Consensus on Semiotic Models of Alphabetic Systems

KIMBERLY JAMESON AND A. KIMBALL ROMNEY

University of California, Irvine

ABSTRACT: In this paper we report the results of an experiment that tests two variants of a generative semiotic model of the English capital or "majuscule" letters. Consensus analysis is used for estimating the "correct" alphabetic extensions from two different informant-groups we call "novices" and "experts." These data are then taken as a standard "cultural model" for distinguishing the relative merits of the two generative semiotic models of the alphabet. The general analytic procedure should be applicable in a wide variety of situations in which two different theories predict different measurable cultural models of the same data.

KEY WORDS: consensus, informant accuracy, semiotic models, expert knowledge, alphabetic systems

1. INTRODUCTION

In this paper we present a general procedure for testing the relative adequacy of two variants of a generative semiotic model of the English capital letters or majuscules. The models formally characterize the set of 26 majuscule letters, but since the characterizations are "generative" (algorithmic) they also determine, beyond the set of 25 existent letters, a larger set of well-formed possible letters. (Some of these have existed in ancestral alphabets, such as "T" in the Greek; others have never existed.)

The models constitute an attempt to represent the cognitive model of the alphabet that people "have in their heads."

The two generative semiotic grammars that attempt to represent the cognitive model can be briefly characterized as consisting of generalizations over the set of letters (Watt 1975, 1988). An instance of such a generalization is: "letters face rightwards," which holds for all the majuscules that are asymmetric on the vertical axis except "J," which faces leftwards, and the set "N," "S," "Z," which face neither way. There are a number of such generalizations, or rules of grammar, and taken together they are characterized by the following properties: (1) they specify a set of well-formed or grammatical letter-forms that include both the set of 26 letter-forms that constitute the present English alphabet, and a larger subset of "pseudo-letters", equally well-formed, that our alphabet does not include; (2) the generalizations also specify, beyond the grammatical set, a much larger set of pseudo-letters of less grammaticality that break various
models have attempted to directly account for the grammaticality of the letters, that is with deliberate judgments of how letter-like new letter forms are. Further details of the investigations, including the theory and rationale underlying the alphabetic models, and the psychological implications of the results, are given in Jameson (1989).

THE EXPERIMENT

Jameson (1989) demonstrated that subjects are capable of making set-membership judgments for alphabet types in an experimental situation, and that consensus analysis is useful for analyzing the resulting experimental data. The design for the present Experiment arose from designs employed in pilot experiments.

The experiment involves testing the 53 newly generated letter-forms shown in Table I as possible candidates for a sample alphabet. These 53 letter-forms fall along two alternative “wellformedness” continua, derived from theoretical models 1 and 2. Each model, for ease of experimental presentation and discussion, divides the letter-forms into three subsets: Grammatical, Semi-Grammatical, and Nongrammatical, where Semi-Grammatical items have a higher degree of “grammaticality” than Nongrammatical items.

Informants were asked to determine whether the pseudo-letters were acceptable members of a specified variant of the English alphabet. A sample question is shown in Figure 1. In the experiment informants completed 53 forced-choice questions to determine whether or not each letter-form was acceptable as a “new letter” of the alphabet.

The purpose of the Experiment was to apply consensus analysis to determine the relative adequacy of the two models (or grammars) of the English majuscules. Both are variants of the generative semiotic grammars developed by Watt in a series of papers (1975, 1980, 1981, 1988). The two variants differ in a number of respects but their key difference lies in how they relate to the specific letter-forms used by Jameson in her experiments. One grammatical model (hereafter Model 1) made predictions about informant acceptances of letter-forms on the assumption that informants would mostly ignore relatively minor departures from the conventional forms. (For instance, Model 1 assumed that informants would accept form 12, in Table I, as an ordinary “R”, ignoring the angularity of its cusp.) In contrast Model 2, was developed after pilot experiments demonstrated that informants were in fact attending to what had in advance been viewed as very minor departures from conventional letter-forms. Model 2 took that behavior into account, thus predicting that angular “R” would prove relatively less grammatical. In brief, Model 1 was lax and Model 2 was strict.
Table I (continued)

<table>
<thead>
<tr>
<th>Question</th>
<th>Stimulus item</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Undergrad Key</th>
<th>Bayesian Prob.</th>
<th>Expert Key</th>
<th>Bayesian Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Q1</td>
<td>N</td>
<td>N</td>
<td>Yes</td>
<td>1.0000</td>
<td>Yes</td>
<td>1.0000</td>
</tr>
<tr>
<td>40</td>
<td>Q1</td>
<td>N</td>
<td>G</td>
<td>Yes</td>
<td>1.0000</td>
<td>Yes</td>
<td>0.9969</td>
</tr>
<tr>
<td>41</td>
<td>Q1</td>
<td>N</td>
<td>N</td>
<td>No</td>
<td>1.0000</td>
<td>Yes</td>
<td>1.0000</td>
</tr>
<tr>
<td>42</td>
<td>Q1</td>
<td>G</td>
<td>G</td>
<td>Yes</td>
<td>1.0000</td>
<td>Yes</td>
<td>1.0000</td>
</tr>
<tr>
<td>43</td>
<td>Q1</td>
<td>S</td>
<td>N</td>
<td>No</td>
<td>1.0000</td>
<td>Yes</td>
<td>1.0000</td>
</tr>
<tr>
<td>44</td>
<td>Q1</td>
<td>N</td>
<td>S</td>
<td>Yes</td>
<td>0.9697</td>
<td>No</td>
<td>0.9996</td>
</tr>
<tr>
<td>45</td>
<td>Q1</td>
<td>S</td>
<td>G</td>
<td>Yes</td>
<td>1.0000</td>
<td>Yes</td>
<td>0.9964</td>
</tr>
<tr>
<td>46</td>
<td>Q1</td>
<td>G</td>
<td>N</td>
<td>No</td>
<td>1.0000</td>
<td>Yes</td>
<td>1.0000</td>
</tr>
<tr>
<td>47</td>
<td>Q1</td>
<td>G</td>
<td>G</td>
<td>Yes</td>
<td>0.9999</td>
<td>Yes</td>
<td>0.9998</td>
</tr>
<tr>
<td>48</td>
<td>Q1</td>
<td>N</td>
<td>N</td>
<td>No</td>
<td>1.0000</td>
<td>Yes</td>
<td>1.0000</td>
</tr>
<tr>
<td>49</td>
<td>Q1</td>
<td>G</td>
<td>N</td>
<td>Yes</td>
<td>0.9997</td>
<td>No</td>
<td>1.0000</td>
</tr>
<tr>
<td>50</td>
<td>Q1</td>
<td>N</td>
<td>S</td>
<td>Yes</td>
<td>0.9440</td>
<td>No</td>
<td>0.9993</td>
</tr>
<tr>
<td>51</td>
<td>Q1</td>
<td>N</td>
<td>S</td>
<td>No</td>
<td>1.0000</td>
<td>Yes</td>
<td>0.9999</td>
</tr>
<tr>
<td>52</td>
<td>Q1</td>
<td>S</td>
<td>S</td>
<td>No</td>
<td>0.9049</td>
<td>No</td>
<td>0.9985</td>
</tr>
<tr>
<td>53</td>
<td>Q1</td>
<td>G</td>
<td>G</td>
<td>Yes</td>
<td>0.9927</td>
<td>Yes</td>
<td>0.9994</td>
</tr>
</tbody>
</table>

Table 1 Notes. Cell values in Columns 1 & 4 are as follows: G = Grammatical, N = Nongrammatical, S = Semi-grammatical, and M is grammatical model. Cell values in Columns 5 & 7: "Yes" indicates that the estimated "correct" answer is "yes", this is an acceptable new letterform, and "No" indicates that the estimated "correct" answer is "no", this is not an acceptable new letterform. Columns 6 & 8 contain the Bayesian probability values from the "consensus" analysis.

Model 1 is a formal iconic grammar that employs distinctive feature matrices and generative rules in its formulation. The model incorporates aspects of alphabetic evolution as well as the learning processes involved in acquisition. The model posits that the individual characters of the alphabet are morpheme-like entities that are made-up of phoneme-like entities (line-segments) which in turn are the distinctive features of parts of letters. This model is equivalent to Watt's Unified Characterization (Watt 1988) which is primarily based upon the visual aspects of the majuscules, specifying the motoric aspects of the majuscules as derived.

Model 2, discussed in Jameson (1989), is in essence a more "specific" variant of Model 1. For Model 2 the basic description given for Model 1 above is still appropriate; however, Model 2 further incorporates new rules which influence its functional output. The most salient of these new rules involve (1) provision for more variability in line-length and line-orientation, to distinguish angular from conventional "R" for instance; (2) provision for differential weighting of the distinctive features of letters; (3) re-evaluation of feature combinations which involve opposing values (i.e., curvilinearization and angularization); and (4) greater utilization of "redundancy measures" as indicators of "well-formedness".
Here are all the "new letter" candidates:

```
     ABCDEFGHIJKLMNOPQRSTUVWXYZ
```

Question #1:

The "new letter" candidate:

1. Yes, this is an acceptable "new letter".
2. No, this is not an acceptable "new letter".

![Fig. 1. An example of the experimental design.](image)

The formal rules of Models 1 and 2 produce marked differences in grammatical classification as seen in Table I. For instance, item #3 is classified Nongrammatical in Model 1 and Grammatical in Model 2. Such variation across models, when viewed in terms of the empirical data analyzed by consensus analysis, permits evaluation of the models (see Jameson: 1989).

SUBJECTS AND METHOD

Experimental booklets were administered to two different groups of informants. The first was a group of 30 college undergraduates who participated in the experiment for partial course credit. The second group consisted of 13 skilled professionals who participated in the experiment for cash payment. These “expert” industry informants worked in the area around Stanford University and had been employed for a duration of no less than 18 months working in the environment of a typesetting establishment or in a company which manufactured typeset designs (average duration of employment was approximately 8 years). No additional requirements (i.e., regarding age, gender, education level, native language, handedness, or any other) were used to sample the industry informants: (although data on gender, cultural background, language capabilities, handedness, and so on were collected). Thus 30 undergraduate “novices” and 13 industry “experts” were sampled.

RESULTS

The results are presented separately for the two samples. Consensus analysis (Batchelder and Romney 1988) was used to determine the informant competencies of the subjects and the estimated "correct" answer-key for the task. The consensus model results presented here were obtained using the computer package ANTHRO PAC (Borgatti 1989). ANTHRO PAC is written especially for the collection and analysis of systematic data in anthropological field situations. It provides a large range of statistical and plotting resources. It also produces randomized questionnaires in a number of formats. In addition to elementary statistical summaries of data it performs a number of sophisticated scaling and analysis tasks. These include correspondence analysis, principal components, consensus analysis, multidimensional scaling, and quadratic analysis and other randomization tests.

Table II and Figure 2 present summary statistics for the consensus analysis, using the covariance method with r = 0.325. The results of the consensus analysis for the undergraduate “novices” produced a mean competence level of \(\bar{x} = 0.230 \) with sd = 0.227, and 10 informants with negative competence. The undergraduate sample does not fit the model very well.

The consensus analysis carried out on the industry “experts” produced a mean competence level of \(\bar{x} = 0.530 \) with sd = 0.179, and zero informants with negative competence. The industry data were well explained by a single factor in the consensus analysis. This indicates that the industry informants were responding to the experimental task as though they shared the same cultural knowledge.

A comparison of the “covariance” method analysis reported above with a “matches” method analysis shows that the two methods yield similar results. The undergraduate matches answer-key is correlated with the covariance answer-key \(r = 0.734 \); a similar measure for industry data is \(r = 0.889 \). Bias would lead to discrepancy between the two methods. The relatively high observed correlations suggest that bias is fairly small.

EXPERIMENTAL FINDINGS

The measures obtained for the undergraduate novices are marginal and should be regarded as somewhat unreliable. However, the consensus

table

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>(\text{Mean competence})</th>
<th>(r_{st})</th>
<th>Negative competences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate novice</td>
<td>30</td>
<td>0.23</td>
<td>0.33</td>
<td>10</td>
</tr>
<tr>
<td>Industry experts</td>
<td>13</td>
<td>0.53</td>
<td>0.18</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE II

Consensus analysis data for two samples of informants
measures for the industry experts indicate good consensus among the informants with no negative competencies. This finding is consistent with the intuitive notion that the industry "experts" share specialized "knowledge" of the generative alphabetic grammar.

It is worth noting that the mean level of competence obtained for the industry sample is depressed by two informants with low competence. These two informants (indicated in Figure 2 as solid squares) bear the singular characteristic of being specialists in the typeface design of oriental Kanji scripts (Chinese/Japanese "characters" or morphographs), differing in this respect from the other informants, who specialized in Roman alphabetic scripts. Note that the "Kanji" informants do not cluster with the other expert informants displayed in Figure 2.

Consensus Model Answer-keys as a Test of the Theoretical Alphabetic Models

*The answer-key estimated by the consensus analysis provides an indication of how pseudo-letters are classified ("acceptable" or "non-acceptable") by the two groups. Table I shows the classification for the undergraduate novices and the industry experts for each pseudo-letter form. Table I also shows the Bayesian probabilities that indicate a confidence level for each form. Given the validity of the assumptions of the consensus model, each Bayesian probability can be taken as the probability that the pseudo-letter was correctly classified according to the cultural model. Estimated answer-keys represent the shared knowledge of the informants and can be compared to the predictions of the two generative alphabetic models to provide an answer as to which alphabetic model is most representative of the observed "cultural" knowledge. Thus it is assumed that the "cultural" model generally represents the "cognitive" model shared by informants.

The undergraduate novices differed on eight question items from the industry experts. For a general indication of what these estimated keys suggest for the alphabetic models, we first examined the frequency with which a given answer-key estimate supported a given alphabetic model. Table III shows the percentage of new-letter candidates accepted in each theoretical grammatical category for models 1 and 2 by novices and experts.

<table>
<thead>
<tr>
<th>Answer-Key</th>
<th>Grammatical category</th>
<th>Model 1 % accept</th>
<th>Model 2 % accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novices</td>
<td>Grammatical</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Semi-grammatical</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Non-grammatical</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Experts</td>
<td>Grammatical</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Semi-grammatical</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Non-grammatical</td>
<td>28</td>
<td>4</td>
</tr>
</tbody>
</table>

Two clear trends are discernible in the data presented in Table III. First, note that both novices and experts correctly classify a higher percentage of new-letter candidates for Model 2 than for Model 1. This illustrates the usefulness of consensus analysis in deciding between alternative theories. Second, note that the experts are somewhat better than the novices in the classification of new candidates in Model 2 but not for Model 1.

It is to be expected that as a group the industry sample should have a special kind of shared "expertise" concerning alphabetic forms, and that
this should influence the observed industry-key estimates. In contrast the undergraduate sample does not have access to this "specialized" knowledge. The descriptive measures just presented bear these expectations out with respect to both Model 1 and Model 2, but not very strongly, showing only a slight difference between industry-key estimates and undergraduate-key estimates. Clearer insight into the nature of this difference may be achieved by way of a correlational analysis.

Goodman and Kruskal Gamma coefficients between the novice and expert estimated answer-keys and the two theoretical alphabetic models were calculated. Gamma (Goodman and Kruskal 1954; Freeman 1986) is a nonparametric measure of association that makes no scaling assumptions beyond the ordinal-level, which makes it an appropriate model for the present data. Many of the more familiar measures of association (e.g., Pearson's "r") represent strong monotone models (see Freeman 1986), and are thus inappropriate for measuring the association between a 3-valued variable and a 2-valued variable, as in the case here. The Gamma statistic is easily interpreted as the proportion of hits between two variables by the transformation given by:

$$p = (1 + \gamma)/2,$$

where p is the proportion of cases in which the two variables are in agreement, and γ is the observed Gamma statistic between the two variables.

The Gamma coefficient between the estimated answer-keys and the two theoretical models were as follows for the undergraduate novice: $\gamma = 0.67$ for Model 1 and $\gamma = 0.93$ for Model 2, for the industry experts $\gamma = 0.64$ for Model 1 and $\gamma = 0.98$ for Model 2. Note that while both Model 1 and Model 2 are correlated with the estimated answer-keys, the Gammas for Model 2 are higher than those for Model 1. The industry experts are about the same as the undergraduates for Model 1 while they are somewhat higher for Model 2.

In general, the Gammas show both estimated answer-keys to be well correlated with the theoretical models of the alphabet. However, for both groups of informants, Model 2 is better than Model 1 at predicting the answer-key estimates arising from informants' preference choices for new-letter forms. Thus, the answer-key estimates derived from the consensus analysis clearly distinguish between the two alphabetic models.

EXAMINING THE CONFIDENCE LEVELS OF THE ANSWER-KEY ESTIMATES

The confidence levels of an estimated answer-key refer to the certainty with which any given answer estimate is deemed a "correct" answer. That is, for any given question included in the experimental task the consensus analysis provides a Bayesian probability that indicates the probability that the estimated answer has been "correctly" classified. Thus the primary reason the answer-keys produced by the consensus analysis are referred to as "estimates" is that for each and every item there potentially exists some probability less than one that the given consensual "answer" to that item is not actually the "correct answer".

If we set a cut-off criterion of 0.99 or greater for a reliable answer, then the undergraduate-key contained 12 estimates and the industry-key contained 10 estimates that fell the cut-off criterion. Those items with a Bayesian probability above 0.99 are decisively classified while items with a lower probability are less reliable. As researchers we place more confidence in those answers that have a higher Bayesian probability.

One would expect informants' judgments to vary more for Semi-grammatical items while judgments should be more decisive, or "reliable", for those "clear-cut" new-letter forms occupying the extremes of the grammatical continuum (i.e., Grammatical or Nongrammatical items). For simplicity, however, in the following discussion we consider that the theoretical "correct" answer for Semi-grammatical items is "No", i.e., such items are not grammatical. It seems reasonable to ask whether an examination of the estimated answer-keys can support our overall interpretation. That is, can we gain insight into the difference between models 1 and 2 through an examination of the answer-key probabilities?

An examination of the Bayesian probabilities contained in Table I reveals specific items that failed to pass the 0.99 probability criterion. It is interesting to note that for the industry-key all the estimates that "disagreed" with Model 2 (i.e., 1 Nongrammatical item and 2 Semi-grammatical items), are unreliable estimates by the criterion. That is, for the industry-key, all the estimated answers that were not in accord with Model 2 (i.e., 3 out of 53) were among those 10 items that failed to satisfy the cut-off criterion. However, this effect was observed for Model 1: 15 of the 53 responses conflicted with Model 1, and only 4 of these 15 exhibited a probability less than 0.99. That is, 11 of these responses conflicted decisively with Model 1.

The fact that the industry-key all the estimates in conflict with Model 2 are also unreliable estimates indicates that the industry sample did not decisively disagree with any of Model 2 classifications. The industry-key is in conflict with Model 2 only when the estimated answers receive a Bayesian probability less than 0.99. In contrast, the industry-key often reliably "disagrees" with Model 1.

To parallel the above discussion for the undergraduate-key, it is not the case that all the estimates that "disagree" with the grammatical categories of Model 2 are among those 12 unreliable estimates from the undergraduate-key. In contrast to the industry informants who always "dis-
agreed with Model 2 with some uncertainty, in the undergraduate sample only 5 of the 12 unreliable answers observed were in conflict
with Model 2. Among the 12 unreliable estimates observed in the under-
graduate-key, 7 are estimates which are in accord with the grammatical
categories suggested by Model 2. In terms of Model 1, 15 of the 53
undergraduate-key estimates conflicted with the model, and only 6 of
these exhibited a probability less than 0.99.

Comparing the reliability of answer-keys between the industry and
undergraduate groups is somewhat problematic due to the fact that a
rule fewer “expert” informants will give rise to a more reliable answer-key
estimate than many more “novices”. This issue, discussed at length else-
where (Maher 1987), directly bears upon the reliability of the estimates
discussed here. In the present analysis no strong conclusions are suggested
from the comparison of the reliability of answer-key estimates from an
industry sample of size 13 to that of a undergraduate sample of size 30,
(e especially since the fit to the consensus model seems less than ideal for
the undergraduate sample).

Ideally, to make such a comparison one could estimate the reliability
coefficient for the type of informant population sampled (i.e., expert or
novice) and then determine the size of sample needed in order to produce
equally reliable answer-key estimates from the two different samples.

In the present experiment, according to the Spearman-Brown Prophecy
formula, to compute the answer-key for the minimum 59 undergraduate
informants in order to obtain a key-estimate as reliable as that
observed from the industry sample of size 13. Even then a sample of 59
undergraduates may not yield a key-estimate which is equal of the
industry sample since the observed fit of the model to undergraduates has
been marginal at best.

The above comparison suggests that when the industry informants
disagree with Model 2 they give unreliable estimates. Also, the industry
sample yields far fewer unreliable items in their respective answer-key
estimate than would the answer-key estimate from an undergraduate sample
of equal size.

Such a finding might be seen as suggesting that in the future one could
empirically identify “expert” informants simply by virtue of the fact that
when the sample size is small they yield fewer unreliable answer-key
estimates than another comparison sample. Although the possibility of
identifying “expert” informants by virtue of competence measures is built
into the consensus analysis, examining the properties of answer-key esti-
mate reliability to identify “experts” may be an additional method to
utilize, whether concordance is obtained for a sample or not. In addition,
when a model of informants’ responses exists, examination of the unreli-
able answer-key estimates might suggest further improvements in the
response model in question. Such an examination might point towards an
improved and more predictive model of the empirically observed behav-
ior of groups, and therefore towards a more precise cognitive model of
individuals.

GENERAL DISCUSSION

We note that the findings presented here are consistent with the findings
of independent conducted experiments that employed paired-compara-
tion methodology and Thurstonian scaling techniques to derive numerical
“Performance Rating” estimates for the pseudo-letter stimuli (see Jameson
1989). Utilizing the data for all 53 items from the present experiment in
the computations, the Gamma between the undergraduate-key and the
Performance Ratings is associated at $\gamma = 0.551$. The same measure for
the industry-key is significantly higher at $\gamma = 0.706$. This is interesting
since both the undergraduate and the industry Gammas are computed
using Performance Ratings derived exclusively from undergraduate
paired-comparison data. These findings are further evidence for a “com-
mon understanding” of the knowledge domain being accessed by both
undergraduates and industry informants.

In this analysis we observe results that indicate that both answer-key
estimates obtained via the present Experiment (undergraduate-key and
industry-key) are highly associated with the independently obtained per-
formance ratings derived from paired-comparison data. These results give
independent external support to the application of the consensus model in
the present experimental paradigm and further suggest that the consensus
model not only is capable of capturing differences in informant responses
for alphabetic stimuli, but also is useful as a tool for distinguishing
between theoretically and functionally different alphabetic models.

CONCLUSIONS

We have answered the questions raised at the beginning of the paper.
First, it has been shown that when viewed collectively informants’
responses do indeed reflect subtle judgments concerning the “implicit"
rules that presumably govern thematic (set-defined) forms like the upper-
case majuscules. Second, the observed results also demonstrate that
“expert” and “novice” informants do not share equally in the domain of
knowledge investigated. Third, it has been shown that informants’
responses do indeed distinguish between two very similar alphabeti-
cal theories. The data consistently supported one cognitive model (Model 2)
over another (Model 1) as a predictor of informants’ responses.

Some further observations are notable. First, consensus analysis, is
shown to be an appropriate and useful tool for examining a domain
typically considered "psychological". Second, the consensus analysis was found to be capable of detecting subtle qualitative differences in informants' knowledge, as was seen in the difference between "Kanji" informants compared to other industry informants. This suggests that consensus analysis may be useful in the investigation of the nonhomogeneity of informant samples. Third, the answer-key estimates from the consensus analysis were found to be interpretable in terms of detailed aspects of the alphabetic models (especially Model 2), as was the "reliability" of those estimates. These findings could be employed to produce improved alphabetic models.

Finally, the consensus analysis accurately distinguished between informants which were a priori considered to be "novices" and "experts" for the domain under investigation. Specifically, consensus analysis theory was shown to be an appropriate model for the industry response data, whereas the response data of the undergraduate sample was not as well-suited to the model.

NOTE

1 The authors would like to thank W. C. Watt who provided extensive comments on an earlier version of this paper.

REFERENCES

