal ‘‘edible’’
while others signal ‘‘poisonous’’), whereas any other region of the
stimulus space does not carry a similar qualitative difference. In
this case, categorizing the reddish region of the stimulus space
into different classes will pay off, or has a different color utility. At
the same time, distinctions of purplish shades are not important,
or salient, for any pragmatic reason, and thus all exemplars in that
region can be considered as one category. We approximate such
environmental color distribution variation here by implementing
biases, or different levels of importance, in our simulations for a
portion of the hue circle. Through such implementations it
is possible to investigate the ways population heterogeneity
(described above) interacts with biases that may exist in the way
color stimulus categories are marked and differentially processed
by our simulated observers.

5.1. Regions of increased salience in the color stimuli

We investigate the effect of color space biases on categoriza-
tion solutions by including RIS in the stimulus space. A RIS is
simply a differentiated stimulus region, which idealizes realistic
circumstances where an especially salient portion of the color
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space might demand a different pragmatic classification scheme.
The pragmatic notion of ksim, the similarity range defined above,
provides a way to introduce color stimulus heterogeneities in this
framework. Namely, instead of using one universal (for all color
chips) measure of similarity, ksim, we can simulate a world where
ksim is different in different regions of the stimulus space.

In general, the quantity ksim may vary from chip to chip, such
that we have a vector with n components, kðiÞsim, 1pipn. In
particular, a RIS can be created by varying the parameter ksim in a
specific region of the hue circle, while a different value of ksim is
uniformly applied to stimuli in the rest of the hue circle:

kðiÞsim ¼
kRIS; iLpipiR;

knorm; otherwise;

(

that is, in a certain region of the color space (between chips iL and
iR), we have ksim ¼ kRIS and everywhere else we have ksim ¼ knorm,
where

kRISoknorm.

The region iLpipiR is the RIS of the color stimulus space.
In practice, when we sample the stimuli for use in discrimina-

tion-similarity games, as long as at least one of the chips sampled
belongs to the RIS, we will use kRIS. Otherwise we use knorm. As as
result, the optimal color categorization changes, and we find that
the color categories around the RIS tend to be smaller than those
outside the RIS.

5.2. The effect of the RIS on the color categorization of a

homogeneous population

Simulation results show that in homogeneous populations,
the presence of a RIS removes the rotational invariance
of the solution. As a result, it may fix the boundaries of the
color categories. In Fig. 12 we show a typical solution for a
given parameter set where n ¼ 40 (differing from n ¼ 50 shown
earlier). Most of the time (about 70% of runs), the population

comes up with a categorization which contains ½n� ðiR � iLÞ�=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2knormðknorm þ 1Þ

p
� 3 color categories outside the RIS and

ðiR � iLÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kRISðkRIS þ 1Þ

p
� 2 categories inside the RIS; the cate-

gories inside the RIS contain fewer color chips compared to
nonRIS categories. In a smaller (but significant, about 25%Þ
fraction of runs, we see solutions with three very short color
categories squeezed inside the RIS. Finally, there are rare
occasions where there are only two color categories outside the
RIS and three categories inside; four categories outside and two
inside, and so on. The exact configuration and the likelihood of
solutions vary depending on the parameters. For instance, if we
take the same parameters as before except n ¼ 42 (a slightly
larger stimulus space), the frequency of the second (6-category)
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Fig. 13. Histograms showing the positions of category boundaries with a homogeneous population, in the presence of a RIS. We performed 100 independent runs.

Parameter values are the same as in Fig. 12. (a) 5-category solutions and (b) 6-category solutions.
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solution increases and the first (5-category) decreases, such that
one becomes almost as frequent as the other.

The results of Fig. 12 are also presented in Fig. 13 where we
show histograms of positions of category boundaries for the more
common 5- and 6-category solutions described above (see (a) and
(b), respectively). We can see that the position of the RIS defines
the position of color boundaries very precisely, with only a small
amount of ‘‘spread’’. For example, out of 69 runs which resulted in
a 5-color categorization, Figs. 12 and 13(a), 100% had color
boundaries at positions 25 and 36. The position of the color
boundary around the middle of the RIS which separates the
two short color categories, varies between 30 and 31. This is
because the number of chips inside the RIS is odd (11), so there are
two ways to split them into two nearly equal parts (5 and 6, or 6
and 5).

The main conclusion that we draw from these experiments is
that the presence of a RIS removes rotational invariance that
would otherwise be seen in the system. The resulting solution(s)
will have category boundaries dictated by the position of the RIS,
and the number of color categories inside and outside of the RIS is
determined by values of ksim: in particular, kRIS inside the RIS and
knorm everywhere else on the hue circle. The two main types of
solutions for the particular parameter set case-studied here are
given in Fig. 14. The positions of the smaller categories are
completely defined by the position of the RIS.
6. The two types of heterogeneities combined

In this section we examine situations where the two types of
heterogeneities described above are combined. In other words, we
consider the stimulus space heterogeneity modeled with a RIS and
study the color categorization of populations in the presence of a
fraction of dichromats.
Generally, both the presence of a RIS and the presence of
dichromats break the rotational symmetry of the system, but they
do it in a different way. A RIS fixes a ‘‘special’’ region of the circular
stimulus space using a lower value of ksim, whereas dichromat
agents in a population provide an anchor in the form of a special
color direction, such as the ANC or/and the AC. Depending on the
position of these axes with respect to the RIS, the results of
the interaction of the RIS with population heterogeneities will be
different.

Let us consider the example of the previous section,
Figs. 12–14. For these parameter values, a homogeneous popula-
tion of normals categorizes a color space with a RIS into five or six
regions. The 2- or 3- color categories around the RIS are about two
or three times smaller than the other three categories.

We will now add dichromats to the population and consider
the following three qualitatively different cases:
(a)
 The ANC lies outside the RIS, Fig. 15(a).

(b)
 The ANC crosses the RIS in the center, Fig. 15(b).

(c)
 The ANC is adjacent to the RIS, Fig. 15(c).
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In the simulations that follow we will keep the ANC fixed (it is
defined by chips 1 and n=2þ 1 ¼ 21), whereas we will vary the
location of the RIS. To illustrate the three qualitatively different
cases given above we define RIS that span three different regions
of chips: namely, (a) 26–36, (b) 16–26 and (c) 11–21.

6.1. The RIS inside the confusion region

We first consider case (a) above where the RIS coincides with
an idealized region of dichromat confusion (see Fig. 15(a)). In this
case, the solutions of a heterogeneous population, comprised of
both normal and dichromat agents, are identical to solutions seen
from a homogeneous population of the normal agents. We have
performed simulations with varying length of the confusable
region for the dichromats, l. In our development here we kept l

relatively large, corresponding to a large perceptual impairment of
dichromats; in this case the ANC imposes a dominant constraint
on the resulting categorization. Small values of l (low degrees of
impairment) are characterized by the dominance of the AC and
can be studied by similar methods. In all experiments with
11plp19, the heterogeneous population comes up with a
5-category solution about 70% of the time, and with a 6-category
solution most of the rest of the time. These solutions are similar to
those of Figs. 13 and 14(a); the shorter categories are located over
the RIS.

In this example the presence of dichromats does not change
the solution from that seen in the homogeneous normal
simulation where the solution was made rotationally invariant
by a RIS in this particular location. In other words, in situations
where a RIS coincides with a confusion region relevant to a small
proportion of the population, the solution that stabilizes is the one
that optimizes the category solution for the unimpaired agents, as
if the small contingent of impaired dichromats was not involved
in the discrimination-similarity communication games.

6.2. The ANC crosses the RIS in the center

Next, consider a variation on the example just described,
where a RIS is centered on the ANC, or Fig. 15(b). The solution
found by a homogeneous population of normal agents is similar to
that shown in Figs. 12–14, except that the categories are rotated
with the small color categories shifted to this new RIS position
(i.e., chip range 16–26).

Adding dichromat agents to the population changes the
solution. In Fig. 16 we present histograms of category boundary
locations for solutions found by such heterogeneous populations.
To examine the interaction between these features we investi-
gated three cases of dichromats with confusable regions of
lengths l ¼ 11, l ¼ 15 and l ¼ n=2� 1 ¼ 19, see Fig. 17. The results
are presented in Fig. 16, top to bottom. We can see that most of the
time, heterogeneous populations come up with two types of
solutions, those with 5- and 6-color categories (similar to what
was found for populations with only normal agents). In 6–7% of
runs we also found 7-category solutions (not shown). First note
that the shape of the 5-category solutions also changes as l grows.
For the l ¼ 11, the solutions are not distinguishable from those
found by normal populations. However, as l increases, the color
boundary near the center of the RIS gets pushed either to the left
or to the right of the center. As a result, no category boundaries are
placed in the immediate proximity of the ANC. This effect
becomes more noticeable as the length of the confusable region,
l, increases.

Another trend that we observed is that the fraction of
5-category solutions becomes smaller as l grows: recall that for
homogeneous populations this fraction was 70%, and it drops
down to only 12% for simulations that include the most impaired
dichromat model, l ¼ 19. Accordingly, the fraction of 6-category
solutions grows from 30% to 82%.

These observations can be explained. The 5-category solution
found by homogeneous populations has a color boundary at or
near the ANC. Therefore, the frequency of this type of solution
decreases as a result of the presence of dichromats, and also the
middle category boundary inside the RIS becomes shifted away
from the ANC. The 6-category solution has no conflict with the
ANC and thus becomes more frequent in the presence of
dichromat agents.

The exact location of the ANC with respect to the RIS is
important. Fig. 18 presents simulations identical to those of the
bottom row of Fig. 16, except the RIS is shifted by 1 position to the
left, such that the ANC is not exactly in the center. Interestingly in
this case the symmetry of solutions is broken. Now, the 5-category
solution always has the boundary inside the RIS shifted to the left
(and never to the right). The 6-category solution is also very
asymmetrical, with the rightmost of the three categories inside
the RIS being much smaller than the other two.
6.3. The ANC is adjacent to the RIS

Finally, consider a RIS positioned immediately adjacent to the
ANC, Fig. 15(c). This configuration results in the largest degree of
conflict between the basic homogeneous RIS solutions (Fig. 14(b))
and the position of the ANC. In our first set of experiments, we
considered Nd ¼ 1 dichromats in a population of N ¼ 10 with
l ¼ 15. Later, we increased l to l ¼ 19, the maximum value
considered here.

The results for the l ¼ 15 case are presented in Fig. 19. We can
see that in this case, the heterogeneous population comes up with
five different solutions. Two solutions are variants of the original
5-category solution (Fig. 19, top row), and three are variants of the
6-category solution (Fig. 19, bottom row). The more frequent
5-category solution is identical to that found by the homogeneous
populations, Fig. 14(b). It has category boundaries exactly at both
points where the ANC crosses the circle. The second 5-category
solution is different in that it avoids placing category boundaries
at the ANC. There are four instead of three shorter categories
around the RIS, and only two categories in the remaining region.

The three 6-category solutions are presented in the bottom
row of Fig. 19. Again, the most frequent one coincides exactly with
the one found by homogeneous populations (see Fig. 14(b)), and
the other two are its variants avoiding the overlapping of category
boundaries with the ANC. The one encountered in 8% of the runs
shortens one of the larger categories outside the RIS region to
move a boundary away from the ANC at chip i ¼ 1. The 3%
solution contains four short color categories around the RIS and
only two outside the RIS.

Now we increase the confusion length to l ¼ 19. The results are
presented in Fig. 20. The original, unmodified 5- and 6-category
solutions do not arise anymore. Instead, the heterogeneous
population comes up with their variants, all of which push the
color boundaries away from the ANC.

These findings are summarized in schematic Fig. 21. There we
depict the transformations of the basic 5- and 6-category
solutions by means of changing the category number, by rotation
and by changing category size. The solutions from left to right
range from more common to less common.

Qualitatively the three kinds of transformations we observed
in the solutions presented above (i.e., (i) adding or removing
categories, (ii) rotating a solution and (iii) compressing or
expanding category size) all work in concert to achieve a common
goal: namely, to form a solution that maximizes communication
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l = 11 l = 15 l = 19

Fig. 17. A schematic representing the perceptual space of dichromats with varying

lengths of the confusable region: l ¼ 11, l ¼ 15 and l ¼ 19.
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Fig. 16. RIS and dichromats, the ANC crosses the RIS in the center. Shown are histograms of color category boundary locations, out of 100 independent runs. The position of

the RIS is indicated; it is between iL ¼ 16 and iR ¼ 26. The point in the RIS region that is coincident with the ANC is marked by an arrow (chip 21, exactly in the middle of the

RIS). There are Nd ¼ 1 dichromats out of N ¼ 10 agents. Upper row: the confusable region of dichromats has length l ¼ 11. The middle row: l ¼ 15. The bottom row:

l ¼ n=2� 1 ¼ 19. Both categorizations into five and six categories are shown, and percentages of each are indicated above the graphs. The 7-category solution was found in

7 out of 100 runs for l ¼ 19 and 6=100 for l ¼ 11 (not shown). Parameters are n ¼ 40, kRIS ¼ 3, knor ¼ 6, 107 rounds are played for each run.
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game success rates in the total population relative to a reliable
anchor of nonconfusable stimuli for a portion of the population,
while simultaneously taking advantage of a potential for richer
partitioning (i.e., the kRIS difference) for a majority segment of the
population.

In general, the ways the present RIS conditions are shown to
trade off with the population heterogeneity conditions suggests
that, for the simulated agent populations investigated here, both
factors contribute to how color category solutions take shape and
stabilize. Whether these conditions similarly trade off in realistic
circumstances seems plausible, and is demonstrated as at least
possible in view of the present results.

6.4. Can we predict the categorization?

The present investigations allow a formal description of the
most likely structure of the optimal color categorization solution.
The optimal ‘‘length’’ of a category is given by

lopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksimðksim þ 1Þ

p
.

6.4.1. No RIS constraint in a homogeneous normal population

Under conditions in which there is no added constraint of a RIS,
using a homogeneous normal population, the solution will consist
of m nearly equal categories, where m is an integer approximation
to the solution of

mlopt ¼ n.
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If n=lopt is not close to an integer, then the population will
converge to one of two different solutions, one with the number of
categories given by the largest integer on=lopt and the other one
with the number of categories given by the smallest integer
4n=lopt .

In all cases, the full solution class consists of all possible
rotations of such solutions.
6.4.2. No RIS constraint in a heterogeneous population

Under conditions in which there is no added constraint of a RIS,
if we consider both dichromat and normal agents in a population,
the solution may change. In particular, if the optimal solution
contains an even number of categories, and the dichromats
are assumed to be close to the extreme case of l ¼ n=2� 1, the
population will always converge to an optimal solution where the
two least confusable colors are in the middle of two opposing
color categories. Therefore, the presence of dichromats in this case
will not change the structure of the solution, but it will remove
the rotational invariance, fixing (in a probabilistic sense) the
boundaries of color categories.

If the optimal solution consists of an odd number of color
categories, then the presence of dichromat agents will change
the solution structure. For convenience let us assume that for the
dichromats, l is close to n=2� 1, and chips 1 and n=2þ 1 are the
least confusable ones. With an odd optimal number of categories,
mopt , one of the following can happen:
�
 Unequal categories, same number of categories. In this
solution, the optimal number of categories is maintained, but
the boundaries are shifted. Namely, there is a category
centered at chip 1 and a category centered at chip n=2þ 1,
with ðmopt � 3Þ=2 categories and ðmopt � 1Þ=2 categories on
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each side. This way, the categories on one side of chips n=2þ 1
are on average shorter than those on the other side.

�
 Equal categories, suboptimal number of categories. This

solution has an even number of color categories (smaller or
larger). They are equally sized.

6.4.3. Presence of a RIS constraint in a homogeneous normal

population

A RIS constraint (or different pragmatic category values of ksim),
in a homogeneous normal population has the following con-
sequences for solution structures. There are categories of two
sizes,

lnorm
opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knormðknorm þ 1Þ

p
; lRIS

opt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRISðkRIS þ 1Þ

p
,

where lnorm
opt 4lRIS

opt . Suppose the length of the RIS is nRIS. Then the
system will have p long color categories and q short ones, the
short ones located around the RIS. The integers p and q are found
from the solutions of

plnorm
opt ¼ n� nRIS; qlRIS

opt ¼ nRIS.

The solutions in such cases are not rotationally invariant. Often
the solution is not unique: a couple of integers may be almost
equally close to the solution of these equations.

6.4.4. Presence of a RIS constraint in a heterogeneous population

Finally, under conditions involving a RIS constraint, the
presence of both dichromat and normal agents in a population
may change the solution described just above. In particular, the
presence of dichromats with a large perceptual impairment will
force a relatively larger color category to be centered around chips
1 and n=2þ 1 (the nonambiguous chips). This will produce a
tendency for the categories around the nonambiguous chips to
shift away, or repel, from the ANC, making room for a relatively
larger category centered around the ANC. As a result there can be a
compensatory category rotation, with, in some cases, a change in
category number and size.
7. Discussion

In this article we considered some very simple idealizations of
situations where a signaling/categorization system evolves for
objects from a continuous domain. We report findings from color
categorization simulations, with a focus on two realistic features
of categorization phenomena: population heterogeneity, and
heterogeneity of color utility. The two are found to trade off in a
dynamic fashion during the process of a population of agents
forming and stabilizing an optimal color categorization solution.
This solution aims to maximize successful communications
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among agents about a circle of hue stimuli, in a context of the
discrimination-similarity game.

These investigations reveal some features of the phenomena
that are relevant to color categorization in general, and which may
be further understood through formal analyses. Our framework
creates a systematic approach to studying the dynamics between
compensatory features (including trade offs that are possible and
likely) in realistic situations where the demands on color
categorization behaviors can be specified, regardless of how well
their influences are understood.

Below we summarize our findings for the cases involving (I)
populations of agents learning a shared category system under
differences in population heterogeneity, (II) the introduction of a
salient color region in the stimulus space and (III) the influences
of combining population variation and variation in color utility on
category solutions.
I.
 Populations of communicating agents and population hetero-
geneity.
(a) Individual agents acquire color categorization systems in

ways dependent on the psychophysical discrimination
model they are endowed with (as well as the utility
properties of the stimulus space, discussed below).

(b) Communicating agents in a population can individually
acquire a color categorization system that is shared with
other agents in their society, and the properties of such
shared categorization systems (e.g., where the category
boundaries occur) depend (in part) on the discrimination
model given to the agents.

(c) The categorization solution achieved by a population for
each region of the stimulus space is provided by the
‘‘winning color categories’’ based on population commu-
nication games. The shared, quasi-stable population solution
depends (in part) on the composition of a population—that
is, whether it is a society comprised of homogeneously
modeled agents or whether the society includes some
degree of nonrandom agent heterogeneity. When a popula-
tion includes certain proportions of two different agent
types (i.e., one type with a perceptual deficiency, the other
modeled as normal observers), then the collective categor-
ization solutions adjust to accommodate the constraints
specific to agents from the population minority.

(d) Solutions achieved by heterogeneous populations differ
from those found by homogeneous populations. Namely,
in some cases the presence of dichromat observers leads to
changes in the number of categories achieved, and it can
produce categories of nonuniform size. It always influ-
ences color category statistics, resulting in category
boundaries acquiring (probabilistically) preferred posi-
tions. The latter effect can be described as a symmetry
breaking phenomenon; in other words, the presence of
color impaired observers breaks the rotational invariance
found in the systems with homogeneous populations.

(e) The exact nature of symmetry breaking depends on the
form of psychophysical transformation used to model
color vision impaired agents. In particular, in this study we
employed a simple transformation which collapses two
opposite regions of the stimulus space (the confusable
regions) onto each other. For the case of large confusable
regions (a high degree of impairment) the population
solutions tend to center two opposing color categories
around the (short) nonconfusable regions. For the case of
short confusable regions (a mild impairment) the popula-
tion solution tends to place category boundaries near the
(short) confusable regions.
II.
 Heterogeneous color utility.
(f) When color stimulus salience includes an inhomogeneity

in the stimulus space—in the form of a region(s) of the
space with different pragmatic utility compared to the rest
of the space—then both individual learners and popula-
tions of learners acquire a color categorization without
rotational invariance.

(g) In this paper we concentrated on an explicit model, where
one RIS was included in the stimulus space. Inside this
region, the ksim parameter (which correlates with the
average size of color categories in the optimal solution)
was assumed smaller than outside the RIS. Consequently,
the population solutions did not possess a rotational
invariance, and the category boundaries were (statisti-
cally) determined by the boundaries of the RIS. The
category size and number were also affected by this
constraint, placing shorter categories inside the RIS and
larger categories outside.
And finally,

III.
 Both forms of heterogeneity.

(h) When both forms of heterogeneity are combined in a
population simulation, we observed several interesting
trade offs between features of population heterogeneity
and color utility heterogeneity. Briefly, these included
trade offs between (i) the relative sizes of the population
majority and minority, (ii) the relative degrees of color
deficiency used to model population heterogeneity,
(iii) the degree with which defined RIS areas coincided
with varying regions of confusion and nonconfusion in the
deficient agent models investigated.
All the results observed had the net effect of demonstrating that
stable color category solutions are flexible and respond in
predictable ways to countervailing demands that may be imposed
by population and pragmatic constraints.

The remaining portion of the discussion presents several
aspects that address the extension, or generalizability, of these
findings, and relates them to noteworthy results and advances in
the existing color categorization and game theory literatures.

7.1. Implications for color naming theory

Our results bear directly on an issue hotly debated over the last
decade, and provide a strong counter example to the assertion
that there are no nontrivial constraints on color categorization
(e.g., Saunders and van Brakel, 1997). We found that by varying
observer discrimination constraints, even at the idealized level
needed for the present investigations, we could systematically
(and in nontrivial ways) influence the stabilized color categoriza-
tion systems observed. Also, introducing minimal color salience
constraints into the investigations systematically changed the
manner by which category partitions were sized and distributed.
We also showed that such constraints interact, or trade off, in
ways one would expect such constraints to trade off in realistic
circumstances. The present study does not directly investigate the
many potential realistic constraints that exist. However the two
forms of constraints we did include in this study were shown to
substantially affect the agent-based category systems, and, given
the wide prevalence of such constraints in the real world and their
potential relevance to the behavioral phenomena, we expect they
may also serve as limiting conditions that influence the formation
of human color categorization systems.

It is important to re-emphasize that the agent simulations we
present are not intended to model human color category learning
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or interactions between human categorizers. They are instead
intended to demonstrate what can be achieved using only the
most rudimentary forms of color observation and communication
together with an elementary evolutionary dynamics. The evolu-
tionary dynamics implemented here follow the ideas that (i) color
naming should in part be based on pragmatic concerns, (ii) in
general, perceptually similar colors are likely to be given the same
name and (iii) perceptually different colors may be given different
names. This kind of simulation has potential value for clarifying
open issues in the empirical literature concerning the basis for
human color naming. On the one hand, it can provide counter
examples which show that various features of naming systems
can evolve without making additional assumptions involving
physiological processing, cognitive strategies, or socio-cultural
methods of transmission. On the other hand, by having explicit
evolutionary models and algorithms we may be able to demon-
strate the feasibility of certain evolutionary theories presented in
the literature.

Moreover, it should be noted that the symmetry breaking

results presented here (Section 4.2) are not directly in conflict
with the maximized wellformedness (also a form of symmetry
breaking) results found by Regier et al. (2007). Indeed, in light of
our symmetry breaking findings, Regier et al.s’ observations that
color vision processing could constrain how a stimulus domain is
categorized are not surprising, although it is quite surprising that
the influences of communication under stimulus heterogeneity
and observer heterogeneity would alone be substantial enough to
(i) give rise to a stable shared category solutions in the absence of
perceptual model, and (ii) would trade off in the interesting ways
that we show in the present paper. The interesting next step
(which we are in the process of taking) is to show specifically how
all the various constraining factors (e.g., perception, cognition,
communication, etc.) trade off and interact.

Results presented here are important for evaluating how
pragmatic constraints on color naming might influence the
evolution and maintenance of a color signaling system in
both artificial and nonartificial agents. They also give a good
impression of how systematic variation in observer-type
heterogeneity could influence convergent category solutions
(Jameson, 2005d)—a topic of recent discussion in the color
categorization literature (Steels and Belpaeme, 2005). Finally,
both results accord with the organizational framework for human
color categorization described by Jameson (2005a, pp. 316–325),
as well as with suggestions regarding the possible influence of
observer variation on color categorization systems (Jameson,
2005a, b, d).
9 And the discussion surrounding the empirical differences in the use of color

semantics in bilingual Vietnamese–English individuals in Jameson and Alvarado

(2003a, b) and Alvarado and Jameson (2005).
7.2. The gap between the universalist and culturally relative views

Earlier it was noted that the universalist perspective is the
most widely accepted explanatory framework for findings in
human color categorization, and has generally been successful
characterizing similarities seen across different ethnolinguistic
groups, but somewhat silent on the issue of identifying the
sources of variation in color categorization and naming that is
seen across ethnolinguistic groups.

The present investigations, with those of Komarova et al.
(2007a, b), give an approach that permits evaluation of both
similarities and differences across groups. That is, despite the
simplifications needed to conduct these investigations, our results
show that it is theoretically possible for universal constraints
(such as identifiable universal color vision processing features
shared among humans) to impose important limiting conditions
on the development and stabilization of shared color category
solutions. This finding is at odds with any view suggesting that
human color categorization research lacks empirically tractable
constraints. In addition, the present investigations show that such
universal constraints can and will interact with other constraints
that necessarily differ across local circumstances—or, generalizing
to the domain of realistic phenomena, across culturally specific
circumstances.

This is an important demonstration for the empirical study of
human color categorization because although there have been
hundreds of empirical reports evidencing culturally varying
influences on human color categorization, the challenge of how
to make universalist explanations compatible with culturally
relative variation is largely unaddressed in the literature
(although see Jameson 2005a–e), and certainly has not been
adequately addressed through empirical study. This challenge is,
in part, why universalist views remain largely unreconciled with
culturally relativist views (despite a general awareness regarding
the importance of both types of influences), and why mainstream
pure universalist explanations give little assistance for under-
standing aspects of color naming phenomena that are so clearly
linked with cultural variables (see discussion in Davidoff et al.,
1999; Roberson et al., 2000, 2005).
7.3. Future research

The present study addresses a gap in the literature and in
the mainstream theory regarding the testing of universal color
vision processing factors in conjunction with factors specific to
ethnolinguistic groups. Our approach is meant to complement
empirical studies of human color categorization. Forthcoming
research will further investigate how these qualitatively
different sorts of factors trade off, and how the simulation
findings compare with the empirically observed human phenom-
ena (Jameson and Komarova, 2008). In particular, it will be
interesting to study, in a quantitative way, how much population
variation is observed in societies with little or no heterogeneity,
compared to those with a large percentage of impaired observers.
Also, questions of convergence speed to a stabilized shared
solution with and without heterogeneity constraints will be
addressed.

Jameson (2005a, b) previously suggested that real world
pragmatics quite naturally allow for heterogeneous populations
in which color categorization subcultures exist and reflect a
specialized color expertise, or, perhaps, a marked pragmatic color
salience that is only seen in a small portion of the population. It
was also suggested that one possible model for communications
between such population subcultures may be based on bilingual
code-switching interactions generally seen among communicating
individuals who are proficient in two languages. In such
situations, a sender may trade off between modes of commu-
nicating as appropriate for linguistic variation in the receiver in
any given communication game. Thus, for the case of Fig. 15(a),
when pragmatic color utility for one portion of the population
(e.g., normal agents) marks a distinctive RIS, but that region in
turn is not part of the perceptual repertoire allowed by the
psychophysical transform of a different portion of the population
(e.g., dichromat agents), then communications about RIS colors
between those two agent types unfolds in a way that differs
from the mode of communication between, say, two normal
agents who can equally perceive and discuss the RIS region (see
related discussion in Jameson 2005a, b).9 The present investiga-
tions, however, concentrate on capturing less complex scenarios,
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and do not examine the kinds of code-switching circumstances
just described. Forthcoming research explores such population
communication variation in a more systematic way (Jameson and
Komarova, 2008).

7.4. Conclusions

The main result of this study is that both forms of hetero-
geneity that were considered (population and color utility) served
as process anchors and fix rotationally invariant category solu-
tions when independently implemented (i.e., population hetero-
geneity implemented without color utility heterogeneity; or color
utility heterogeneity implemented without population hetero-
geneity). Also, when the two types of heterogeneity are both
incorporated in a simulation, they were shown to systematically
trade off in ways that always optimize the communication game
success rate for the population. And in all cases we considered,
some of which pitted the two forms of heterogeneity against each
other from a communication game standpoint, the category
solutions that were reached were stable, coherent, and represen-
tative of the kinds of categorization schemes one would expect
from realistic tests of population categorization of a hue circle
continuum. Forthcoming research considers how such idealized
categorization factors trade off in comparison with analogous
situations from the human empirical color naming literature.
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