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The evolution of color categorization is investigated using artificial agent population categorization games, by
modeling observer types using Farnsworth–Munsell 100 Hue Test performance to capture human processing
constraints on color categorization. Homogeneous populations of both normal and dichromat agents are sepa-
rately examined. Both types of populations produce near-optimal categorization solutions. While normal ob-
servers produce categorization solutions that show rotational invariance, dichromats’ solutions show
symmetry-breaking features. In particular, it is found that dichromats’ local confusion regions tend to repel
color category boundaries and that global confusion pairs attract category boundaries. The trade-off between
these two mechanisms gives rise to population categorization solutions where color boundaries are anchored to
a subset of locations in the stimulus space. A companion paper extends these studies to more realistic, hetero-
geneous agent populations [J. Opt. Soc. Am. A 26, 1424–1436 (2009)]. © 2009 Optical Society of America
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. INTRODUCTION
he empirical literature on human color perception and
ategorization suggests that there is a good deal of uni-
ersality in color categorization across different groups of
eople, although a considerable amount of variation is ob-
erved across individual categorizers and ethnolinguistic
ategorization systems [1]. A long-standing debate in the
eld is whether specific universal tendencies exist in the
ays different human linguistic societies categorize and
ame perceptual color experiences and if so, what factors
e.g., physical environment, human biology, perception,
ocial features) cause them. A major challenge for the
rea continues to be development of a theory that ac-
ounts for universal patterns seen across various color
ategorization systems while simultaneously explaining
bserved differences. This color categorization, color vi-
ion, and perceptual processing problem has recently at-
racted the interest of computational scientists [2–8].

A related issue is whether any consequences for human
opulation categorization systems follow from individual
bserver color perception differences, which vary by de-
ree and frequency, across populations. It is possible that
ven considerable amounts of within-population indi-
idual variation do not substantially affect categorization
olutions across different populations. Alternatively, dif-
erences in individual color perception across two popula-
ions might very easily produce substantive differences in
he categorization systems that the populations evolve
nd end up using to classify color in everyday discourse.
While a large amount of empirical research compares

opulation categorization data across different language
1084-7529/09/061414-10/$15.00 © 2
roups (e.g., [9]), very little systematic investigation has
ocused on the impact of individual differences within
opulations on those populations’ color categorization sys-
ems ([10–12] consider some influences of individual dif-
erences). In particular, population variation scenarios
nd their outcomes have not been systematically investi-
ated in light of either (i) empirically observed variation
ithin and across human groups, or (ii) simulations that
ary agent-based models of categorization. For the meth-
dology of population categorization simulations, real pos-
ibilities exist for investigating many features having
ounterparts in human color category evolution. For ex-
mple, it provides a means to observe, in silico, the evo-
utionary dynamics of developing categorization systems,
o study system robustness and factors influencing sys-
em stabilization, and to evaluate structural similarity or
ariation in stable solutions that occur under different
onstraints.

The present paper explores the impact of varying indi-
idual visual processing constraints on the evolution of
hared color category systems. One goal is to systemati-
ally examine the ways color category solutions change as
function of varying perceptual processing features of ob-

erver populations. In particular, we focus on the influ-
nces from forms of color discrimination deficiencies
ound in real observers. Another goal is to identify mecha-
isms contributing to color category development and cat-
gory solution variation.

The modeling framework used here employs agent-
ased evolutionary game theory methods to model human
olor categorization systems [6,8]. While our earlier re-
009 Optical Society of America
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earch considered idealized populations of agents with
ifferent color perception abilities, in the present paper
e investigate the effect of more realistic observer varia-

ion. We aim to gain understanding of the variation in
olor categorization systems found across homogeneous
opulations (i.e., populations of simulated observers, or
agents,” that all possess the same discrimination model)
nder different realistic observer models. This contrasts
ith our companion paper, which examines color catego-

ization for heterogeneous populations ([13] this issue). In
he present paper we examine two types of observer
ariations: (1) normal color perception variations and (2)
rotanope and deuteranope dichromat variations.
We begin below by describing the stimulus continuum

n which all our agent models are based, and detail the
gent models used. Then we report investigations that
se realistic models of several individual observer types,

ncorporated into homogeneous population simulations,
nd present the results. The last section of the article
ummarizes the findings of the research.

. MODELING ARTIFICIAL OBSERVER
OPULATIONS
volutionary game theory methods are used to examine

he effects of specific realistic constraints on color catego-
ization and inter-individual communication. These fol-
ow a modeling framework in which individual agents
earn to (1) categorize simulated colors through reinforce-

ent learning by playing “discrimination–similarity
ames” and (2) communicate the meaning of categories to
ach other [6,8]. Three main components of this evolu-
ionary approach are (A) the stimulus space, (B) the ob-
erver model, and (C) the evolutionary game. Component
C) is detailed in recent research [6,8]. Components (A)
nd (B) are described below.

ig. 1. FM100 stimulus with data used to model protanope (lef
ion axes: red=protan, green=deutan. (Blue=tritan; not model
rrors.
. The Farnsworth–Munsell 100 Hue Test as a Stimulus
pace
imilar to earlier research [6,8], a hue circle is used as a
atural perceptual subspace of the color appearance solid.
he hue circle has the following characteristics: it is (i) a

ustified subspace according to models of human color per-
eption [[14], p. 184], (ii) it has value as a structure for
istinguishing normal observers from color-deficient ob-
ervers based on hue circle similarity relations (e.g., [15]),
iii) as a color perception subspace it preserves similarity
elations among hue categories regardless of variation in
alient hue points across normal individuals, and (iv) use
f the hue circle capitalizes on a wealth of existing human
olor perception data for the purpose of modeling artificial
gent observer groups. The hue circle stimulus model em-
loyed in the present investigations is the Farnsworth–
unsell 100 hue test, abbreviated FM100 [16].
The FM100 stimulus is a continuous hue circle series,

iscretized into 85 color “caps” forming a smooth gradient
f hue, ostensibly at a fixed level of brightness and a fixed
evel of saturation [17]. Figure 1 shows an approximation
f the 85-cap hue gradient. Our use of the FM100’s 85
timuli as a hue circle continuum extends the compara-
ively restricted hue continua investigated in our earlier
olor category studies and permits more direct generali-
ations and comparisons with available human color per-
eption data (i.e., [18,19]).

. Realistic Models of Observer Variation
n this paper we model normal and dichromat agents, and
nly a subspace of full color space is considered. There-
ore, our observer models reflect only the appropriate sub-
et of human color discrimination behaviors. Neverthe-
ess, their investigation is very informative.

Models used to define our agents consider only color
erception deficiencies linked to human X-chromosome

deuteranope (right) agents. Colored lines show deficiency confu-
e). Deviations from the inner circle illustrate observer sorting
t) and
ed her
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ecessive inheritance (i.e., protan and deutan variations).
he biological bases and perceptual consequences of these

orms of human deficiency are well understood [20]. In
rotan defects the long-wavelength-sensitive photopig-
ent is missing or abnormal. In deutan defects the
iddle-wavelength-sensitive photopigment is missing or

bnormal. Protan and deutan degrees of color confusion
an be summarized as confusions among colors within the
ets of (1) green-yellows, yellows, and yellow-reds; (2)
rowns and greens; (3) blue-greens and violets; and (4)
urples, grays, and greens [20]. Such deficiencies occur,
or example, among males of European descent at about
% frequency [20], but incidence of deficiency varies
cross populations of different ancestry and follow known
nheritance patterns [21–24].

Important features distinguish color perception and
ategorization dynamics in human populations from the
cenarios simulated here. Here we minimize learned cog-
itive factors that contribute to human color
ategorization—e.g., factors involving individual color
emory, social utility attached to specific colors, or per-

onal color salience. Omitting complex cognitive factors
ere permits a focus on specifically clarifying the influ-
nces of color perception and discrimination on categori-
ation. In addition, unlike our recent investigations [6,8],
he present study does not examine differing saliences in
olor space that are linked to either variation in environ-
ental color distribution, or variation in the putative im-

ortance or utility, of color (cf. [11]).

. Modeling Different Forms of Observer Variation
e simulate both normal and deficient observer groups

sing human data. “Normal” agents include those mod-
led on normal trichromat FM100 performance data, with
richromacy confirmed by pseudoisochromatic plate as-
essment [25]. “Deficient” agents are modeled using pro-
anope and deuteranope performances from an FM100 di-
gnostic database [26].
To accurately model data from normal and deficient hu-
an individuals, a probabilistic observer model is intro-

uced. Suppose the hue circle to be categorized by all
gents is identical (i.e., the FM100 stimulus). Two colors
re chosen randomly from the circle and presented to the
gent. The agent must judge whether the two colors are
he same or different. An appropriate color confusion
ransformation can be defined to give the probabilities
hat an agent perceives the two chosen color stimuli as
he same or different in color. In general the transforma-
ion is described as a stochastic n�n matrix (a matrix
hose rows sum up to one), �Cij�, whose entries Cij give

he probability that stimulus i is perceived as stimulus j.
his confusion matrix varies across individual agents.
In modeling our agents, several types of

iscrimination-based confusions among FM100 stimuli
re defined. One is a form of unsystematic noise in an
gent’s categorization that resembles the sorting confu-
ion errors seen when human observers sort the FM100
timulus continuum. Two additional kinds of confusions—
eferred to as local and global confusions—are also mod-
led. All forms of confusions are defined below.
. Sorting Confusions
human observer may have perfectly normal color per-

eption and be expected to show error-free FM100 sorting
erformance; however, typically, individual sorting perfor-
ance shows random transposition errors, or confusions,

hat occur between adjacent stimuli. Normal confusions
end to be 2-cap exchange errors that are random, seldom
eoccur on retest, and are not bunched in any one region
f the hue circle [27]. Such normal, unbiased sorting con-
usions are modeled here by assuming that with probabil-
ty p, each color cap can be confused with either of its
eighboring caps on the FM100 stimulus. This leads to
he following matrix:

Cij
sorting = �

1 − p, i = j

p/2, j = i ± 1

0, otherwise
� . �1�

FM100 sorting confusion errors [Eq. (1)] are the only
onfusions modeled and varied in our normal trichromat
gents. (Other trichromats, e.g., anomalous trichromats,
equire additional modeling features to approximate their
M100 performance [13]). Dichromat agent models used
ere require the parameterization of two additional forms
f FM100 confusion, described below.

. Local Confusions
ocal confusions are cap transpositions beyond sorting
onfusions. They define sizable segments of neighboring
M100 stimuli (mostly within, but also spanning, FM100

rays). Local confusions for deficient observers cluster in-
ide local confusion regions, or portions of the FM100 con-
inuum where several adjacent stimuli may be confused
ith one another (see [20,27]), where dichromats may

ranspose the stimulus order by as much as ten steps or
ore on the circle. While transpositions in the sequential

timulus order can appear anywhere in an FM100 tray, if
ocal mis-sorting occurs at the end of a given tray there is

tendency for transpositions to continue in the FM100
ray adjacent to the mis-sorted segment. Thus, local con-
usion regions, as defined here, can span two trays of the
M100, and where they occur typically depends on the se-
erity and type of observer deficiency found in the data.

To model local confusions, it is assumed that there are
ue circle regions where the probability of confusion is el-
vated compared with the incidence of sorting confusions
see, e.g., Fig. 1). Local confusion regions arising from Fig.

types of deficiency always present as pairs of regions
cross the FM100 circle. Let us denote two such confusion
egions as I1 and I2. Then

Cij
local = �exp�−

�j − i�2

w �Wi
−1, i,j � I1 or i,j � I2

1, i = j � I1,2

0, otherwise
� , �2�

here w gives the width of the characteristic range of con-
usion within local confusion regions and W is the normal-
zation factor for the given confusion region: Wi
	j�I1,2

exp�−�j− i�2 /w�, where the summation is over all
he caps inside the confusion region of cap i.
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. Global Confusions
lobal confusions seen in dichromats are color stimuli

onfused across the hue circle [[20] pp. 65–69], typically
hown as FM100 stimuli pairs connected by a line of con-
usion [28]. We previously referred to this as an “axis of
onfusion” [8]. Development of dichromat agent models
ave consideration to whether typical FM100 confusion
air axes (e.g., Fig. 2) realistically capture the day-to-day
onfusions of dichromats, given that some visual process-
ng circumstances help disambiguate global confusion
airs and make global confusions less likely in everyday
olor judgments. Our models adopt Fig. 2’s [28] confusion
airs because (a) occupational evidence suggests that glo-
al confusions do arise in everyday practice and (b)
M100 confusion pair axes are consistent with confusions
een in dichromat judged-similarity color-triad perfor-
ance [15]. Thus, dichromat global confusion pairs exist

n practice when similarity is important, as is the case
ith the FM100 task. Based on Fig. 2, dichromat global

onfusions are modeled as three pairs of opposing caps
rom the FM100 hue circle. Let us denote them xk and x̄k
ith k� �1,2,3�. It is convenient to introduce a function g
efined on the set Xgl
�x1 , x̄1 , . . . , x̄3� such that g�xk�= x̄k
nd g�x̄k�=xk. The global confusion matrix is given by the
ormula

Cij
global = �

0.5, i � Xgl and j = i

0.5, i � Xgl and j = g�i�

1, i = j � Xgl

0, otherwise
� . �3�

Accordingly, protanope and deuteranope global confu-
ion matrices are separately modeled based on the respec-
ive confusion lines shown in Fig. 2.

. Parameter Estimation Based on Data Analysis
ased on these forms of confusion identified across vari-
us types of observers [Eqs. (1)–(3)], simulation param-
ter settings were derived for different agent types using
he relevant human data. Thus, the appropriate FM100

ig. 2. Dain’s depiction of FM100 stimuli in CIE (1976) space
28] (reproduced with permission). Inset lines show three global
onfusion pairs used for protan (solid lines) and deutan (dotted
ines) agents modeled.
ata determine the parameter settings for various forms
f “normal trichromat” and “dichromat” agents. Param-
ter values varying across agent types include p, probabil-
ty of sorting confusions [Eq. (1)]; I� with �� �1,2�, local
onfusion regions [Eq. (2)]; w, a confusion range value
ithin local confusion regions [Eq. (2)]; and xk and x̄k with
� �1,2,3�, global confusion pairs [Eq. (3)]. Further simu-

ation parameterization details are given in Table 1.

. Sorting Errors
he probability of sorting errors, p, is calculated as fol-

ows. For normal individuals the FM100 data of ten nor-
al trichromat individuals were used to calculate each

ndividual’s total number of cap inversions. [29]. The av-
rage number of observed inversions across the ten nor-
al individuals equaled 6.8 inversions. Thus, based on

hese data, on average a normal individual makes 6.8
andomly distributed sorting errors per 85 caps (1.7 in-
ersions per tray). The probability of inversion per cap is
iven by 6.8/85=0.08, that is, 8%. This value was used to
odel the unbiased sorting error for normal individual

erformance across the 85 stimuli of the FM 100. Consis-
ent with dichromat characteristic performance, 8% sort-
ng error was also used to model dichromat sorting confu-
ion rates outside local confusion regions and
ndependent of global confusion pairs [30].

. Local Confusion Regions
or dichromat agents, local confusion regions were based
n Fig. 1 results, where protanopes have two confusion re-
ions, I1= �12,27� and I2= �59,70�, and deuteranopes re-
ions are I1= �9,25� and caps I2= �51,63�, [31]. A dichro-
at confusion range width parameter w, for estimating

ap sequence inversions that occur inside local confusion
egions was defined as w=10, also based on Fig. 1 data.
onsistent with human observer data, models for normal
gents do not include local confusion regions.

. Global Confusion Pairs
igure 2 data provide values for dichromat global confu-
ion pairs. Protanope global confusion pairs are caps: x1
9 & x̄1=29, x2=1 & x̄2=40, and x3=74 & x̄3=53. Deutera-
opes also have three global confusion pairs: x1=11 & x̄1
21, x2=2 & x̄2=31, and x3=79 & x̄3=42.

. Summary of the Resulting Agent Models
he following agent confusion definitions were incorpo-
ated in our model:

Table 1. Simulation Notation

ymbol Definition Valu

N Total number of agents 100
n Total number of hue circle stimuli (FM100

samples)
85

ksim Parameter defining the pragmatic utility of
colors

11

w Confusion range operating in a local confusion
region

varie

p Probability of sorting confusion varie
Cij Probability that stimulus i is confused with j Eqs. (1)
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Normal agents �C=Csorting�: Probability of confusion
ith a neighboring cap is p=8%.
Dichromats �C=CsortingClocalCglobal�: (i) Probability of

onfusion with a neighboring cap, both inside and outside
he confusion region, is p=8%. (ii) Local confusion regions
ased on Fig. 1 data range from 12 to 27 and from 59 to 70
or protanope agents and 9 to 25 and 51 to 63 for deutera-
ope agents. Inside the confusion regions, w=10. And (iii)
lobal confusion pairs based on Fig. 2 data: (9,29), (1,40),

74,53) for protanopes, (11,21), (2,31), (79,42) for deutera-
opes.
Parameter values that differ from Table 1 are noted in

he text. To the degree that the data used in our modeling
iffer from other observer data in the literature, our ob-
erver models would vary accordingly if based on different
ata. During model development we varied the data un-
erlying the parameterization to evaluate the effect on
ategorization solutions. Such tests found that altering
odel features such as the positions of local confusion

anges and global confusion pairs, or varying the values
f sorting confusion rates, did not fundamentally alter the
ain findings presented here or diminish the symmetry-

reaking results or category-solution trade-offs reported
n Studies 1 and 2 below.

. POPULATION HUE CATEGORIZATION
NVESTIGATIONS
tudy 1 and Study 2 consider homogeneous populations
o (i) investigate population categorization influences
rising from different forms of individual variation within
opulations and (ii) to provide a foundation for planned
omparisons between heterogeneous populations (i.e., in
13]). Population homogeneity is intentionally unrealistic,
ut is used in the present investigations to isolate the
pecific influences that arise under the communication
ynamics between individuals of particular observer color
ision phenotypes.

. Communication Games Using FM100 Stimuli
opulation color naming is achieved by discrimination–
imilarity communication games involving the 85 FM100
aps. Details of the discrimination–similarity communica-
ion game, its variants, its relationship to other popula-
ion naming evolutionary algorithms, and its rationale as
n approach for understanding the evolution of color cat-
gorization systems are reported elsewhere [6,8].

Briefly, the goal of the game is for a population of
gents to communicate successfully about color stimuli.
t the beginning of the game, a large number of potential
ames, with random meanings, are provided. Agents
volve probabilistic naming strategies for the stimuli us-
ng only these names. In a given round of the game, two
gents are randomly chosen from the population and two
aps are randomly chosen, and named. Each agent’s
robabilistic naming strategy is updated by its perfor-
ance in the round. The basic idea of the updating is that

f agents successfully communicate about the colors of two
aps, or they agree on the caps’ names, then the probabili-
ies that they will give the same names to those caps in
he future is increased (i.e., the agents are positively re-
nforced) and appropriate decreasing adjustments are

ade to the other caps.
To carry out successful communication in a game, it is

lso required that the two names meet the following co-
erence requirement. The degree of similarity of two dis-
inct caps is related to the inverse of the smallest number
f caps between them. If the degree of similarity of two
aps is large (i.e., they are neighboring caps on the circle)
nd there is not an enormous number of names (as in
hese simulations), then an evolutionarily effective nam-
ng system will assign the two caps the same name. Simi-
arly, names for caps with a small degree of similarity
hould, in general, be different. The parameter ksim de-
otes a pragmatic degree of similarity that determines
hether two caps should be given the same name or dif-

erent names. Caps with fewer than ksim caps between
hem should be given the same name, and those sepa-
ated by more than ksim caps should be given different
ames. The value of ksim can be made to vary across the
ue circle if some colors have more pragmatic or social
tility than others, and it has been shown to influence so-

utions from idealized populations [8]. Here ksim is held
onstant to emphasize effects from observer variation.

. Investigating Homogeneous Population
olutions
tudy 1 examines several homogeneous populations (i.e.,
opulations composed of uniformly modeled agents),
here each population incorporates a slightly different in-
ividual model. Two Study 1 homogeneous populations
re reported, namely, populations composed of 100% nor-
al ideal agents and populations composed of 100%

robabilistic normal agents. By comparison, Study 2 ex-
mines categorization solutions from homogeneous popu-
ations of 100% protanopes compared with those of 100%
euteranopes. The results are described below.

. Study 1: Homogeneous Normal Populations
opulations consisting only of identical normal observers
ith p=0 (no sorting errors) or realistic normal observers
ith p�0 (a nontrivial probability of sorting errors) [32]
xhibit similar behaviors: starting from any initial condi-
ion, after a number of game iterations, both sorts of ho-
ogeneous populations converge to optimal, shared, cat-

gorization solutions, with all individual agents
onverging to very similar categorization solutions (i.e.,
ynchronized up to small levels of random noise).

For Table 1 parameter values, such solutions typically
onsist of four or five distinct color categories of approxi-
ately equal size (shown in Fig. 3), as predicted in [6].
igure 3 shows that for both ideal and probabilistic nor-
al populations, five distinct categories were found. The

isagreement for each cap is calculated as a percentage of
he population that categorizes the given cap to a cat-
gory other than the most popular category. We can see
hat percent disagreement in the ideal population solu-
ion [Fig. 3(a), shown scaled by a factor of 10] is compara-
ively less than the percent disagreement found in the
robabilistic normal population solution [Fig. 3(b), un-
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caled]. Figure 3(b) also illustrates the fuzzy category
oundaries occurring in the probabilistic normal popula-
ion solution.

The general finding is that increasing the values of p
oes not change the general structure of population solu-
ions but increases the amount of uncertainty at category
oundaries, making the degree of population agreement
n color names near boundaries lower for higher values of
. Aside from this new effect arising from the introduction
f parameter p, Study 1’s normal population results con-
rm earlier category solution findings [6].
Solutions observed in Study 1 possess the following

haracteristic feature: repeated simulations with the
ame starting parameters produce categorizations with
early equally spaced boundaries and similar relative cat-
gory structures, although category position locations can
ppear shifted by some random rotation from one simula-
ion to another. Put differently, if a given simulation solu-
ion partitioned the circular ordering of the FM100 caps
nto, say, five clear category divisions, then those five cat-
gories could be rotated to coincide with the categories of
nother simulation solution (run with all the same pa-
ameters), and the two simulations could be viewed as
andom rotations of each other. Thus, various forms of so-

ig. 3. (Color online) Color categorization and degree of popu-
ation disagreement in homogeneous normal populations for dif-
erent values of the sorting error, p. Panels show (a) no sorting
rrors �p=0� and (b) sorting errors with probability p=0.08. The
orizontal axis is the 85 caps of the FM100. The dotted lines (and
he left vertical axis) show population-average categorization so-
utions for a typical run (after 5�107 iterations). The solid lines
and the right vertical axis) show the amount of population dis-
greement; it is magnified by a factor of 10 in (a). Other param-
ters are as in Table 1.
utions are all equally optimal solutions. The fact that so-
utions are equivalent (or self-similar) with respect to ro-
ations around the circle is a formal symmetry property of
hese solutions that has been observed here across mul-
iple population simulations. This finding was predicted
y earlier analytical results [6] and should be noted, be-
ause equally interesting observations of symmetry break-
ng are presented below.

. Study 2: Homogeneous Dichromat Populations
imulations were run on agent populations composed en-
irely of 100% protanopes and 100% deuteranopes. De-
pite the fact that the observer model underlying these
gents is very different from the normal model of Study 1,
ach category solution from homogeneous dichromat
opulations exhibited an overall category structure simi-
ar to that of normal populations. The difference can be
een by running many evolutionary simulations starting
ith the same parameter values. Figures 4 (for protan-

pes) and 5 (for deuteranopes) present boundary location
requencies observed across many such solutions. Both
gures’ histograms show distributions of solutions that
re strikingly nonuniform. Consider the leftmost bottom
istogram in Fig. 4, which shows boundary location fre-
uencies for all solutions from 1,000 random protanope
imulations. The boundaries occur most frequently at
aps 8, 29, 52, and 74. A clear picture also emerges by ex-
mining only four-category solutions shown in the
ottom-middle histogram in Fig. 4. Boundary locations
istributed across these solutions are almost identical to
ach other, mostly occurring at caps 8, 30, 52, and 74. As
redicted and similar to that observed elsewhere for ide-
lized models of dichromats [8], the nontrivial psycho-
hysical transformation characterizing realistic dichro-
at data leads to a symmetry breaking.
By comparison, Study 1’s similar boundary frequency

istograms from homogeneous normal population simula-

ig. 4. Boundary location histograms from 1,000 simulation so-
utions by homogeneous protanope populations. Horizontal axes
how the FM100 85 caps. Vertical axis shows frequency with
hich a color boundary was established at a given FM100 cap.
esults are shown separately for all observed solutions (histo-
rams at left), four-category solutions (middle), and five-category
olutions (right). Top row, results under local confusion regions;
iddle row, results under global confusion pairs; bottom row, re-

ults for both confusion features. Other parameters are in Table
and as described in Section 2.
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ions (not shown) appear as essentially uniform, unbiased
istributions without any clear maxima, except for slight
andomness caused by the finiteness of our simulations.
rregularity of boundary locations across many solutions
uggests that optimal category boundaries are not tied to
pecific stimulus locations for homogeneous normal popu-
ations. In contrast, dichromat populations optimally
ave color boundaries with preferred locations.
While homogeneous populations of dichromats are not

ound in the real world, the present simulations involving
omogeneous populations of dichromat agents are very

nformative from a theoretical standpoint. In particular,
hey help explain what features in the observer model are
esponsible for symmetry breaking and how exactly local
nd global confusions influence population color boundary
ocations.

Local confusions. The top rows of Figs. 4 and 5 show
imulation results using dichromat agent models that in-
lude local confusion constraints only (no global confusion
airs were included in the simulations). For these results
rotanope (Fig. 4) and deuteranope (Fig. 5) boundaries
re frequently located in well-defined segments along the
ue continuum, with few or no boundaries found between
aps 11 and 27, or between caps 58 and 70 for protanopes.
imilar results are depicted in the top rows of Figs. 6 and
, where local confusion regions are marked by thick
lack circular arcs and dashed double arrows define ob-
erved color boundary locations (the results depicted in
igs. 6 and 7 correspond to those in Figs. 4 and 5 results,
espectively).

A general finding is that no boundaries occur inside any
ocal confusion regions. For five-category solutions (top-
ight graphics) the two most frequent solutions are drawn
s inscribed pentagons. Overall, results suggest that the
ocal confusion regions modeled from the data of Fig. 1
end to repel color boundaries.

Global confusion pairs. The influence of global confu-
ion pairs on categorization solutions is shown in the
iddle rows of Figs. 4 and 5, where color boundaries are

iased to a small subset of stimuli. For example, protan-
pe four-category solutions almost always have bound-
ries at caps 8, 30, 52, 74 (Fig. 6, left column, middle row),
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ig. 5. Boundary location histograms from 1,000 simulation so-
utions by homogeneous deuteranope populations. Figure layout
nd parameters are as in Fig. 4.
ndicating that the boundaries of the most frequent four-
ategory solution align with four out of the six global con-
usion pair caps (i.e., pairs marked by arrows connected
cross the circle). Five-category solutions are more com-
licated because it is hard to find one nearly regular pen-
agon with vertices at global confusion stimuli (Fig. 6,
iddle row on left). In this case, the populations estab-

ished several solutions in which three out of five bound-
ries aligned with global confusion stimuli. Similar find-
ngs are seen for deuteranopes, which produce three most
ommon four-category and five-category configurations
Fig. 7).

These results (along with those from earlier research
6,8]) show that global confusion pairs affect categoriza-
ion by attracting boundaries through symmetry breaking
nd providing necessary perceptual anchors (for some ob-
ervers) in the categorization system of a population [33].

Technically speaking, the notion of color boundaries is
ll-defined in dichromat populations with global confusion
airs. This is because in such populations, optimal catego-
ization solutions are not exactly the same as in popula-
ions of normals. That is, even though they do consist of
isjoint regions belonging to one category, there are also
defects” near the location of global confusion pairs. At
hese locations, two types of solutions are observed: (i) one
ap is classified as having a different color category from
ts neighbors, such as AAAABAAAA (here, cap number 5
as category B and all its neighbors have category A) and
ii) one cap at the boundary between two categories is
lassified as a third category, such as AAAABCCCC (here,
ne cap at the boundary between categories A and C is
lassified as B).

In Figs. 4 and 5, such defects (at most, six per solution)
ere smoothed out: that is, B replaced A in type (i) de-

ects, and by either A or C in type (ii) defects. The exis-
ence of these defects can be understood as follows: in the
resence of global confusions the color space of dichro-
ats has effectively a noncircular geometry, similar to

hat shown in our previous studies [8], where parts of the
ircle were collapsed onto each other. Note that many
orms of this collapse were investigated: a single point of
ollapse across the hue circle, a full line, or any interme-
iate collapse. All of these served to break symmetry in
he population solutions observed [8]. In the presence of
lobal confusion pairs, then, the geometry of the optimal
olution changes accordingly.

Local and global confusion trade-offs and parameter
ariation. Given the above observations, the combination
f these constraints clearly produces strong anchoring
endencies for color boundaries at a subset of locations
long the circle, generally resulting in boundaries being
ttracted by global confusion pairs and repelled by local
onfusion regions. This is illustrated in Fig. 7, left col-
mn. For example, when global confusion features are
sed as constraints in the simulations (middle row), the
hree preferred four-category solutions are optimized to
i) approximately equi-partition the circle and (ii) have
wo boundaries near global confusion points. However,
hen both local and global confusion features are used

bottom row), the constraints on solutions become more
tringent because local confusion features specifically re-
trict color boundaries from forming inside a local confu-
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ion region (e.g., see top row, Fig. 7). Thus, whereas three
our-category solutions arise for simulations using only
lobal confusion features, only two four-category solutions
rise when both local and global features are used in the
imulations.

Depending on the dichromat type and the number of
ategories, local and global confusion features can alter-
ate as the more restrictive influence on color category
oundary formation. For example, for protanope four-
ategory solutions, global confusions exert a greater influ-
nce on boundary location (Fig. 4, middle column). By
omparision, for deuteranopes local confusions exert a
reater influence on their four-category solutions’ bound-
ry locations (Fig. 5, middle column).
The protanope and deuteranope agents in these studies

re characterized by parameter values estimated from in-
ividual human data. However, the sample size of data is
mall, which makes the error in parameter estimation
igh. Therefore it is important to investigate how particu-

ar parameter choices affect the results. Experiments
ere conducted using various positions of local confusion

egions with respect to global confusion pairs, and while
esulting boundary locations may change, the general
onclusions reported here remain robust.

ig. 6. Confusion parameter settings shown with results from
omogeneous protanope solutions (from Fig. 4). Top row, local
onfusions; middle row, global confusions; bottom row, both con-
usions. The circle depicts the FM100 caps. Caps 1, 21, 42, and 63
rovide arbitrary points of reference. Thick black arcs with end
aps show local confusion regions. Two-point thick black arrows
ith confusion pair caps show global confusions. Typical four-

ategory (left), and five-category solutions (right) are shown. In
he case of local confusions (top row), dashed double-arrowhead
Also, studies performed with different values of w (the
onfusion width) and p, (the probability of sorting errors)
how that the value of p has a minimal effect on solutions.
owever, decreasing the value of w to low values (say, w
1) alters solutions slightly. In particular, large values of
make local confusion regions virtually impenetrable to

oundaries, whereas when w=1 there are some solutions
hose boundaries are located inside the local confusion

egion. Those solutions are still quite infrequent, and
hey disappear as w is increased to more realistic values.

. DISCUSSION
tudies 1 and 2 provide (i) categorization solutions under
ifferent homogeneous perceptual biases, and (ii) a means
or investigating mechanisms underlying previously ob-
erved symmetry breaking effects [8], in populations com-
osed entirely of realistic dichromat agent models.
Study 1 examined populations consisting of identical

ormal observers with p=0 (no sorting errors) and several
ariations of p�0 (nontrivial probability of sorting er-
ors). Across several investigations p was varied, and the
eneral consequence of increasing probabilistic sorting er-
ors in the agent models was decreases in population so-
ution agreement at color category boundaries. Aside from
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ig. 7. Confusion parameter settings shown with results from
omogeneous deuteranope solutions (from Fig. 5). Figure layout
nd features are as in Fig. 6. Unlike the protanope model (Fig. 6),
he deuteranope model has a local confusion region that coincides
ith a global confusion pair (bottom row) and has local confusion

egions larger than those in the protanope data. Both differences
ffect category boundary robustness.
ines mark regions where boundaries occur.
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his, increases of probabilistic sorting errors produced no
ther effects on category solutions. This result is interest-
ng from the perspective of human color categorization
heory, because it suggests that varying precision in indi-
idual category assignments during communication does
ot hinder the formation of a shared population color cat-
gorization system. Rather, varying of precision simply
dds to the degree of classification uncertainty—or
uzziness—observed at population color category bound-
ries. Study 1’s findings for sorting error increases re-
emble the null effects seen following random observer
ariation in other color category simulation research (see
3], p. 517).

Study 2 investigated realistic approximations of dichro-
at individual color perception variation to understand

he effect of different observer features on population
olor category evolution. Dichromat population simula-
ions show that trade-offs were common among the fea-
ures of various agent models. These features balanced in
dynamic fashion during the formation and stabilization

f near-optimal color categorization solutions.
All the observed solutions of both Study 1 and Study 2

eached stabilization by maximizing successful color com-
unications among agents. This was achieved in ways

ompatible with an optimal partitioning theory of color
pace that uses an Interpoint Distance heuristic [9,34,35].
y varying the discrimination features modeled, insights
ere gained concerning the mechanisms involved in the

ormation of category boundaries. These findings provide
ikely insights for human color categorization evolution.

Together, Studies 1 and 2 support the suggestion that
arying individual perceptual features influences popula-
ion color categorization solutions. Results show that ho-
ogeneous populations of simulated normal observers

roduce category solutions that differ in important ways
rom those produced by homogeneous populations of real-
stic dichromat agents. In addition, local and global con-
usion analyses suggest a possible universal mechanism
or the stabilization of population color categorization sys-
ems. Similar color-naming solution dynamics were seen
cross populations even when the underlying population
esponse models had different perceptual biases. Finally,
ere we examined situations involving agents made to re-
emble a variety of real observers with fixed ksim, whereas
revious investigations examined populations with ideal
eterogeneous color observers with fixed and variable ksim
8]. Despite these differences, a general result of the
resent simulations and others [6,8], is that the
iscrimination–similarity game evolves population nam-
ng behavior that is near theoretically optimal. See [6] for
etails about optimal naming behavior.

. SUMMARY OF FINDINGS
ur findings can be summarized as follows:

1. In homogeneous populations of realistic dichromat
bservers, local and global confusions exert significant
ymmetry-breaking effects on categorization solutions.
his contrasts with unsystematic error variations or ran-
om sorting confusion variations, which have little impact
n category solution stabilization.
2. Varying levels of normal-observer sorting confusions
rimarily decreases population agreement at color cat-
gory boundaries.

3. Dichromat global confusion pairs break symmetry in
ategorization solutions by anchoring category bound-
ries.
4. Dichromat local confusion regions break symmetry

n categorization solutions by repelling category bound-
ries.
5. Realistic approximations of observer types confirm

arlier symmetry breaking and confusion axis findings
rom idealized populations [8]. Such modeling of color cat-
gorization dynamics based on realistic data has not, to
ur knowledge, been previously attempted. The present
ndings underscore the importance of tracking popula-
ion heterogeneity when modeling shared color category
ystems or when empirically studying human color cat-
gorization (see discussion in [36]).

6. Category solutions are shaped by the observer fea-
ures employed, but solutions obtained under such con-
traints are easily modified by introducing external fac-
ors, such as variable color utility (see [8]).

By design, our previous investigations constrained both
he realism of the individual observer models and the
opulation models used [6,8]. By comparison, here indi-
idual observer models were realistic while the popula-
ions considered were unrealistically uniform. Despite the
atter intended limitation, some universal tendencies can
e suggested by the result for the present population color
ategorization system evolution:

(i) Minimal impact of unsystematic perceptual varia-
ion (e.g., random sorting error) on categorization solu-
ions.

(ii) Substantial constraints imposed on solutions by
ystematic perceptual variation.

(iii) Countervailing mechanisms (arising from percep-
ual variation) that trade off in the process of arriving at
table categorization solutions.

(iv) Increases in trade-off demands as perceptual con-
traints (e.g., color confusion pairs and regions) become
ore varied or more frequent in a population or engage

arger areas of color space.

It seems likely that some of the categorization solution
endencies observed here suggest mechanisms that may
imilarly underlie universal tendencies in color categori-
ation systems of human populations. In a companion pa-
er ([13], this issue) we pursue further testing of these is-
ues using approximations of both realistic individual and
ealistic population models.
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