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Evolutionary models of color categorization.
I. Population categorization systems
based on normal and dichromat observers
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The evolution of color categorization is investigated using artificial agent population categorization games, by
modeling observer types using Farnsworth—-Munsell 100 Hue Test performance to capture human processing
constraints on color categorization. Homogeneous populations of both normal and dichromat agents are sepa-
rately examined. Both types of populations produce near-optimal categorization solutions. While normal ob-
servers produce categorization solutions that show rotational invariance, dichromats’ solutions show
symmetry-breaking features. In particular, it is found that dichromats’ local confusion regions tend to repel
color category boundaries and that global confusion pairs attract category boundaries. The trade-off between
these two mechanisms gives rise to population categorization solutions where color boundaries are anchored to
a subset of locations in the stimulus space. A companion paper extends these studies to more realistic, hetero-
geneous agent populations [J. Opt. Soc. Am. A 26, 1424-1436 (2009)]. © 2009 Optical Society of America
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1. INTRODUCTION

The empirical literature on human color perception and
categorization suggests that there is a good deal of uni-
versality in color categorization across different groups of
people, although a considerable amount of variation is ob-
served across individual categorizers and ethnolinguistic
categorization systems [1]. A long-standing debate in the
field is whether specific universal tendencies exist in the
ways different human linguistic societies categorize and
name perceptual color experiences and if so, what factors
(e.g., physical environment, human biology, perception,
social features) cause them. A major challenge for the
area continues to be development of a theory that ac-
counts for universal patterns seen across various color
categorization systems while simultaneously explaining
observed differences. This color categorization, color vi-
sion, and perceptual processing problem has recently at-
tracted the interest of computational scientists [2-8].

A related issue is whether any consequences for human
population categorization systems follow from individual
observer color perception differences, which vary by de-
gree and frequency, across populations. It is possible that
even considerable amounts of within-population indi-
vidual variation do not substantially affect categorization
solutions across different populations. Alternatively, dif-
ferences in individual color perception across two popula-
tions might very easily produce substantive differences in
the categorization systems that the populations evolve
and end up using to classify color in everyday discourse.

While a large amount of empirical research compares
population categorization data across different language
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groups (e.g., [9]), very little systematic investigation has
focused on the impact of individual differences within
populations on those populations’ color categorization sys-
tems ([10-12] consider some influences of individual dif-
ferences). In particular, population variation scenarios
and their outcomes have not been systematically investi-
gated in light of either (i) empirically observed variation
within and across human groups, or (ii) simulations that
vary agent-based models of categorization. For the meth-
odology of population categorization simulations, real pos-
sibilities exist for investigating many features having
counterparts in human color category evolution. For ex-
ample, it provides a means to observe, in silico, the evo-
lutionary dynamics of developing categorization systems,
to study system robustness and factors influencing sys-
tem stabilization, and to evaluate structural similarity or
variation in stable solutions that occur under different
constraints.

The present paper explores the impact of varying indi-
vidual visual processing constraints on the evolution of
shared color category systems. One goal is to systemati-
cally examine the ways color category solutions change as
a function of varying perceptual processing features of ob-
server populations. In particular, we focus on the influ-
ences from forms of color discrimination deficiencies
found in real observers. Another goal is to identify mecha-
nisms contributing to color category development and cat-
egory solution variation.

The modeling framework used here employs agent-
based evolutionary game theory methods to model human
color categorization systems [6,8]. While our earlier re-
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search considered idealized populations of agents with
different color perception abilities, in the present paper
we investigate the effect of more realistic observer varia-
tion. We aim to gain understanding of the variation in
color categorization systems found across homogeneous
populations (i.e., populations of simulated observers, or
“agents,” that all possess the same discrimination model)
under different realistic observer models. This contrasts
with our companion paper, which examines color catego-
rization for heterogeneous populations ([13] this issue). In
the present paper we examine two types of observer
variations: (1) normal color perception variations and (2)
protanope and deuteranope dichromat variations.

We begin below by describing the stimulus continuum
on which all our agent models are based, and detail the
agent models used. Then we report investigations that
use realistic models of several individual observer types,
incorporated into homogeneous population simulations,
and present the results. The last section of the article
summarizes the findings of the research.

2. MODELING ARTIFICIAL OBSERVER
POPULATIONS

Evolutionary game theory methods are used to examine
the effects of specific realistic constraints on color catego-
rization and inter-individual communication. These fol-
low a modeling framework in which individual agents
learn to (1) categorize simulated colors through reinforce-
ment learning by playing “discrimination—similarity
games” and (2) communicate the meaning of categories to
each other [6,8]. Three main components of this evolu-
tionary approach are (A) the stimulus space, (B) the ob-
server model, and (C) the evolutionary game. Component
(C) is detailed in recent research [6,8]. Components (A)
and (B) are described below.
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A. The Farnsworth-Munsell 100 Hue Test as a Stimulus
Space

Similar to earlier research [6,8], a hue circle is used as a
natural perceptual subspace of the color appearance solid.
The hue circle has the following characteristics: it is (i) a
justified subspace according to models of human color per-
ception [[14], p. 184], (ii) it has value as a structure for
distinguishing normal observers from color-deficient ob-
servers based on hue circle similarity relations (e.g., [15]),
(iii) as a color perception subspace it preserves similarity
relations among hue categories regardless of variation in
salient hue points across normal individuals, and (iv) use
of the hue circle capitalizes on a wealth of existing human
color perception data for the purpose of modeling artificial
agent observer groups. The hue circle stimulus model em-
ployed in the present investigations is the Farnsworth—
Munsell 100 hue test, abbreviated FM100 [16].

The FM100 stimulus is a continuous hue circle series,
discretized into 85 color “caps” forming a smooth gradient
of hue, ostensibly at a fixed level of brightness and a fixed
level of saturation [17]. Figure 1 shows an approximation
of the 85-cap hue gradient. Our use of the FM100’s 85
stimuli as a hue circle continuum extends the compara-
tively restricted hue continua investigated in our earlier
color category studies and permits more direct generali-
zations and comparisons with available human color per-
ception data (i.e., [18,19]).

B. Realistic Models of Observer Variation
In this paper we model normal and dichromat agents, and
only a subspace of full color space is considered. There-
fore, our observer models reflect only the appropriate sub-
set of human color discrimination behaviors. Neverthe-
less, their investigation is very informative.

Models used to define our agents consider only color
perception deficiencies linked to human X-chromosome
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Fig. 1. FM100 stimulus with data used to model protanope (left) and deuteranope (right) agents. Colored lines show deficiency confu-
sion axes: red=protan, green=deutan. (Blue=tritan; not modeled here). Deviations from the inner circle illustrate observer sorting

errors.
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recessive inheritance (i.e., protan and deutan variations).
The biological bases and perceptual consequences of these
forms of human deficiency are well understood [20]. In
protan defects the long-wavelength-sensitive photopig-
ment is missing or abnormal. In deutan defects the
middle-wavelength-sensitive photopigment is missing or
abnormal. Protan and deutan degrees of color confusion
can be summarized as confusions among colors within the
sets of (1) green-yellows, yellows, and yellow-reds; (2)
browns and greens; (3) blue-greens and violets; and (4)
purples, grays, and greens [20]. Such deficiencies occur,
for example, among males of European descent at about
8% frequency [20], but incidence of deficiency varies
across populations of different ancestry and follow known
inheritance patterns [21-24].

Important features distinguish color perception and
categorization dynamics in human populations from the
scenarios simulated here. Here we minimize learned cog-
nitive factors that contribute to human color
categorization—e.g., factors involving individual color
memory, social utility attached to specific colors, or per-
sonal color salience. Omitting complex cognitive factors
here permits a focus on specifically clarifying the influ-
ences of color perception and discrimination on categori-
zation. In addition, unlike our recent investigations [6,8],
the present study does not examine differing saliences in
color space that are linked to either variation in environ-
mental color distribution, or variation in the putative im-
portance or utility, of color (cf. [11]).

C. Modeling Different Forms of Observer Variation

We simulate both normal and deficient observer groups
using human data. “Normal” agents include those mod-
eled on normal trichromat FM100 performance data, with
trichromacy confirmed by pseudoisochromatic plate as-
sessment [25]. “Deficient” agents are modeled using pro-
tanope and deuteranope performances from an FM100 di-
agnostic database [26].

To accurately model data from normal and deficient hu-
man individuals, a probabilistic observer model is intro-
duced. Suppose the hue circle to be categorized by all
agents is identical (i.e., the FM100 stimulus). Two colors
are chosen randomly from the circle and presented to the
agent. The agent must judge whether the two colors are
the same or different. An appropriate color confusion
transformation can be defined to give the probabilities
that an agent perceives the two chosen color stimuli as
the same or different in color. In general the transforma-
tion is described as a stochastic n Xn matrix (a matrix
whose rows sum up to one), {C;;}, whose entries C;; give
the probability that stimulus i is perceived as stimulus j.
This confusion matrix varies across individual agents.

In modeling our agents, several types of
discrimination-based confusions among FM100 stimuli
are defined. One is a form of unsystematic noise in an
agent’s categorization that resembles the sorting confu-
sion errors seen when human observers sort the FM100
stimulus continuum. Two additional kinds of confusions—
referred to as local and global confusions—are also mod-
eled. All forms of confusions are defined below.
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1. Sorting Confusions

A human observer may have perfectly normal color per-
ception and be expected to show error-free FM100 sorting
performance; however, typically, individual sorting perfor-
mance shows random transposition errors, or confusions,
that occur between adjacent stimuli. Normal confusions
tend to be 2-cap exchange errors that are random, seldom
reoccur on retest, and are not bunched in any one region
of the hue circle [27]. Such normal, unbiased sorting con-
fusions are modeled here by assuming that with probabil-
ity p, each color cap can be confused with either of its
neighboring caps on the FM100 stimulus. This leads to
the following matrix:

1 -D, i =j
cyrire=yp/2, j=ixl | (1)
0, otherwise

FM100 sorting confusion errors [Eq. (1)] are the only
confusions modeled and varied in our normal trichromat
agents. (Other trichromats, e.g., anomalous trichromats,
require additional modeling features to approximate their
FM100 performance [13]). Dichromat agent models used
here require the parameterization of two additional forms
of FM100 confusion, described below.

2. Local Confusions
Local confusions are cap transpositions beyond sorting
confusions. They define sizable segments of neighboring
FM100 stimuli (mostly within, but also spanning, FM100
trays). Local confusions for deficient observers cluster in-
side local confusion regions, or portions of the FM100 con-
tinuum where several adjacent stimuli may be confused
with one another (see [20,27]), where dichromats may
transpose the stimulus order by as much as ten steps or
more on the circle. While transpositions in the sequential
stimulus order can appear anywhere in an FM100 tray, if
local mis-sorting occurs at the end of a given tray there is
a tendency for transpositions to continue in the FM100
tray adjacent to the mis-sorted segment. Thus, local con-
fusion regions, as defined here, can span two trays of the
FM100, and where they occur typically depends on the se-
verity and type of observer deficiency found in the data.
To model local confusions, it is assumed that there are
hue circle regions where the probability of confusion is el-
evated compared with the incidence of sorting confusions
(see, e.g., Fig. 1). Local confusion regions arising from Fig.
1 types of deficiency always present as pairs of regions
across the FM100 circle. Let us denote two such confusion
regions as I; and I,. Then

G-0*| ., y
expy — W', ijeliorijel,
Clocal _ v (2)
v 1, i=je&l, ’
0, otherwise

where w gives the width of the characteristic range of con-
fusion within local confusion regions and W is the normal-
ization factor for the given confusion region: W;
=3¢ Iy exp{-(j—i)%/w}, where the summation is over all
the caps inside the confusion region of cap i.



K. A. Jameson and N. L. Komarova

3. Global Confusions

Global confusions seen in dichromats are color stimuli
confused across the hue circle [[20] pp. 65—69], typically
shown as FM100 stimuli pairs connected by a line of con-
fusion [28]. We previously referred to this as an “axis of
confusion” [8]. Development of dichromat agent models
gave consideration to whether typical FM100 confusion
pair axes (e.g., Fig. 2) realistically capture the day-to-day
confusions of dichromats, given that some visual process-
ing circumstances help disambiguate global confusion
pairs and make global confusions less likely in everyday
color judgments. Our models adopt Fig. 2’s [28] confusion
pairs because (a) occupational evidence suggests that glo-
bal confusions do arise in everyday practice and (b)
FM100 confusion pair axes are consistent with confusions
seen in dichromat judged-similarity color-triad perfor-
mance [15]. Thus, dichromat global confusion pairs exist
in practice when similarity is important, as is the case
with the FM100 task. Based on Fig. 2, dichromat global
confusions are modeled as three pairs of opposing caps
from the FM100 hue circle. Let us denote them x; and X,
with & €{1,2,3}. It is convenient to introduce a function g
defined on the set Xy ={x1,X;,...,%3} such that g(x;)=%,
and g(x;)=x;. The global confusion matrix is given by the
formula

05, ieXyandj=i
0.5, i e X, andj=g()

ngobal — o
Y 1, 1= & Xgl

(3)
0, otherwise

Accordingly, protanope and deuteranope global confu-
sion matrices are separately modeled based on the respec-
tive confusion lines shown in Fig. 2.

D. Parameter Estimation Based on Data Analysis

Based on these forms of confusion identified across vari-
ous types of observers [Egs. (1)—(3)], simulation param-
eter settings were derived for different agent types using
the relevant human data. Thus, the appropriate FM100
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data determine the parameter settings for various forms
of “normal trichromat” and “dichromat” agents. Param-
eter values varying across agent types include p, probabil-
ity of sorting confusions [Eq. (1)]; I, with ye{1,2}, local
confusion regions [Eq. (2)]; w, a confusion range value
within local confusion regions [Eq. (2)]; and x;, and X, with
k e{1,2,3}, global confusion pairs [Eq. (3)]. Further simu-
lation parameterization details are given in Table 1.

1. Sorting Errors

The probability of sorting errors, p, is calculated as fol-
lows. For normal individuals the FM100 data of ten nor-
mal trichromat individuals were used to calculate each
individual’s total number of cap inversions. [29]. The av-
erage number of observed inversions across the ten nor-
mal individuals equaled 6.8 inversions. Thus, based on
these data, on average a normal individual makes 6.8
randomly distributed sorting errors per 85 caps (1.7 in-
versions per tray). The probability of inversion per cap is
given by 6.8/85=0.08, that is, 8%. This value was used to
model the unbiased sorting error for normal individual
performance across the 85 stimuli of the FM 100. Consis-
tent with dichromat characteristic performance, 8% sort-
ing error was also used to model dichromat sorting confu-
sion rates outside local confusion regions and
independent of global confusion pairs [30].

2. Local Confusion Regions

For dichromat agents, local confusion regions were based
on Fig. 1 results, where protanopes have two confusion re-
gions, I;=[12,27] and I,=[59,70], and deuteranopes re-
gions are I;=[9,25] and caps I,=[51,63], [31]. A dichro-
mat confusion range width parameter w, for estimating
cap sequence inversions that occur inside local confusion
regions was defined as w=10, also based on Fig. 1 data.
Consistent with human observer data, models for normal
agents do not include local confusion regions.

3. Global Confusion Pairs

Figure 2 data provide values for dichromat global confu-
sion pairs. Protanope global confusion pairs are caps: x;
=9 & x1=29, x9=1 & X3=40, and x3=74 & x3=53. Deutera-
nopes also have three global confusion pairs: x;=11 & x;
=21, JC2=2 & §2=31, and .’)C3=79 & .7?3=42.

4. Summary of the Resulting Agent Models
The following agent confusion definitions were incorpo-
rated in our model:

Table 1. Simulation Notation

Symbol Definition Value
N Total number of agents 100
n Total number of hue circle stimuli (FM100 85
samples)
kg,  Parameter defining the pragmatic utility of 11
colors
w Confusion range operating in a local confusion varies
region
p Probability of sorting confusion varies
C;;  Probability that stimulus i is confused withj  Eqgs. (1)~(3)
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Normal agents (C=C*°"""g): Probability of confusion
with a neighboring cap is p=8%.

Dichromats (C=CsortingClocalCglobaly. (j) Probability of
confusion with a neighboring cap, both inside and outside
the confusion region, is p =8%. (ii) Local confusion regions
based on Fig. 1 data range from 12 to 27 and from 59 to 70
for protanope agents and 9 to 25 and 51 to 63 for deutera-
nope agents. Inside the confusion regions, w=10. And (ii7)
Global confusion pairs based on Fig. 2 data: (9,29), (1,40),
(74,53) for protanopes, (11,21), (2,31), (79,42) for deutera-
nopes.

Parameter values that differ from Table 1 are noted in
the text. To the degree that the data used in our modeling
differ from other observer data in the literature, our ob-
server models would vary accordingly if based on different
data. During model development we varied the data un-
derlying the parameterization to evaluate the effect on
categorization solutions. Such tests found that altering
model features such as the positions of local confusion
ranges and global confusion pairs, or varying the values
of sorting confusion rates, did not fundamentally alter the
main findings presented here or diminish the symmetry-
breaking results or category-solution trade-offs reported
in Studies 1 and 2 below.

3. POPULATION HUE CATEGORIZATION
INVESTIGATIONS

Study 1 and Study 2 consider homogeneous populations
to (i) investigate population categorization influences
arising from different forms of individual variation within
populations and (ii) to provide a foundation for planned
comparisons between heterogeneous populations (i.e., in
[13]). Population homogeneity is intentionally unrealistic,
but is used in the present investigations to isolate the
specific influences that arise under the communication
dynamics between individuals of particular observer color
vision phenotypes.

A. Communication Games Using FM100 Stimuli

Population color naming is achieved by discrimination—
similarity communication games involving the 85 FM100
caps. Details of the discrimination—similarity communica-
tion game, its variants, its relationship to other popula-
tion naming evolutionary algorithms, and its rationale as
an approach for understanding the evolution of color cat-
egorization systems are reported elsewhere [6,8].

Briefly, the goal of the game is for a population of
agents to communicate successfully about color stimuli.
At the beginning of the game, a large number of potential
names, with random meanings, are provided. Agents
evolve probabilistic naming strategies for the stimuli us-
ing only these names. In a given round of the game, two
agents are randomly chosen from the population and two
caps are randomly chosen, and named. Each agent’s
probabilistic naming strategy is updated by its perfor-
mance in the round. The basic idea of the updating is that
if agents successfully communicate about the colors of two
caps, or they agree on the caps’ names, then the probabili-
ties that they will give the same names to those caps in
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the future is increased (i.e., the agents are positively re-
inforced) and appropriate decreasing adjustments are
made to the other caps.

To carry out successful communication in a game, it is
also required that the two names meet the following co-
herence requirement. The degree of similarity of two dis-
tinct caps is related to the inverse of the smallest number
of caps between them. If the degree of similarity of two
caps is large (i.e., they are neighboring caps on the circle)
and there is not an enormous number of names (as in
these simulations), then an evolutionarily effective nam-
ing system will assign the two caps the same name. Simi-
larly, names for caps with a small degree of similarity
should, in general, be different. The parameter kg, de-
notes a pragmatic degree of similarity that determines
whether two caps should be given the same name or dif-
ferent names. Caps with fewer than kg, caps between
them should be given the same name, and those sepa-
rated by more than kg, caps should be given different
names. The value of k;,, can be made to vary across the
hue circle if some colors have more pragmatic or social
utility than others, and it has been shown to influence so-
lutions from idealized populations [8]. Here kg, is held
constant to emphasize effects from observer variation.

B. Investigating Homogeneous Population

Solutions

Study 1 examines several homogeneous populations (i.e.,
populations composed of uniformly modeled agents),
where each population incorporates a slightly different in-
dividual model. Two Study 1 homogeneous populations
are reported, namely, populations composed of 100% nor-
mal ideal agents and populations composed of 100%
probabilistic normal agents. By comparison, Study 2 ex-
amines categorization solutions from homogeneous popu-
lations of 100% protanopes compared with those of 100%
deuteranopes. The results are described below.

1. Study 1: Homogeneous Normal Populations
Populations consisting only of identical normal observers
with p=0 (no sorting errors) or realistic normal observers
with p >0 (a nontrivial probability of sorting errors) [32]
exhibit similar behaviors: starting from any initial condi-
tion, after a number of game iterations, both sorts of ho-
mogeneous populations converge to optimal, shared, cat-
egorization solutions, with all individual agents
converging to very similar categorization solutions (i.e.,
synchronized up to small levels of random noise).

For Table 1 parameter values, such solutions typically
consist of four or five distinct color categories of approxi-
mately equal size (shown in Fig. 3), as predicted in [6].
Figure 3 shows that for both ideal and probabilistic nor-
mal populations, five distinct categories were found. The
disagreement for each cap is calculated as a percentage of
the population that categorizes the given cap to a cat-
egory other than the most popular category. We can see
that percent disagreement in the ideal population solu-
tion [Fig. 3(a), shown scaled by a factor of 10] is compara-
tively less than the percent disagreement found in the
probabilistic normal population solution [Fig. 3(b), un-
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Fig. 3. (Color online) Color categorization and degree of popu-
lation disagreement in homogeneous normal populations for dif-
ferent values of the sorting error, p. Panels show (a) no sorting
errors (p=0) and (b) sorting errors with probability p=0.08. The
horizontal axis is the 85 caps of the FM100. The dotted lines (and
the left vertical axis) show population-average categorization so-
lutions for a typical run (after 5 107 iterations). The solid lines
(and the right vertical axis) show the amount of population dis-
agreement; it is magnified by a factor of 10 in (a). Other param-
eters are as in Table 1.

scaled]. Figure 3(b) also illustrates the fuzzy category
boundaries occurring in the probabilistic normal popula-
tion solution.

The general finding is that increasing the values of p
does not change the general structure of population solu-
tions but increases the amount of uncertainty at category
boundaries, making the degree of population agreement
on color names near boundaries lower for higher values of
p. Aside from this new effect arising from the introduction
of parameter p, Study 1’s normal population results con-
firm earlier category solution findings [6].

Solutions observed in Study 1 possess the following
characteristic feature: repeated simulations with the
same starting parameters produce categorizations with
nearly equally spaced boundaries and similar relative cat-
egory structures, although category position locations can
appear shifted by some random rotation from one simula-
tion to another. Put differently, if a given simulation solu-
tion partitioned the circular ordering of the FM100 caps
into, say, five clear category divisions, then those five cat-
egories could be rotated to coincide with the categories of
another simulation solution (run with all the same pa-
rameters), and the two simulations could be viewed as
random rotations of each other. Thus, various forms of so-
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lutions are all equally optimal solutions. The fact that so-
lutions are equivalent (or self-similar) with respect to ro-
tations around the circle is a formal symmetry property of
these solutions that has been observed here across mul-
tiple population simulations. This finding was predicted
by earlier analytical results [6] and should be noted, be-
cause equally interesting observations of symmetry break-
ing are presented below.

2. Study 2: Homogeneous Dichromat Populations
Simulations were run on agent populations composed en-
tirely of 100% protanopes and 100% deuteranopes. De-
spite the fact that the observer model underlying these
agents is very different from the normal model of Study 1,
each category solution from homogeneous dichromat
populations exhibited an overall category structure simi-
lar to that of normal populations. The difference can be
seen by running many evolutionary simulations starting
with the same parameter values. Figures 4 (for protan-
opes) and 5 (for deuteranopes) present boundary location
frequencies observed across many such solutions. Both
figures’ histograms show distributions of solutions that
are strikingly nonuniform. Consider the leftmost bottom
histogram in Fig. 4, which shows boundary location fre-
quencies for all solutions from 1,000 random protanope
simulations. The boundaries occur most frequently at
caps 8, 29, 52, and 74. A clear picture also emerges by ex-
amining only four-category solutions shown in the
bottom-middle histogram in Fig. 4. Boundary locations
distributed across these solutions are almost identical to
each other, mostly occurring at caps 8, 30, 52, and 74. As
predicted and similar to that observed elsewhere for ide-
alized models of dichromats [8], the nontrivial psycho-
physical transformation characterizing realistic dichro-
mat data leads to a symmetry breaking.

By comparison, Study 1’s similar boundary frequency
histograms from homogeneous normal population simula-
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Fig. 4. Boundary location histograms from 1,000 simulation so-
lutions by homogeneous protanope populations. Horizontal axes
show the FM100 85 caps. Vertical axis shows frequency with
which a color boundary was established at a given FM100 cap.
Results are shown separately for all observed solutions (histo-
grams at left), four-category solutions (middle), and five-category
solutions (right). Top row, results under local confusion regions;
middle row, results under global confusion pairs; bottom row, re-
sults for both confusion features. Other parameters are in Table
1 and as described in Section 2.
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Fig. 5. Boundary location histograms from 1,000 simulation so-
lutions by homogeneous deuteranope populations. Figure layout
and parameters are as in Fig. 4.

tions (not shown) appear as essentially uniform, unbiased
distributions without any clear maxima, except for slight
randomness caused by the finiteness of our simulations.
Irregularity of boundary locations across many solutions
suggests that optimal category boundaries are not tied to
specific stimulus locations for homogeneous normal popu-
lations. In contrast, dichromat populations optimally
have color boundaries with preferred locations.

While homogeneous populations of dichromats are not
found in the real world, the present simulations involving
homogeneous populations of dichromat agents are very
informative from a theoretical standpoint. In particular,
they help explain what features in the observer model are
responsible for symmetry breaking and how exactly local
and global confusions influence population color boundary
locations.

Local confusions. The top rows of Figs. 4 and 5 show
simulation results using dichromat agent models that in-
clude local confusion constraints only (no global confusion
pairs were included in the simulations). For these results
protanope (Fig. 4) and deuteranope (Fig. 5) boundaries
are frequently located in well-defined segments along the
hue continuum, with few or no boundaries found between
caps 11 and 27, or between caps 58 and 70 for protanopes.
Similar results are depicted in the top rows of Figs. 6 and
7, where local confusion regions are marked by thick
black circular arcs and dashed double arrows define ob-
served color boundary locations (the results depicted in
Figs. 6 and 7 correspond to those in Figs. 4 and 5 results,
respectively).

A general finding is that no boundaries occur inside any
local confusion regions. For five-category solutions (top-
right graphics) the two most frequent solutions are drawn
as inscribed pentagons. Overall, results suggest that the
local confusion regions modeled from the data of Fig. 1
tend to repel color boundaries.

Global confusion pairs. The influence of global confu-
sion pairs on categorization solutions is shown in the
middle rows of Figs. 4 and 5, where color boundaries are
biased to a small subset of stimuli. For example, protan-
ope four-category solutions almost always have bound-
aries at caps 8, 30, 52, 74 (Fig. 6, left column, middle row),
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indicating that the boundaries of the most frequent four-
category solution align with four out of the six global con-
fusion pair caps (i.e., pairs marked by arrows connected
across the circle). Five-category solutions are more com-
plicated because it is hard to find one nearly regular pen-
tagon with vertices at global confusion stimuli (Fig. 6,
middle row on left). In this case, the populations estab-
lished several solutions in which three out of five bound-
aries aligned with global confusion stimuli. Similar find-
ings are seen for deuteranopes, which produce three most
common four-category and five-category configurations
(Fig. 7).

These results (along with those from earlier research
[6,8]) show that global confusion pairs affect categoriza-
tion by attracting boundaries through symmetry breaking
and providing necessary perceptual anchors (for some ob-
servers) in the categorization system of a population [33].

Technically speaking, the notion of color boundaries is
ill-defined in dichromat populations with global confusion
pairs. This is because in such populations, optimal catego-
rization solutions are not exactly the same as in popula-
tions of normals. That is, even though they do consist of
disjoint regions belonging to one category, there are also
“defects” near the location of global confusion pairs. At
these locations, two types of solutions are observed: (i) one
cap is classified as having a different color category from
its neighbors, such as AAAABAAAA (here, cap number 5
has category B and all its neighbors have category A) and
(i1) one cap at the boundary between two categories is
classified as a third category, such as AAAABCCCC (here,
one cap at the boundary between categories A and C is
classified as B).

In Figs. 4 and 5, such defects (at most, six per solution)
were smoothed out: that is, B replaced A in type (i) de-
fects, and by either A or C in type (ii) defects. The exis-
tence of these defects can be understood as follows: in the
presence of global confusions the color space of dichro-
mats has effectively a noncircular geometry, similar to
that shown in our previous studies [8], where parts of the
circle were collapsed onto each other. Note that many
forms of this collapse were investigated: a single point of
collapse across the hue circle, a full line, or any interme-
diate collapse. All of these served to break symmetry in
the population solutions observed [8]. In the presence of
global confusion pairs, then, the geometry of the optimal
solution changes accordingly.

Local and global confusion trade-offs and parameter
variation. Given the above observations, the combination
of these constraints clearly produces strong anchoring
tendencies for color boundaries at a subset of locations
along the circle, generally resulting in boundaries being
attracted by global confusion pairs and repelled by local
confusion regions. This is illustrated in Fig. 7, left col-
umn. For example, when global confusion features are
used as constraints in the simulations (middle row), the
three preferred four-category solutions are optimized to
(i) approximately equi-partition the circle and (ii) have
two boundaries near global confusion points. However,
when both local and global confusion features are used
(bottom row), the constraints on solutions become more
stringent because local confusion features specifically re-
strict color boundaries from forming inside a local confu-
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sion region (e.g., see top row, Fig. 7). Thus, whereas three
four-category solutions arise for simulations using only
global confusion features, only two four-category solutions
arise when both local and global features are used in the
simulations.

Depending on the dichromat type and the number of
categories, local and global confusion features can alter-
nate as the more restrictive influence on color category
boundary formation. For example, for protanope four-
category solutions, global confusions exert a greater influ-
ence on boundary location (Fig. 4, middle column). By
comparision, for deuteranopes local confusions exert a
greater influence on their four-category solutions’ bound-
ary locations (Fig. 5, middle column).

The protanope and deuteranope agents in these studies
are characterized by parameter values estimated from in-
dividual human data. However, the sample size of data is
small, which makes the error in parameter estimation
high. Therefore it is important to investigate how particu-
lar parameter choices affect the results. Experiments
were conducted using various positions of local confusion
regions with respect to global confusion pairs, and while
resulting boundary locations may change, the general
conclusions reported here remain robust.

Jo-11
Only local

21
29
8
Only global 40
' i
63

21
27
=
70 59
63

4 categories

Local + global

5 categories

Fig. 6. Confusion parameter settings shown with results from
homogeneous protanope solutions (from Fig. 4). Top row, local
confusions; middle row, global confusions; bottom row, both con-
fusions. The circle depicts the FM100 caps. Caps 1, 21, 42, and 63
provide arbitrary points of reference. Thick black arcs with end
caps show local confusion regions. Two-point thick black arrows
with confusion pair caps show global confusions. Typical four-
category (left), and five-category solutions (right) are shown. In
the case of local confusions (top row), dashed double-arrowhead
lines mark regions where boundaries occur.
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4 categories

5 categories

Fig. 7. Confusion parameter settings shown with results from
homogeneous deuteranope solutions (from Fig. 5). Figure layout
and features are as in Fig. 6. Unlike the protanope model (Fig. 6),
the deuteranope model has a local confusion region that coincides
with a global confusion pair (bottom row) and has local confusion
regions larger than those in the protanope data. Both differences
affect category boundary robustness.

Also, studies performed with different values of w (the
confusion width) and p, (the probability of sorting errors)
show that the value of p has a minimal effect on solutions.
However, decreasing the value of w to low values (say, w
=1) alters solutions slightly. In particular, large values of
w make local confusion regions virtually impenetrable to
boundaries, whereas when w=1 there are some solutions
whose boundaries are located inside the local confusion
region. Those solutions are still quite infrequent, and
they disappear as w is increased to more realistic values.

4. DISCUSSION

Studies 1 and 2 provide (i) categorization solutions under
different homogeneous perceptual biases, and (ii) a means
for investigating mechanisms underlying previously ob-
served symmetry breaking effects [8], in populations com-
posed entirely of realistic dichromat agent models.

Study 1 examined populations consisting of identical
normal observers with p=0 (no sorting errors) and several
variations of p>0 (nontrivial probability of sorting er-
rors). Across several investigations p was varied, and the
general consequence of increasing probabilistic sorting er-
rors in the agent models was decreases in population so-
lution agreement at color category boundaries. Aside from
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this, increases of probabilistic sorting errors produced no
other effects on category solutions. This result is interest-
ing from the perspective of human color categorization
theory, because it suggests that varying precision in indi-
vidual category assignments during communication does
not hinder the formation of a shared population color cat-
egorization system. Rather, varying of precision simply
adds to the degree of classification uncertainty—or
fuzziness—observed at population color category bound-
aries. Study 1’s findings for sorting error increases re-
semble the null effects seen following random observer
variation in other color category simulation research (see
[3], p. 517).

Study 2 investigated realistic approximations of dichro-
mat individual color perception variation to understand
the effect of different observer features on population
color category evolution. Dichromat population simula-
tions show that trade-offs were common among the fea-
tures of various agent models. These features balanced in
a dynamic fashion during the formation and stabilization
of near-optimal color categorization solutions.

All the observed solutions of both Study 1 and Study 2
reached stabilization by maximizing successful color com-
munications among agents. This was achieved in ways
compatible with an optimal partitioning theory of color
space that uses an Interpoint Distance heuristic [9,34,35].
By varying the discrimination features modeled, insights
were gained concerning the mechanisms involved in the
formation of category boundaries. These findings provide
likely insights for human color categorization evolution.

Together, Studies 1 and 2 support the suggestion that
varying individual perceptual features influences popula-
tion color categorization solutions. Results show that ho-
mogeneous populations of simulated normal observers
produce category solutions that differ in important ways
from those produced by homogeneous populations of real-
istic dichromat agents. In addition, local and global con-
fusion analyses suggest a possible universal mechanism
for the stabilization of population color categorization sys-
tems. Similar color-naming solution dynamics were seen
across populations even when the underlying population
response models had different perceptual biases. Finally,
here we examined situations involving agents made to re-
semble a variety of real observers with fixed k;,,, whereas
previous investigations examined populations with ideal
heterogeneous color observers with fixed and variable kg,
[8]. Despite these differences, a general result of the
present simulations and others [6,8], is that the
discrimination—similarity game evolves population nam-
ing behavior that is near theoretically optimal. See [6] for
details about optimal naming behavior.

5. SUMMARY OF FINDINGS

Our findings can be summarized as follows:

1. In homogeneous populations of realistic dichromat
observers, local and global confusions exert significant
symmetry-breaking effects on categorization solutions.
This contrasts with unsystematic error variations or ran-
dom sorting confusion variations, which have little impact
on category solution stabilization.
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2. Varying levels of normal-observer sorting confusions
primarily decreases population agreement at color cat-
egory boundaries.

3. Dichromat global confusion pairs break symmetry in
categorization solutions by anchoring category bound-
aries.

4. Dichromat local confusion regions break symmetry
in categorization solutions by repelling category bound-
aries.

5. Realistic approximations of observer types confirm
earlier symmetry breaking and confusion axis findings
from idealized populations [8]. Such modeling of color cat-
egorization dynamics based on realistic data has not, to
our knowledge, been previously attempted. The present
findings underscore the importance of tracking popula-
tion heterogeneity when modeling shared color category
systems or when empirically studying human color cat-
egorization (see discussion in [36]).

6. Category solutions are shaped by the observer fea-
tures employed, but solutions obtained under such con-
straints are easily modified by introducing external fac-
tors, such as variable color utility (see [8]).

By design, our previous investigations constrained both
the realism of the individual observer models and the
population models used [6,8]. By comparison, here indi-
vidual observer models were realistic while the popula-
tions considered were unrealistically uniform. Despite the
latter intended limitation, some universal tendencies can
be suggested by the result for the present population color
categorization system evolution:

(i) Minimal impact of unsystematic perceptual varia-
tion (e.g., random sorting error) on categorization solu-
tions.

(i1) Substantial constraints imposed on solutions by
systematic perceptual variation.

(iii) Countervailing mechanisms (arising from percep-
tual variation) that trade off in the process of arriving at
stable categorization solutions.

(iv) Increases in trade-off demands as perceptual con-
straints (e.g., color confusion pairs and regions) become
more varied or more frequent in a population or engage
larger areas of color space.

It seems likely that some of the categorization solution
tendencies observed here suggest mechanisms that may
similarly underlie universal tendencies in color categori-
zation systems of human populations. In a companion pa-
per ([13], this issue) we pursue further testing of these is-
sues using approximations of both realistic individual and
realistic population models.
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