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Color Coding Information: Assessing Alternative Coding Systems Using
Independent Brightness and Hue Dimensions
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Can independent dimensions of brightness and hue be used in a combined digital information code? This
issue was addressed by developing 2 color-coding systems and testing them on informed and naive
participants in signal beam detection and classification experiments for simulated sonar displays. Each
coding system’s results showed both groups efficiently used encoded information that varied simulta-
neously along the 2 dimensions of brightness and hue. Findings support the proposed procedures for
developing color information codes and the validity of such information codes across different popula-
tions. Applied significance of these results is provided by the test of principled methods of color-code
construction and the demonstration that extending the information content of user interfaces beyond 1

dimension is feasible in practice.

Information-processing user interfaces, such as air-traffic con-
trol systems and automatic banking machines, encode information
using salient perceptual attributes such as gradients of brightness
or color and varieties of icons and alphanumerics. Much research
on color use in digital information displays has focused on error
rates and search time for targets (symbols or icons) when color is
added as a target feature (Christ, 1975; Donderi, 1994; Nagy &
Sanchez, 1990, 1992). Guidelines exist for the number of hues
used for targets and backgrounds, the use of luminance and satu-
ration to improve perceptual segregation of colors, and effects due
to ambient light conditions (Van Orden & Benoit, 1993). However,
there remains some uncertainty regarding the conditions that make
color a good choice as an independent, nonredundant coding
dimension, and no guidelines exist for the applied use of multidi-
mensional information codes. The present study explored the fea-
sibility of two-dimensional hue-luminance codes and the use of
color beyond a simple redundant code in a specific display for-
mat in which meaningful information is defined statistically as
opposed to iconically. To do this, we pursued three goals: (a)
modeling observer performance using ideal-detector theory, (b)
developing two-dimensional information codes and meaningful
methods of quantizing and encoding information, and (c) conduct-
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ing empirical tests of implemented codes for gradient intensity
signal applications.

Important perceptual considerations arise when constructing a
two-dimensional color code that aims to achieve the desired per-
ceptual qualities of independence and equal perceptual increments.
Previous work has emphasized issues of stimulus size, surrounding
contrast effects, and the selection of color-code values that pre-
serve intended brightness relationships (Carter & Carter, 1988;
Kaiwi, Bamber, & Urban, 2000). The most commonly discussed
form of perceptual processing in the color-coded user interface
literature involves visual search for symbolic representations of
discrete categorical data (e.g., Smallman & Boynton, 1990, 1993).
A less studied user-interface format involves gradient intensity
representations of inherently noisy sensor data (like sonar, radio-
logical scans, or geographical contour map data). This second type
of task involves pattern detection and recognition of a signal
masked by noise. Processing digitally represented sensor data is
perceptually and cognitively quite different from the search tasks
involving symbolic representations of categorical data. Data from
sensor systems produce digital images that require users to per-
form visual tasks more akin to pattern recognition than to simple
visual search. The present study is concerned with color coding
and detection and recognition behaviors for digitally represented
sensor pattern data.

When considering pattern recognition for gradient intensity rep-
resentations, one must also distinguish between (a) situations in-
volving the detection of periodic targets masked by modulated
noise (i.e., sinusoidal gratings; e.g., Graham, 1977, 1985; Nach-
mias & Sansbury, 1974; Thomas, 1985) and (b) those involving
the detection of an isolated target of gradient intensity masked by
modulated noise. In Situation (a) the detection of near-threshold
gratings makes use of the additional information conveyed by the
detectable regularity of a target’s spatial periodicity. This spatial
periodicity, or spatial beat, is considered a macrofeature of grating
stimuli (Thomas, 1985) and was described by Graham (1985) as a
separate perceptual dimension of “spatial phase” or “spatial sym-
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Designate the indicated beam as one
of the available signal types, and click Click in the panel to select a beam.
‘Done’. The cursor will change color Click ‘Done’ to end the trial.
to indicate the correct answer. Click ‘Next' to continue.
O Reddish Signal Click ‘Quit’ to exit.
O Neutral Signal

Figure I. Four examples ot stmulus displays representing passive sonar sensor data. ranel (a) represents a
monochrome simulated passive broadband data image in which the vertical and horizontal dimensions corre-
spond to time and direction, respectively. Display bins are 1 X 3 pixel arrays. All pixels in a given display bin
have the same luminance. There are 250 X 96 display bins—250 sample periods and 96 directions (beams). The
image can be updated over time by shifting each row of luminance values down one time interval—thereby
dropping out the bottom row—and inserting new luminance values into the top row. Panel (a) also exemplifies
an Experiment 1 monochrome test stimulus. All experimental trials consisted of 93 noise beams and a single
signal beam, as depicted. (a) illustrates the beam detection task (&' = .41) with a candidate signal beam already
selected by the participant and highlighted with top and bottom markers. in Experiment 1 this stimulus panel was
shown in conjunction with the white response-format box shown in Panel (d). Once the participant was satisfied
with a selection, the handheld mouse was used to click the “done” button, and feedback was shown concemning
the location of the actual signal beam by the presentation of a cursor indicating the true signal beam. Presentation
of the next trial was initiated by a mouse click and was self-paced. Panel (b) represents Experiment 2's brightness
code with chromatic noise (encoded here by Code A). The task-and-response format is identical to that described
for Panel (a), which uses the response-option format illustrated in Panel (d). Panel (c) shows Experiment 3’s hue
code with brightness noise (encoded here by Code B). As in all experiments, each display consisted of 94
columns and 250 rows of 1 X 3 pixel bins. Each bin was assigned one hue-luminance value. The experiment
involved 1,504 trials per participant. In the Experiment 3 stimuli the chromaticity index and the luminance index
were uniformly distributed across noise display bins. Signal display bins also had uniformly distributed
luminance indices, but compared with noise display bins, signal chromaticities were on average in the hue
gradient direction of red. As illustrated in the white response-option window, the task differed from that
presented in (a), (b), and (d) in that observers were asked to classify a predesignated beam into a “reddish” or
“neutral” signal category. (d) represents Experiment 4's combined brightness and hue code (encoded here by
Code A). The task performed was identical to that in Experiments | and 2—(a) and (b), respectively.

metry” (p. 1469) distinct from the spatial location of a signal in resented simply as an isolated target in noise. Situation (b) is the
two orthogonal dimensions. Empirical studies show that observers subject of the present study and involves different detection be-
use spatial beat patterns when identifying stimuli (e.g., Thomas, havior from Situation (a), which has been studied elsewhere.

1985). By comparison, in Situation (b) signal information is rep- Situation (b) is exemplified by U.S. Navy visual images used
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to analyze passive sonar data. Passive sonar “listens” to under-
water sound intensity and uses digital signal processing to
construct target corridors, or “beams” of sound intensity sam-
ples, for a specified underwater area. Passive sonar data param-
eters are time, direction, and intensity. Visual representation of
beam data maps time and direction onto the two-dimensional
CRT display and quantizes sound intensity with display pixel
luminance.

Figure la depicts a CRT representation of passive broadband
azimuthal data. Time-sampled data are quantized into luminance
levels (at constant chromaticity), and each green-phosphor lumi-
nance level is calibrated to a constant increase in perceived bright-
ness. Pixel luminance is thus mapped as a monotonic increasing
function of sound intensity. Luminance values in a signal beam are
skewed toward higher values, and the rest of the image has a
uniform distribution due to the quantization procedure. Modifying
displays such as that presented in Figure la so that more informa-
tion can be presented would be an important advance. In such a
two-dimensional system a single coding value could convey two
qualitatively different kinds of information—say, a hue-encoded
semantic value (e.g., a threat index) and a brightness-encoded
signal power, or certainty, index—thus allowing more information
to be packed into displayed elements. However, if the color coding
was not done carefully, adding new information would very likely
complicate the ability to extract information about acoustic energy
from the display. In displays such as Figure la it is easy to
compare two vertical beams and determine which one represents
more acoustic energy when only brightness encodes more signal
(and hue and saturation are kept uniform). Devising a luminance
code that also uses different hues and saturations to encode infor-
mation is a more difficult task. Here we evaluate the feasibility of
such a use of luminance and chromaticity to simultaneously en-
code two independent sources of data. The experiments address
two basic questions: First, can color be combined with a brightness
code without detrimentally affecting the encoded signal, and,
second, can color be used as a separate coding dimension when
conjoined with brightness-encoded information? Positive answers
to these questions would suggest that a multidimensional coding
system is a practical coding alternative.

Applied situations dealing with the visual representation of
gradient sensor data typically encounter three challenges: (a) the
determination of how to model the observer’s visual detection
performance, (b) the practical and perceptually optimal assignment
of discrete coding levels to continuous gradient-sensor data, and
(¢) the development of principled procedures for constructing
coding systems that are effectively processed by observers and that
can be extended and generalized across display formats. Below we
address these issues for representations of acoustic energy data
from underwater passive sonar sensors.

Information Code Development
and Stimulus Construction

The stimuli used in the present experiments include two related
levels of specification. One level involves the human observer
theory underlying the quantization of sensor data, and the second
level involves visual perception considerations regarding specific
color-code appearances used to represent the quantized levels of
information. We used Green and Swets’ (1967) Theory of Signal

Detection (TSD) to quantify visual detection performance and to
define a Juminance code. One advantage of the TSD approach is
the mathematical convenience of the ideal-detector model for
Gaussian noise, which was used in the present research in the
construction of the stimuli and the experimental designs (see
Green & Swets, 1967, Part II). Even though the intensity of
broadband sound is demonstrably not Gaussian, it is arguably
justifiable and useful from a perceptual point of view to “whiten”
the signal by averaging a large number of intensity sample values
before the data are encoded for display. If the number of samples
is large, then average sonar beam intensity values will have an
approximately normal distribution. Consequently, we used a Stan-
dard Normal distribution to simulate the statistics of averaged
sonar beam outputs. Provided reasonable simplifying assumptions,
the relationship between the Green and Swets detection index and
white noise is given by d' = (s, /n,)Vw X t, where s, is signal
density, n, is noise density, w is bandwidth, and ¢ is sample interval
(see Green & Swets, 1967, pp. 174-175). With the Standard
Normal Model, we were able to conveniently construct simulated
sonar images for both forced-choice testing and yes—no testing.

In the present experiments we assumed that the value of d’
strictly determines optimal performance (i.e., the performance of
an ideal detector). Because human observer performance can be
mathematically related to an equivalent d', it is common usage to
refer to d’ as the sensitivity of an observer. Therefore, in order to
avoid confusion, we use d' to denote the sensitivity of the math-
ematically optimal observer and 4. to denote the sensitivity de-
rived from observed data. We refer the reader to Green and Swets
(1967) for a formal explanation of how various types of detection
performance can be defined in terms of d'.

Quantization of Gradient Intensity Data Using TSD

Figure 2 illustrates the classical statistical assumptions of the
TSD used in these experiments and the relationship between d’ and
a three-bit visual quantification scheme for constructing mono-
chromatic images such as Figure 1a. The noise distribution and the
signal distribution differ only by their mean values (equal to zero
and d', respectively) with both distributions’ standard deviation
equal to one.

NOISE d SIGNAL
jp———————————— =1

Mesn = 0 . Mean =d"

sp=1.0 ; Sp=1.0

112 7 Luminance Levels

31456
Sample Yalues x(i) —»

Figure 2. Standard Normal distributions are used to quantify broadband

sonar data for digital displays. The Noise distribution on the left is N(Q, 1),

and the Signal distribution is N(d', 1). The vertical dashed lines indicate
cutoff criteria for assigning luminance-level values to display bins.
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The vertical dashed lines in Figure 2 indicate cutoff criteria for
assigning luminance-level values to display bins. (Display bins are
the individually controlled information units—1 CRT pixel
high X 3 pixels wide in size—that make up a vertical signal beam.)
The selection of the cutoff between a luminance level of zero and
of one determines the probability (or “marking density”) that any
particular display bin will be assigned a luminance value greater
than the minimum value. Luminance values for display bins are
based on sample values from either the noise distribution or the
signal distribution. Suppose cutoff values are selected so that the
region under the noise curve is partitioned into equal areas. In this
case samples from the noise distribution will be quantized with
luminance values that have a uniform distribution. In contrast,
samples from the signal distribution will tend to be quantized with
luminance values that clump at the high end. Figure 1a exemplifies
an image containing one signal displayed at a marking density
of 87.5%. In the signal beam, indicated by arrow pointers, higher
luminance values occur with probabilities that increase with the
value of d'. Using this quantization method, we constructed a
one-dimensional luminance code for use in Experiment 1. Exper-
iments 2, 3, and 4 below use two-dimensional color codes.

Monochrome Stimuli

Monochrome images (like Figure 1a) were constructed using the
model depicted in Figure 2. Cutoff values were selected that would
divide the area under the Normal Distribution into eight equal parts
corresponding to eight luminance levels. Using the green CRT
phosphor, the monochrome code values ordered from dark to
bright were 0.2, 2.8, 6.5, 11, 16.4, 22.2, 28.7, and 35.6 cd/m>. In
each image, there is one vertical signal beam, and all other col-
umns represent noise. All display-bin luminance values in the
signal beam were derived from the signal distribution, whereas the
noise display bins were determined by generating a random num-
ber from an N(O, 1) distribution and selecting the index number
between 0 and 7 (inclusive) corresponding to the cutoff interval
containing the random number. Figure 3a schematically depicts the
relation of the sampled data distributions to the coding dimensions.
The index number was then used to select a luminance value: The
higher the index number, the higher the corresponding luminance.
The luminance value of a signal display bin was determined by
first generating a random number from an N(0, 1) distribution. The
signal d' value was then added to the random number and the sum
quantized by selecting the index number between 0 and 7 (inclu-
sive) corresponding to the cutoff interval containing the sum. The
index number was then used to select a luminance level. In the
monochrome code all display bins equaled the chromaticity of the
CRT green gun.

Constructing Two-Dimensional Color Codes

We aimed to construct two-dimensional color-coding systems
that would (a) yield detection performance on a par with that
observed for a one-dimensional brightness code and (b) provide
generalizable procedures for developing two-dimensional color
codes. As with the monochrome stimuli, two-dimensional color-
code stimuli also used vertical signal beams composed of individ-
ual CRT display bins.! Because display bins subtend < 2° visual
angle, it was assumed that the brightness code used in a display bin

is a function of luminance only. Our application required that eight
levels of brightness be implemented to represent sonar signal
strength; we also defined a perpendicular dimension with eight hue
levels to encode eight levels of semantic information. This two-
dimensional code could use the strength dimension to represent
levels of certainty of information, whereas the semantic informa-
tion dimension might identify categorical information, such as
hazard for a red code and safety for a green code. In addition,
observers should be able to compare two display bins and, on the
basis of their relative brightnesses, determine which display bin
represented the larger value for the acoustic energy parameter even
if the two display bins had different hues and saturations. Two
such color codes are described below.

Code A

One commonly practiced method of color coding is to assign
digital display increments across color categories to represent
measured increments in the available data (e.g., some medical
image scans). Figure 4 presents a color code based on this idea of
using physical attributes of CRT digital increments (hereafter
abbreviated Code A).? Code A has eight levels (rows) of lumi-
nance, each composed of eight hues ranging from green through
yellow to red (columns). All hues had the maximum saturation that
the CRT could deliver. Values for approximately equal steps in the
fundamental luminance and hue gradients were based on digital
phosphor values. Each of the remaining elements of Code A was
designed to have (a) rows with elements of the same luminance
and (b) columns with elements of the same chromaticity. Code A’s
8 X 8 color values assume that, to a reasonable approximation,
brightness is proportional to the cube root of luminance (Wyszecki
& Stiles, 1982). For display design this assumption has been found
justifiable in practice (Widdel & Post, 1992). Code A is discussed
further in Kaiwi et al. (2000).

Code A’s construction method is a commonly used and efficient
procedure by which to derive a color-coding scheme in that it uses
a simple monotonic model for the perceived relationships between
physical luminance and subjective brightness and between bright-
ness and hue. However, some problems interpreting such a code
might arise when two display bins have different hues and satu-
rations and the subjective perception of relative brightness may be
highly ambiguous. Even though one display bin has a substantially
greater luminance than the other, an observer may feel unsure
which display bin is brighter. To address these issues, we com-
pared performance under Code A with that under an alternative
code (hereinafter Code B) developed with subjective brightness
nonlinearities in mind.

Code B

A second psychologically based color code, Code B, explicitly
addresses potential problems with variation in brightness and hue
perception that may arise under Code A. Code B was constructed
to minimize known perceptual nonlinearities that might impact the

! Recall that display bins are 1 CRT pixel high by 3 pixels wide.

2 Note that all figures we present to depict color codes and stimuli only
approximately reproduce the CRT colors used in our actual experiments.
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Figure 3. Schematic representations of the encoding variations used in
Experiments 1, 2, 3, and 4. Each panel presents the statistical relationships
underlying the signal and noise distributions from which coding indices
were randomly selected for the construction of experimental stimuli. The
independence and equal variance depicted in the panels model the statistics
of the underlying data rather than the distribution of perceptual units
inherent in the stimuli used. (a) depicts the theoretical relations between
signal (s) and noise (n) in the one-dimensional monochrome brightness
code in Experiment 1. (b) depicts the same for the two-dimensional hue and
brightness relations used in Experiment 2's luminance-encoded signal
condition. (c) depicts the two-dimensional hue and brightness relations
used in Experiment 3's chromaticity-encoded signal condition. (d} depicts
the two-dimensional hue and brightness relations used in Experiment 4’s
integrated brightness- and chromaticity-encoded signal condition.

effectiveness of a coding scheme using combined hue and bright-
ness to represent information.

To construct a Code B that simultaneously accounts for percep-
tual and psychological characteristics inherent in human operators,
we used the Munsell Book of Color, which is a color-ordered
system that is based on empirically assessed human color percep-
tion (Newhall, Nickerson, & Judd, 1943). Code B aims to account
for quirks of the human perceptual system that cause nonlinear
relationships between the physical increments of light and the
subjective color appearances (e.g., Bezhold-Briicke and Abney
shifts). The Code B method also represents a generative approach
to constructing new coding systems or extending the coding levels
of existing systems. Being based on perceptual data, the method
yields nonarbitrary coding systems that should optimize operators’
processing of a code.

The Munsell color space uses standard perceptual dimensions
(i.e., hue, lightness, and saturation, referred to as Hue, Value, and
Chroma, respectively). The method for color code construction is
depicted in Figure 5a, where a curved plane of perceptually con-
stant saturation and radial constant-hue loci are embedded in a

stylized Munsell solid. Code B’s 64 color-coding values are de-
termined by intersections of the colored lines with the curved plane
for eight indicated lightness levels (Value = 2 to 9). The contour
indicated by hash marks at Chroma level = 6 intersects the eight
radial hue curves at points of perceptually constant saturation and
brightness. Loci of constant hue and constant saturation (i.e.,
Chroma) at a fixed level of brightness (i.e., Value) are reprinted in
Wyszecki and Stiles (1982, pp. 840~861). This heuristic yields
the 64 coding values approximated in Figure 5b. This procedure
automates and improves color-code construction and has the ad-
vantage of being based on psychological constants in a perceptual
color space. Code B also provides information regarding the ef-
fects of strictly uniform saturation. That is, whereas Code A used
heterochromatic saturations produced by maximized display phos-
phors, Code B explicitly constrained saturation levels for all cod-
ing values to a level known to maximize linearity of the
brightness—saturation relationship. Controlling saturation in this
way yielded Code B’s 64 coding levels with an average luminance
twice that of Code A. See Kaiwi et al. (2000) for further details on
Code A and Code B properties and construction methods.

Stimuli Color Coded With Code A and Code B

Color-coded stimulus images (see Figure 1, b—d) were con-
structed by computing an index number for chromaticity (as done
for luminance) in addition to an index number for luminance
(described above). The resulting number was used to select a row
in either Code A (see Figure 4) or Code B (see Figure 5b). Thus,
both luminance and chromaticity indices have uniform distribu-

max

Figure 4. Schematic representation of the Code A color code. For the
brightest red (R) value, the red gun was maximized. The brightest green
(G) in the table was then set to match. Remaining hues were calculated by
using a ratio of red and green gun activation. Brightness steps were made
approximately proportional to the cube root of luminance. The 64 values of
Code A were measured as Commission Internationale de 1'Eclairage
(1931) average values x = 0.425 (8D = 0.116), y = 0.426 (SD = 0.072),
and ¥ = 4.828 (SD = 4.012).
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Figure 5. Schematic representation of the Code B color code. (a) The heuristic used eight equally stepped
Munsell hue loci from 5G (green) to 5R (red) represented here as colored lines. For each hue, eight equally
stepped brightness levels (Munsell Value 2 to 9) were selected (saturation held constant at Munsell
Chroma = 6.). An approximation of the Code B 8 X 8 function appears in (b). The 64 values of Code B were
measured as Commission Intemationale de I'Eclairage (1931) average values x = 0.384 (SD = 0.062), y = 0.399
(SD = 0.046), and ¥ = 9.480 (SD = 7.430). Because Code B is based on constant-hue loci from the Munsell
color space, fitting the uniform-saturation color code within the CRT gamut necessitated the selection of a relatively
midrange saturation portion of the Munsell color space, hence the more desaturated appearance of Code B.

tions across noise display bins, whereas signal display bins tend to According to Maddox (1992), “a fundamental issue in human
be brighter and/or redder depending on the test condition as perception is to determine how different stimulus dimensions
illustrated in Table 1. How will such two-dimensional stimuli be interact during perceptual processing” (p. 147). Garner (1974)

processed by observers? explained that pairs of stimulus dimensions are separable if people
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Table 1
A Summary of the Color-Code Index Distributions in Experiments 1-4
Luminance Chromaticity
Experiment and sample Noise bins Signal bins Noise bins Signal bins Task

Experiment 1, DOD only

Experiment 2, DOD & UCSD
Experiment 3, DOD & UCSD
Experiment 4, DOD & UCSD

Uniformly distributed
Uniformly distributed
Uniformly distributed
Uniformly distributed

Biased toward bright
Biased toward bright
Uniformly distributed
Biased toward bright

Forced choice
Forced choice
Yes-no

Forced choice

Constant green

Uniformly distributed
Uniformly distributed
Uniformly distributed

Constant green
Uniformly distributed
Biased toward red
Biased toward red

Note. DOD = Department of Defense; UCSD = University of California, San Diego.

can selectively attend to one or the other at will without interfer-
ence from the unattended property. The implication is that the
perceptual representations are independent. Pairs of dimensions
are integral if people cannot selectively attend to one without also
perceiving the other. For example, saturation and lightness are two
dimensions that seem to be processed together. As discussed by
Kadlec and Townsend (1992), Garner’s original concepts of sep-
arability and integrality have raised some confusion with regard to
their exact meaning. For the present study we use a definition
following Tversky and Krantz (1970), which simply defines per-
ceptual dimensions as the organizing principles or factors along
which stimuli are perceived and structured. Here we examine
perceptual dimensions that correspond in a straightforward manner
with psychophysical dimensions of luminance variation (encoding
signal intensity) and chromatic variation (encoding signal type).
The present study differs from studies of perceptual dimensionality
in one very important respect: We did not aim to investigate
whether the two dimensions used are perceptually integral or
separable, rather, we simply aimed to investigate pragmatically
how the two stimulus components influence observer performance
when they are evaluated as isolated information-coding dimen-
sions compared with when they are judged together as a composite
coding dimension.

What empirical performance issues bear om such two-
dimensional color-coded stimuli? We assume that information-
processing losses associated with a two-dimensional color code
may occur in two basic ways. Following Hershman, Kaiwi, and
Pilmore (1987), performance under luminance-code processing
(Experiments 1 and 2) is expected to be inferior to that predicted
for an ideal observer. Small-field color differences were expected
to produce information losses under a chromaticity code (Experi-
ment 3), and color-code performance losses were predicted to be
greater than those associated with a monochromatic luminance
code (cf. Widdel and Post, 1992, pp. 19-20). Also, consistent
with Garner’s (1974) concept of orthogonality loss (p. 126),
noise in one channel may mask information in another channel
(Experiments 2, 3, and 4). Thus, compared with monochromatic
encoding (Experiment 1), luminance encoding masked by chro-
matic “noise” may yield relatively poorer performance (Experi-
ment 2), and chromatic encoding masked by luminance noise may
also yield relatively poorer performance (Experiment 3). Further-
more, destructive interference during the perceptual integration of
simultaneously processed luminance- and chromaticity-encoded
signals (Experiment 4) may result in losses that are independent of
losses possibly incurred when one channel produces only noise
(Experiment 2 and 3). Our aim in the present experiments was to

isolate and measure these sources of information loss and to test
the notion that increasing information-processing demands by the
introduction of composite luminance-chromaticity coding results
in decreasing detection performance.

Experimental Studies

General Method

Experiments assessed two participant populations, using two
different computer display systems. These participants were from
a Department of Defense (DOD) Navy laboratory in San Diego,
California, and from the human participant pool at University of
California, San Diego (UCSD). Five of the DOD participants took
part in Experiment 1, whereas Experiments 2, 3, and 4 included 4
of the participants from Experiment 1 plus an alternate 5th DOD
participant (Jameson). The UCSD sample consisted of 17 naive
college undergraduates from UCSD and an informed author
(Jameson) also tested in the DOD experiments. The college un-
dergraduates participated voluntarily and received partial course-
credit compensation, plus a nominal monetary reward for correct
detections. Experiments 2, 3, and 4 all assessed the same 17
undergraduate participants. The UCSD undergraduate participants
were completely naive to the purpose of the experimental studies
and participated in the three experiments in one of six randomly
assigned sequential orders. The order for DOD participants was
not strictly regulated. All participants had normal or corrected
visual acuity and normal color vision (per the Farnsworth-Munsell
100 Hue Test and/or the Ishihara Pseudo-Isochromatic Plates,
Ishihara, 1994).

All DOD participants were assessed using computer-controlled
stimuli presented on a 19-in. (48.3-cm) RasterOps CRT display
(Model 1960 with a Trinitron GDM 1950 tube) corrected for
phosphor nonadditivity (Brainard, 1989). All UCSD participants
used a 15-in. (38.1-cm) Magnavox CRT display (Trinitron Model
CM2080GYO1) similarly corrected for phosphor nonadditivity.
Viewing position and the physical environment were controlled
across all experiments: 18-18.5-in. (45.7-47-cm) viewing dis-
tance and ~2.0 Lux ambient illuminant. Catibration of both de-
vices was maintained throughout all experiments reported. Prior to
participating in the experiment, participants were dark adapted to
the ambient illumination for approximately 10 min. Observers
completed a large number of practice trials to ensure that perfor-
mance had reached asymptote. Prior to each session a minimum
of 20 practice trials were completed. All trials were unspeeded and
self-paced. Each experiment consisted of a different random se-
quence of 376 judged images.
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In all experiments each stimulus image was formatted as in
Figure 1 in a 96-column by 250-row array of display bins. This
stimulus subtended an approximate visual angle of 11.5° vertical
by 13.7° horizontal. The extreme left and right columns of the
image (i.e., columns 1 and 96) were never used as signal beam
locations to avoid crispening effects (Wyszecki & Stiles, 1982, p.
497). Thus, 94 different stimuli consisting of exactly one signal
beam and 93 noise columns were assessed. Because no agreed-on
model exists relating detection performance directly to color per-
ception, we used TSD techniques to quantify and compare human
observer forced-choice and yes-no performance to the perfor-
mance of a mathematically defined optimal observer derived from
the statistics of the input data. The luminance information content
of the signal beam in these 94 panels varied from the surrounding
luminance noise dependent on a specific d’ level of the signal. A
signal display bin visually encoded data sampled from a signal
distribution, and a noise display bin visually encoded noise distri-
bution data. All display bins were either monochrome or color
coded depending on the test condition. These display properties
were identical for all experiments described.

Experiment 1 (monochrome encoding) used signal and noise
data encoded solely by luminance, thereby providing baseline
monochromatic signal-detection performance. Ninety-four possi-
ble beam locations and four possible d’ signal levels were tested,
yielding 376 different stimulus panels. The four 4’ levels assessed
were .166, .241, .291, and .410 (Hershman et al., 1987). These d’
levels represent the information content contained in a display bin
assuming an ideal signal-detection model. That is, information
content increased with increases in d’; thus, beam detection per-
formance was predicted to monotonically increase with increasing
d’ levels. (Signal beam d' is defined later.) Only DOD participants
were assessed under the monochrome luminance code as measured
by the observed d' for detection performance (dependent variable).
Luminance indices in signal display bins varied according to a
distribution biased toward high indices, whereas luminance indices
in noise display bins had a uniform distribution. Chromaticity was
constant and equaled the CRT green phosphor.

Experiment | used monochrome (green) data images and four d’
values, and Experiments 2, 3, and 4 used data images encoded with
Code A or Code B (50% of the time each) and only two display-
bin d’ values (.241 and .291).> Thus, Experiments 2, 3, and 4 used
a 2 X 2 design for the variables color code (Code A and Code B)
and participant variation (naive-UCSD vs. informed—DOD partic-
ipants), and detection performance was assessed by comparing
observed d’ values (as dependent variables).

Experiment 2 (luminance signals masked by chromatic noise)
evaluated the masking effects of chromatic noise on the detection
of luminance-encoded signal data. As in Experiment 1, signal
information was conveyed entirely by luminance; however, chro-
maticity indices varied randomly across display bins according to
a uniform distribution to simulate chromatic noise. In Experi-
ment 2 participants located the signal beam presented in each
stimulus panel. Instructions were to search for the “brightest ver-
tical beam.” All other aspects of Experiment 2 were identical to
those of Experiment 1.

In Experiment 3 (chromaticity-encoded signals masked by lu-
minance noise) signal information was conveyed entirely by chro-
maticity (i.e., chromaticity indices in signal display bins had a
distribution biased toward red, whereas chromaticity indices in

noise display bins were uniformly distributed). Display-bin lumi-
nance indices varied according to a uniform distribution. The task
in Experiment 3 required participants to classify indicated signal
beams into one of two categories (discussed further below). The
376 stimuli used in Experiment 3 were identical to those presented
in Experiment 2 with the following exceptions: (a) Entire stimulus
panels (i.e., signal beam and surrounding beams) incorporated
irrelevant luminance noise and meaningful chromatic content, and
(b) the experimental task was a yes-no beam classification task
rather than the 94-alternative forced-choice signal-detection task
used in Experiment 2.

In Experiment 4 (luminance—chromaticity integration), signal
information was conveyed by both luminance and chromaticity.
The task was identical to the beam detection task of Experiments 1
and 2. As in Experiments 2 and 3, two color-coding schemes were
tested in 94 different beam locations at two possible d' signal
levels, yielding 376 display panels that were judged by each
participant in the experiment.

A summary of index distributions and the corresponding task in
each experiment is given in Table 1. Data from these experiments
are analyzed to compare (a) average performance between exper-
iments, (b) average performance across the two participant popu-
lations sampled, and (c) average performance under the two color
codes assessed. All reported tests of significance used two-tailed
paired Student’s f tests unless otherwise stated.

Experiment 1: Monochrome Encoding

Experiment 1 established baseline performance measures for the
detection of signals coded in monochrome data images. Figure 3a
schematically depicts the monochrome code as it varies in bright-
ness relative to an ambient noise signal. This is also shown in
Figure 1a, where the brightness level of the indicated signal beam
is identifiable within noise. Experiment 1 results provide a perfor-
mance baseline to compare with results from color-coded displays
to determine whether the introduction of irrelevant color impairs
baseline detection performance.

Method

Participants. Participants were 5 paid DOD participants as described
above.

Materials. Figure 1a shows a typical Experiment 1 test image (d' =
41) with response format shown in Figure 1d. A computer algorithm
generated 94 stimuli for each of four d’ values, yielding a total of 376 test
images. Participants judged 94 of these vertical beam images for each 4’ at
each possible signal beam location. Physical characteristics of the stimuli
and device were as described above.

Design. Experiment 1 trials required participants to perform a 94-
alternative forced-choice task. Each participant was presented with a dif-

3 The two d’ levels used in Experiments 2, 3, and 4 were .241 and .291.
d' levels .166 and .410 were previously assessed in color-code pilot
experiments and were found to be close to the floor and ceiling of
detection, respectively. For this reason, and following the reasoning that
the number of trials in the monochrome experiments should equal that in
the color-code experiments to minimize possible learning or fatigue effects,
the extreme d' values were omitted from the color-code experiments. This
decision was also influenced by real-world beam detection considerations.
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Figure 6. Averaged task curves for (a) Department of Defense (DOD)
participants and (b) University of California, San Diego, participants (with
the DOD’s Experiment 1 monochromatic baseline performance indicated
by the black dotted line). For these analyses the mean observed d’ values
represent an averaging of results across color-coding schemes. Compari-
sons of the average d;, values across the different tasks used in Experi-
ments 2 and 4 against the average d;, values found for Experiment 3 require
an assumption about the formal model underlying the tasks. Because of the
underlying signal-detection model used in the design of the present exper-
iments, it is meaningful to compare d’ results across the forced-choice and
yes—no tasks used. That is, because acoustic signals are typically Gaussian
distributed we can use a strong version of the theory (making the assump-
tion of a Gaussian-distributed signal with known variance), and, as a result,
we know that the ideal observer in the case of the forced-choice and yes—no
test are formally related (especially because large samples of the signal
were used in the stimulus displays; see Hershman, Kaiwi, & Pilmore, 1987,
for a discussion). These data support the notion that brightness codes seem
to be more salient perceptually in that naive and informed observers alike
perform closer to a theoretical ideal when interpreting brightness codes,
compared with chromatic classification code performance. Thus, the main
finding arising from a comparison of the results from Experiment 2’s
94-alternative forced-choice task and Experiment 3’s yes—no task is that
chromatic signals are more difficult to process than luminance signals,
although both kinds of signals were found to effectively aggregate across
display elements of very small field size. This latter result is an important
demonstration that gradient information can be effectively aggregated and
processed when the display representation uses information units of a
spatial extent well below 2° visual angle.

ferent randomized sequence of 376 stimulus images. The number of stimuli
Jjudged during the experimental session was controlled by the participant.

Procedure.  Participants were asked to examine each stimulus image,
compare each beam from top to bottom and find the “brightest” vertical
beam, and “mark” that signal beam by moving a mouse-controlled cursor
and clicking the mouse. In general, Experiment 1 instructions for signal
beam locating strategies were not elaborate because all the DOD partici-
pants were acquainted with the task. Having selected a candidate “signal”
beam, participants were allowed to modify their selection as often as
desired.*

Results

Although Experiment 1 assessed four d' levels, we present only
data from two d’ levels as baseline measures for ' levels used in
Experiments 2, 3, and 4. Performance in Experiment 1’s detection
task is based on the participant’s ability to visually “integrate”
across an entire vertical beam, composed of 250 stacked display
bins. It is easy to show that given n independent display-bin 4’
values, the optimal mathematically integrated 4’ for the entire
beam is as follows:

di= 4> d2, 1)
k=1

where £ is the index of display bins in a column. Green and Swets
(1967) discussed both the integration model (pp. 238-239) and the
mathematical relationship between d’ and proportion correct in a
forced-choice test (pp. 45-50).

If the value of d’ happens to be constant for all display bins, then
the above equation simplifies to the following:

di= \nxd. 0))

Thus, given 250 display bins per beam, the integrated beam d;
value equals the product of 15.8 and the pixel d' value. Table 2,
row 1, gives the beam dj values corresponding to display-bin d'’
values (.241 and .291), as well as Experiment 1’s empirically
observed d, values inferred from the average observed proportion
correct. Experiment 1 showed that average 4., values from 5 DOD
participants equaled p(d,, ,4;) = 2.165 and p(d), ,5;) = 2.835. This
performance is comparable to that in Hershman et al. (1987),
suggesting the Experiment 1 performance is typical of that seen for
monochrome-encoded data in a static beam detection task. Exper-
iment 1's d; values serve as baseline measures in the analyses
below.

Experiment 2:
Luminance Signal Masked by Chromatic Noise

Given the baseline monochrome detection performance mea-
sured in Experiment 1, we next sought to quantify detection
performance for a luminance-encoded signal masked by randomly
varying chromaticity. The perceptual issue is the degree to which
Iuminance processing is independent of chromaticity processing

“In all experimental tasks presented here, pilot studies showed that
feedback of this sort produced no appreciable learning or local practice
effects after completion of the required practice trials.
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Table 2

121

Average Observed d' Values for All Experimental Conditions Assessed

Signal beam d’ levels tested

DOD sample UCSD sample

Experiment and condition Encoding 3.81 4.60 3.81 4.60
Experiment 1 baseline Monochrome 2.16 2.83 — —_
Experiment 2, luminance encoding Code A 220 2.69 1.93 247
Code B 224 2.69 2.02 2.55

Experiment 3, chromaticity encoding Code A 1.61 2.06 1.32 1.53
Code B 1.36 1.53 0.71 0.92

Experiment 4, TSD predictions Code A 2.73 3.40 2.35 293
Code B 2.63 3.10 2.17 2.74

Experiment 4, integrated encoding Code A 2.80 354 2.43 3.09

Code B 273 327 2.34 292

Note.

Cell values are average observed 4’ values for the experimental conditions listed (by rows) given

separately for participant samples and ideal-detector d' levels assessed (by columns). Signal beam d’ values
equaling 3.81 and 4.60 correspond to individual display-bin 4’ levels .241 and .291, respectively. The University
of California, San Diego (UCSD), sample did not participate in the Experiment 1 baseline study. DOD =
Department of Defense; TSD = theory of signal detection.

(cf. Ashby & Townsend, 1986; Garner, 1974; Maddox, 1992). The
applied issue is the impact on luminance-code performance intro-
duced by a noninformative source producing masking chromatic
noise.

DOD and UCSD participants were separately assessed and
might be expected to perform differently based on motivation
factors alone, although observing similar performance trends
across groups would lend confidence to the practical applicability
of the tested coding systems. Experiment 2 may be expected to
find performance differences arising from the two color codes. For
example, comparing the chromatically saturated Code A with the
uniformly desaturated Code B, we might expect to observe atten-
uated detection of a luminance code due to Code A’s relatively
higher chromatic masking in spite of the small spatial extent of the
stimulus information elements (although such interference and
masking of a luminance code is presumed to be less likely for
targets smaller than 2° visual angle). However, Code B’s on-
average higher luminance (twice Code A’s average luminance)
might be expected to produce improved performance compared
with Code A.

Method

Participants. Experiment 2 separately assessed 5 DOD participants
and 18 UCSD participants.

Materials. Experiment 2’s stimuli were identical to those presented in
Experiment 1 with the following exceptions: (a) As schematically depicted
in Figure 3b, in addition to the meaningful luminance signal embedded in
luminance noise, the stimulus panels incorporated irrelevant chromatic
noise in the displays; (b) two different color coding schemes were tested;
and (c) only two d' levels were assessed. The rationale for these modifi-
cations were (a) the “color irrelevant” beam-detection performance would
indicate the performance differential attributable to the introduction of
nonmeaningful chromatic content to the detection task; (b) the assessment
of two color codes may yield insights into the impact of perceptual factors
on color-code efficacy through the performance differences arising from
the two color codes’ different properties; and (c) only two d’ signal levels
were tested because using two coding schemes doubled the number of trials
for the 188 panels assessed, resulting in a total of 376 beam detection trials

for the entire experiment (thus equaling the number of trials in Experiment
1). Other differences between the UCSD and DOD assessments are de-
tailed above in the General Method section.

Figure 1b shows a typical Experiment 2 stimulus, and response format
is shown in Figure 1d. Irrelevant chromatic noise was applied to the
Experiment 2 stimuli in a manner that paralleled the monochromatic noise
indices described above. All 188 stimuli were colored once using Code A
and once using Code B.

Design. All trials in Experiment 2 were 94-alternative forced-choice
tasks.

Procedure. As in Experiment 1, in Experiment 2 participants located
the single signal beam (i.e., the “brightest beam”). All other aspects of the
procedure for Experiment 2 were identical to Experiment 1.

Results

Given Experiment 1’s baseline detection performance, the goal
of Experiments 2 was to determine whether the introduction of
random, or irrelevant, color would impact detection performance
in our displays. Existing work on similar images is equivocal on
whether added chromatic contrast will impact, negatively or pos-
itively, detection performance. Three issues were addressed by
Experiment 2: (a) Is the DOD detection performance similar to that
seen in Experiment 1? (b) Do the two participant groups (DOD vs.
UCSD) perform similarly? And (c) do both color codes yield
similar detection performance?

Table 2, rows 2 and 3, presents the average dg, values for each
sample. Both groups detected signals for luminance-encoded
data masked by chromatic noise at levels comparable with those
found in Experiment 1. For DOD participants who took part in
both Experiments 1 and 2, the difference in detection perfor-
mance between the average monochrome-encoding perfor-
mance versus Code A luminance encoding was nonsignificant
(p = .13). The UCSD participants’ performance differed from
the Experiment 1 DOD performance (p = .04, two-tailed, using
a t test for unequal samples), although their performance trends
paralleled those of the DOD participants and are consistent with
expected differences in expertise and motivation between the
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groups. Performance under both Code A and Code B show
significant monotonic increases in performance with increasing
tested d' levels for both participant groups (p < .01). This
result suggests the underlying detection model is appropriately
tracking observed detection performance. Considering data
from both Code A and Code B, we did not find a significant
difference in the performance of DOD participants compared
with UCSD participants (p = .072, two-tailed, using a ¢ test for
unequal samples). Finally, considering data from both partici-
pant groups and collapsing across the two d’ levels, we found
that detection performance under Code A was significantly
worse than that under Code B (p < .01). Comparing separately
for each participant group, we found that UCSD participants’
Code A performance was also significantly worse than that for
Code B (p < .01), whereas the same comparison for the DOD
sample shows no significant difference in performance using
either Code A or Code B (p = .540).

Discussion

Experiment 2 shows that for the DOD sample, adding nonmean-
ingful chromatic content does not detract from Experiment 1’s
baseline detection performance. However, if we compare UCSD
participants’ Experiment 2 performance to the DOD Experiment 1
baseline, then we observe a performance difference that is most
likely due to group-performance differences rather than encoding
differences between Experiments 1 and 2. The finding that UCSD
and DOD participants perform in a manner consistent with known
population differences, and at levels similar to baseline, suggests
that the addition of nonmeaningful chromatic content need not
detract from detection performance. These results run counter to
some data reviewed by Christ (1975) that suggest that color can
detract from search performance even when it is used only to
redundantly—or irrelevantly—encode information and do not
support the idea that probabilistic independence produces inhibi-
tion across the luminance and chromatic channels. They do, how-
ever, support Garner’s (1974) suggestion that hue and brightness
are separable stimulus attributes that can be attended to without
interference (Burns & Shepp, 1988). Overall, Code B produced
significantly better detection performance compared with Code A.
This is not unexpected given that Code B has lower and uniform
average chromatic contrast and greater average luminance com-
pared with Code A. These results are discussed further in the
General Discussion section.

Experiment 3: Chromaticity-Encoded Signals
Masked by Luminance Noise

Experiment 3 further examined the brightness—color information-
processing relationship assessed in Experiment 2. In applied
passive-sonar situations, operators typically (a) detect signal
beams, then (b) classify detected beams. Thus, Experiment 3
assessed participants’ ability to use chromatic information to clas-
sify color-coded signals masked by luminance noise into semantic
categories. Semantic categories possibly denoted by the present
coding system are reddish for a dangerous signal and greenish for
a safe signal.

Note that the information-coding relationship used in Experi-
ment 2 described above was reversed in Experiment 3, in which

signal information was encoded by chromaticity, and both chro-
maticity and luminance encoded masking noise. The perceptual
consequences are that signal and noise beams should, on average,
look equally bright, but signal beams should, on average, look
more red than noise beams. The coding of sensor data underlying
this condition is schematically depicted in Figure 3c.

Experiment 3 is, in essence, the logical counterpart of Experi-
ment 2’s beam detection task in that the perceived brightness of
any given beam carries no meaningful information, with brightness
being randomly assigned to ali the stimulus information units.
Thus, the Experiment 3 classification data are driven strictly by the
chromatic content of the stimuli.

Method

Participants. Experiment 3 assessed the same 5 DOD participants
and 18 UCSD participants as in earlier experiments.

Materials. Luminance and chromaticity indices for noise display bins
in Experiment 3 were identical to those noise display bins constructed for
Experiment 2. New luminance and chromaticity indices for signal display
bins were produced independently. First, a random value drawn from the
noise distribution was quantized to obtain a color code’s luminance index
value. Next, the sum of a second random number and a d’ value was
quantized to obtain a code chromaticity index value. Experiment 3 incor-
porated design modifications based on the applied concerns that (a) the
“luminance-irrelevant” beam classification performance will indicate the
degree to which participants can use chromatic information in the presence
of luminance noise when asked to semantically classify color-coded signals
and (b) assessment of the two color-coding schemes in this manner will
reveal performance differences that might arise from the two different
color codes. That is, the highly saturated Code A might serve as a better
color code. As in Experiment 2, the two color codes were tested in 94
different beam locations at two d’ signal levels. Figure l1c shows an
Experiment 3 stimulus constructed using Code B. An additional 188
images were constructed using Code A.

Design. Participants performed a yes-no signal classification task.

Procedure. Experimental trials used Code A and Code B stimuli, and
participants classified a signal beam indicated by displayed cursors as
cither a “Reddish Signal” if the beam was more “Red” than “Neutral” and
responded “Neutral Signal” otherwise. Beam classification instructions
were not standardized for the DOD sample because participants were
nonnaive researchers acquainted with the task. For naive UCSD partici-
pants the classification instructions specified the code-specific criteria for
beam classification (all instructions are available on request). After study-
ing the pre-indicated beam and selecting a response option by mouse click,
participants could modify their classification if desired. Once satisfied with
the classification, the “done” button was selected, and participants were
immediately given feedback concerning the correct classification of the
indicated signal beam (yellow cursor arrows or red cursor arrows indicated
neutral and reddish signals, respectively). Feedback did not improve per-
formance beyond initial training. All other test conditions were controlled
as in Experiment 2.

Results

Recall that the chromatic signal information in Experiment 3 is
masked by luminance noise and that the lowest level of luminance
in Code A is black. The perceptual consequence of this is that a
human observer cannot perceive any chromatic distinctions be-
tween display bins at the lowest level of luminance. Thus the
chromatic d’ is actually less than the statistical d' calculated from
chromaticity indices. On average, because luminance is uniformly
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distributed, one eighth of the display bins will be black and
therefore carry no chromatic information. We therefore adjusted
the input beam d’ from V250 to V/0.875 * 250 = 14.79. Thus, the
two beam d’ values reported in Table 2 (i.e., 3.81 and 4.60) were
corrected to 3.56 and 4.3, respectively, for Experiment 3’s Code A
chromaticity-encoded signals.

The Gaussian ideal-detector model permits using a single observed
hit and false-alarm pair to derive a unique d;, value, thereby recovering
d,, from the hit and false-alarm rates of each participant. In addition,
each d., derived from the hit and false-alarm data can be used to derive
a corresponding proportion correct in a 94-alternative forced-choice
test (Green & Swets, 1967, pp. 45-50).

Analysis issues were as follows: (a) Is performance similar to
that of Experiment 2? (b) Do the two participant groups (DOD vs.
UCSD) perform similarly? And (c) do the two color codes yield
similar classification performance?

Table 2, rows 4 and 5, presents average d,, values for each
sample assessed. For both groups, when signal information was
encoded by chromaticity, performance was inferior to Experiment
I’s baseline.® Both groups also showed significant monotonic
increases in performance with increasing 4’ levels (p < .05),
excepting the nonsignificant difference between the two d’ levels
under Code B for the DOD sample (p = .26). These results
suggest that the underlying detection model is appropriately track-
ing observed performance in the 94-alternative forced-choice hue-
encoded task. Combining Code A and Code B data, we found that
on average DOD participants performed significantly better than
the UCSD group (p < .01, two-tailed, using a ¢ test for unequal
samples). Finally, considering both participant groups’ data and
collapsing over d’ levels, we found that detection performance
under Code A was significantly better than under Code B (p <
.01). The same comparison made separately for each participant
group showed that performance in each group under Code A was
also significantly better than that for Code B (p < .01).

Discussion

In Experiment 3 participants effectively used a meaningful color
code to classify signal beams into arbitrary classification catego-
ries. This was done in the absence of any meaningful luminance
information that might complicate the ability to make use of
chromatic information and suggests that in this display format
color serves as an independent coding dimension and provides an
ordered category structure. These results on ordered classification
are new and promising for applied coding systems that aim to use
color as a nonredundant salient coding dimension for ordered
information categories. As in Experiment 2, Experiment 3 also
shows that UCSD participants were not as skilled at the classifi-
cation task as were the DOD participants. Again, this is not
surprising given that the populations compared were university
students and highly motivated and informed DOD participants.
Finally, results suggest that Code A provides superior chromatic
contrast compared with Code B. This is consistent with the fact
that Code B’s construction process yielded noticeably less satu-
rated colors as a result of the contribution of blue phosphors. These
results are discussed further below.

Experiment 4: Luminance—Chromaticity Integration

Having quantified in Experiments 2 and 3 performances with
luminance information masked by chromaticity noise and chroma-
ticity information masked by luminance noise, our next objective
was to quantify performance with simultaneous luminance- and
chromaticity-encoded information. As mentioned earlier, it could
be the case that in the latter situation, in which two types of signal
information are present, interference (or orthogonality loss) might
occur, resulting in an overall performance that is worse than when
encoding by luminance or chromaticity alone (Garer, 1974).
Although this kind of inhibition is less common than summation
across information channels, it can produce small decrements in
performance in tasks using disparate information from multiple
channels, compared with tasks in which all information derives
from a single channel (see Graham, 1989, pp. 471-472, for a
discussion). The purpose of Experiment 4 was to quantify any
processing losses associated with simultaneously presented inde-
pendent luminance and chromaticity encoding.

Experiment 4’s stimulus panels used both meaningful lumi-
nance information and meaningful chromaticity information to
encode the underlying sensor data (see Figure 1d). This modifica-
tion permitted assessment of a combined brightness and hue in-
formation code capable of simultaneously conveying two different
kinds of information with a single code value.

5 What is the basis for comparing results from yes—no and 94-alternative
forced-choice tasks? For a theoretical ideal observer, yes—no and forced-
choice responses are related in the underlying TSD decision model (Green
& Swets, 1967, pp. 45-50). In addition, the two tasks are highly perceptual
and have been shown to be accurately modeled by TSD (Hershman et al.,
1987). Thus, it is reasonable to compare empirical performance in the two
tasks. Green and Swets illustrated how the percentage correct in a two-
alternative forced-choice task is simply the area under the yes—no receiver-
operating characteristic (ROC) curve (see their Figure 2-6, and pp. 47-48).
They further explained how “the argument is easily extended to give the
percentage correct in m-alternative forced choice designs. . . . thus detec-
tion theory provides a means of predicting the percentage of correct
detections in forced choice from the yes—no or rating ROC curve” (p. 47).
In practice, comparing d;, values between yes—no, two-alternative forced-
choice, and N-alternative forced-choice perceptual tasks (involving iden-
tical stimuli and participants) is common in sensory perception research
and typically produces consistent d;, values. Such comparisons under more
cognitive tasks can yield inconsistent d;, values. Our comparisons of
Experiment 3 d;, values with d} values from Experiments 1, 2, and 4 are
considered appropriate and reasonable because (a) the tasks are highly
perceptual, (b) all evidence suggests that the statistics of the data under-
lying the stimuli fit the TSD assumptions, and (c) across experiments we
used identical stimulus panels (differing only by encoding condition) and
participants. Although the appropriateness of comparing d; values from
yes-no and 94-alternative forced-choice tasks may remain an issue, the
main point is not the absolute efficiency of luminance or chromaticity
coding but the fact that observers exhibit behavior consistent with rela-
tively independent processing in the brightness and hue channels and
efficient integration of combined information. The present experiments
chose the yes—no and 94-alternative forced-choice tasks to simulate the
demands in applied detect and localize sonar situations. If we had chosen
to exclusively use either yes—no or forced-choice designs in our study, we
would not expect our experimental results to be different.
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Method

Participants. Experiment 4 separately assessed the same 5 DOD par-
ticipants and 18 UCSD participants previously described.

Materials. Stimulus images were created for Experiment 4 by con-
structing new signal display-bin indices for the images used in Experi-
ment 2, similar to that described above (details of all quantization methods
used are available on request).

Design. Except for the two-dimensional information code used, Ex-
periment 4’s design, task, and apparatuses were identical to those of
Experiment 2.

Procedure. Only an appropriate modification of the instructions dif-
ferentiates Experiment 4 from Experiment 2. That is, participants under-
stood that they should select the “brightest and reddest” beam and that both
brightness and redness features were needed to indicate a signal. Figure 1d
exemplifies the stimuli used in Experiment 4 in which the signal is encoded
by both luminance and chromaticity.

Results

If d; , di-, and dj denote the beam d's for luminance information,
chromaticity information, and optimally integrated luminance and
chromaticity information, then, analogous to Equation 1, 4] is
defined as follows:

di= di* + d;. 3)

Given the way the stimuli were constructed, for an ideal ob-
server we should have d. = V0.875 * d[ for Code A and d¢. =
d; for Code B. Table 3 shows the values of dj , d¢-, and dj for both
Codes A and B. Thus, performance in Experiment 4 was predicted
by assuming the observer will make optimal use of the information
obtained from luminance and chromaticity (Equation 3). For par-
ticipants who took part in both Experiments 2 and 3, the individual
d,, values obtained in Experiment 2 estimate an observer’s sensi-
tivity for the luminance signal, and Experiment 3 d, values esti-
mate sensitivity for chromatic signal strength. Equation 3 predic-
tions are given in Table 2, rows 6 and 7, and are compared below
with observed performance.

Experiment 4 analyses addressed the following questions: (2)
Do Experiment 4 results accord with performance predicted by the
detection model? (b) Do participants (DOD vs. UCSD) perform in
ways similar to those seen in previous experiments? And (c) do the
two color codes yield similar detection performance? Experiment
4’s results are of particular interest in view of the perceptual
channel considerations discussed earlier. That is, compared with a
luminance code alone, cross-channel interference and masking
might be expected to produce comparatively depressed perfor-
mance in the saturated Code A combined code. Alternatively, if
luminance and chromaticity are integral components, then a satu-
rated combined code may facilitate performance (Ashby &
Townsend, 1986). The existing literature has yet to address these
empirical issues for the present display format.

Table 2, rows 8 and 9, presents the average d,, values for each
sample assessed, which can be compared with the performance
predicted by the TSD model using the Experiment 2 and Experi-
ment 3 data.® For both participant groups and color codes, perfor-
mance under the two-dimensional codes was superior to that seen
in the Experiment 1 baseline, and it was also significantly better
than performance predicted by the underlying model (p < .01).
Expected significant monotonic increases were seen in perfor-

mance with increasing d' levels for both participant groups (p <
.05), with the exception of the nonsignificant difference between
the d’ levels under Code B for the DOD sample (p = .69).
Considering data from both Code A and Code B, we found that on
average DOD participants performed the task significantly better
than the UCSD participant group (p < .05, two-tailed, using a ¢
test for unequal samples). Finally, considering data from both
participant groups and collapsing across 4’ levels, we found that
detection performance under Code A was significantly better than
that found under Code B (p < .01). If we make the same com-
parison separately for each participant group, we find that perfor-
mance in each group under Code A is also significantly better than
that for Code B (p < .01).

Discussion

Experiment 4 shows that detection performance was better than
expected in both groups. Initially, this seems a surprising result;
however, one plausible explanation may be that Experiment 3 d_,
values underestimate the chromatic d;, values achievable by par-
ticipants in Experiment 4. Recall that in Experiment 3 luminance
indices were uniformly distributed over the entire stimulus,
whereas in Experiment 4 the signal beam included both a lumi-
nance signal and a chromaticity signal. Thus, on average signal
beams in Experiment 4 were brighter than signal beams in Exper-
iment 3. Two related perceptual consequences may produce Ex-
periment 4’s superior chromatic information processing: First,
Experiment 4’s “improved” luminance information may make it
easier for the observer to see which display bins should be inte-
grated. Second, an increase in the average luminance may yield
improved chromatic discrimination and detection. Decreases in
chromatic contrast with lower luminance indices is obvious in both
color tables. For example, in Figure 3’s approximation of Code A
the appearance of an Experiment 3 signal display bin tends to
correspond to one of the code values in the left half of the table. By
comparison, the color appearance of a signal display bin in Ex-
periment 4 tends toward code values in the upper left quadrant,
where color discrimination between code elements is noticeably
better.

Experiment 4 results may also not be unexpected given existing
results on d' additivity (Pelli, 1985), or facilitation or negative
masking (Nachmias & Kocher, 1970; Nachmias & Sansbury,
1974). This concept implies that participants might detect and
discriminate contrasts in the combined luminance-hue stimulus
that differ less than the smallest contrast that can be detected in
either the luminance or chromatic stimuli alone. That is, sensitivity
is heightened for a two-dimensional code stimulus compared with
a one-dimensional code stimulus. In addition, studies on probabil-
ity summation effects (i.e., when a compound stimulus is more
detectable than either of two component stimuli) might also sug-
gest that when two components such as luminance and chroma-

S Tt should be noted that Experiment 1’s baseline performance curve is
expected by theory to refiect inferior sensitivity compared with that seen in
the combined code condition because in Experiment 4 d’ is defined by
Equation 3 (see the relatively high predicted-combined curve represented
by the solid black line in Figure 6). Experiment 1’s results are included in
Figure 6 to only serve as a performance “point-of-reference” and to be
consistent with the earlier presentations of Experiments 2 and 3 results.
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Table 3

Signal Beam d' Values for Code A and Code B for Luminance-, Chromatic-,

and Combined-Code Conditions

Code A Code B
Luminance Chromaticity Combined Luminance Chromaticity Combined
3.81 3.56 5.21 3.81 3.81 5.35
4.6 43 6.29 4.6 4.6 6.5

Note. Cell values given in columns are the two input beam d’ values tested for each encoding condition

assessed.

ticity combine in a code, the result is facilitated detection perfor-
mance (e.g., Graham, 1977, 1989; Sachs, Nachmias, & Robson,
1971). And, as mentioned earlier, facilitation is also possible
through gestalt processing of information on all integral dimen-
sional stimuli (Garner, 1974). These possible explanations (under-
estimated chromatic d’' and perceptual facilitation) of Experi-
ment 4 performance cannot be disentangled in the present study.
However, Experiment 4’s results suggest that either our compo-
nent d' values were not estimated properly by Equation 3 or that
the standard integration formula may not be appropriate for esti-
mating performance in the present task given that perceptual
facilitation is possible. As suggested by Luce (1994), applications
of TSD toward integrating multiple signal sources in a composite
code may require further formal modeling. Similar to earlier ex-
periments, Experiment 4 shows that the DOD participants per-
formed better than the naive UCSD participants. Code A perfor-
mance was found to be superior to that under Code B.

Comparing results across experiments, we present in Figure 6
within-sample performance across Experiments 2, 3, and 4, rela-
tive to Experiment 1’s monochrome baseline. Figure 6a presents
the mean d., comparisons (collapsed across color code) for all the
DOD experiments, and Figure 6b presents the analogous data from
the UCSD experiments. Figure 6 demonstrates similar patterns of
performance across experiments for the DOD and UCSD sampfes.
For the present display format, both samples’ performance for
detection of a brightness code in the presence of irrelevant noise
(Experiment 2) was found to be better than performance for simply
classifying color-encoded stimuli (Experiment 3). Relative to the
monochrome baseline, chromatic masking did not degrade detec-
tion performance (Experiment 2). Moreover, as discussed above,
for both samples, performance under a combined information code
(Experiments 4) yielded performance superior to that predicted by
theory (the predicted-combined curve).

The DOD results in Figure 6a can perhaps be interpreted by a
generalization of Garner’s concepts of orthogonality loss and
redundancy gain (Garner, 1974, pp. 124-128; Garner & Morton,
1969). For example, the DOD group’s performance in Experi-
ment 2 (luminance-encoded signals in luminance noise with irrel-
evant chromatic noise) suggests that orthogonality loss does not
occur when irrelevant color is added to Experiment 1 stimuli
(Juminance-encoded signals in luminance noise at constant chro-
maticity), in that the results from the two experiments are not
significantly different. Similarly, the DOD group’s performance in
Experiment 4 seems to suggest that orthogonality loss is not
impairing performance in these multidimensional stimuli and that
redundancy gain may be partially responsible for the superior

performance seen under Experiment 4’s multidimensional-
encoding condition when compared with conditions in which
signal encoding was achieved by a single dimension (Experi-
ments 2 and 3). Similar interpretations may apply for other
observer-group data; however, further experiments are needed
before orthogonality loss and redundancy gain can be made spe-
cific for general observer performance on multidimensional stim-
uli such as those used here.

Figure 7 summarizes, for all participants assessed, average d.,
measures on (a) stimuli with signals based on two independent
sources of information simultaneously encoded with luminance
and chromaticity (left data series), (b) luminance-encoded signals
masked by uniform noise (middle data series), and (c)
chromaticity-encoded signals masked by uniform noise (right data
series). As can be seen, there is a substantial effect due to encoding
method and a lesser effect due to color code.

General Discussion

Specifically, what do the present results suggest for applications
of multidimensional information codes to gradient intensity data
formats? (a) A luminance code can be presented in the context of
nonmeaningful hue variation without negatively affecting the pro-
cessing of a luminance signal, (b) a hue code can be used to
independently convey information in the context of nonmeaningful
luminance variation, (c) increased processing demands of a hue—
luminance code do not produce decreases in performance, and (d)
in this display format TSD is reasonably useful as a statistical tool
for modeling and predicting observer performance in that observed
d' was found to monotonically increase with increases in tested d'.
However, TSD’s integration formula underestimated sensitivity
under a combined brightness—hue code (Experiment 4). Although
this is an aspect of the formal model needing appropriate modifi-
cation, it is perhaps not surprising given existing results that
suggest facilitated detection for multichannel stimuli. Contrary to
our expectations and to some suggestions in the literature, the
introduction of chromatic noise does not substantially depress
detection of a luminance signal compared with a monochromatic
baseline (Experiment 2). Also somewhat unexpected is the finding
that color codes can be effectively used in the presence of lumi-
nance noise (Experiment 3), although—not surprisingly given the
small size of the information elements in our stimuli—not as
effectively as a luminance code. Overall, these data show that
processing chromaticity-encoded information masked by lumi-
nance noise is significantly more difficult than processing
luminance-encoded information masked by chromatic noise.
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Figure 7. Performance data from Experiments 2, 3, and 4 for two
participant groups (participants from the Department of Defense; DOD;
and from the University of California, San Diego; UCSD) and for two color
codes (Codes A and B). Experiment 2 signals were encoded using lumi-
nance only. Experiment 3 signals were encoded by chromaticity. Experi-
ment 4 signals were encoded by both luminance and chromaticity. Speck-
led bars represent performance data for UCSD Code A. White bars
represent performance data for UCSD Code B. Hatched bars represent
performance data for DOD Code A. Black bars represent performance data
for DOD Code B.

Observed performance differences under Code A and Code B
are summarized as follows. Detection performance under the
monochrome code (Experiment 1) resembled that under both
Codes A and B (Experiment 2); however, for luminance-based
encoding, performance under Code B (the uniformly desaturated
code) was superior to that under Code A (Experiment 2). This
makes sense because lightness and saturation are held to be two
dimensions that seem to be processed together (Garner, 1974). In
Experiment 3's hue-based classification task, performance under
Code A was superior to performance under Code B. This seems
reasonable given that Code A has relatively higher chromatic
contrast. Finally, Experiment 4’s detection performance under
integrated Code A was superior to that under integrated Code B.
Again, Code A’s greater chromatic contrast seems to convey a
more discriminable signal, presumably by using a greater color
differential. Nevertheless, the integrated code condition is clearly
a situation in which neither dimension (brightness or hue) inhibits
processing of the conjoined code. Interestingly, according to
Ashby and Townsend (1986), if two component dimensions are
separable, then Experiment 4 performance would be expected to
mimic that of Experiment 2. However, if the two components are
integral, then, as was observed, improved performance would be
predicted for Experiment 4. Although the specific relations be-
tween these perceptual dimensions cannot be decided through the
present experiments, the present data do support the notion that the
chromatic differences that exist between the two color codes do
not differentially inhibit luminance detection performance to any
appreciable degree (Experiment 2).

Together data from Experiments 2 and 3 indicate that perfor-
mance with luminance-encoded signals is substantially better than
that for chromaticity-encoded signals. That performance with
chromaticity-encoded signals is not as good as that with
luminance-encoded signals is not surprising for two reasons. First,

the detection task requires observers to visually integrate perceived
colors across exactly those display bins that make up each beam.
However, luminance masking can reduce the ability of the ob-
server to perceive edges defined by chromatic differences. Thus,
luminance masking can cause signal display bins to be perceived
as belonging to neighboring noise beams, and vice versa. Conse-
quently, because spatial discrimination of different chromaticities
is not as good as spatial discrimination of different luminances,
chromatic information in noise display bins is more likely to get
included with chromatic information in signal display bins. Sec-
ond, luminance processing is expected to be less dependent on
large field size compared with chromatic processing (Widdel &
Post, 1992). Thus, small visual angle of information display bins
may produce a greater reduction in an observer’s ability to dis-
criminate between display bins on the basis of color relative to
similar discriminations based on brightness.

Finally, we found results contrary to the notion that integration
of both luminance and chromatic information in a single code
hinders detection performance because of cross-channel inhibition
effects (Experiment 4). That is, the integrated information codes
we tested produced performance better than that observed for
either code alone, or, put differently, better than that possible using
the best channel (i.e., luminance-channel performance). This is a
positive indicator for display designers seeking to pack more
information into user interfaces using two-dimensional informa-
tion codes.

What Do the Results for the UCSD and DOD Participant
Samples Reveal?

How do varying levels of observer “expertise” (defined by
experience and motivation of the participant) impact detection and
classification performance? The results imply that although there
were performance differences between the two samples, in general
these differences are what might be expected given the two pop-
ulations. It seems reasonable to assert that the tested two-
dimensional codes do not require any special sophistication to
interpret and thus are viable coding alternatives for information
displays used by both trained and inexperienced operators.

How Do We Interpret Results for the Multidimensional
Information Codes?

We have shown that one can pack an additional dimension of
information into a display by adding a hue dimension to a bright-
ness dimension. Color in an information code need not signifi-
cantly depress detection performance for a brightness signal. This
is an important new finding for information representation because
it suggests interface designers can effectively use composite in-
formation codes when an application requires that additional in-
formation be conveyed by a user interface. The implication is that
these dimensions are perceptually and cognitively distinct enough
to be judged independently in conjoined codes.

Although the two color codes generally produced very similar
performances, Code A was substantially more effective at color
coding information in the classification task. This result follows
from the fact that Code A is highly saturated (deeper) whereas
Code B is more desaturated (or pastel). Thus, the recommendation



COLOR CODING INFORMATION 127

made for applications involving pattern recognition that integrates
small, noise-masked information elements over larger signal areas
is that when combined with a brightness code, classification codes
should maximize chromatic information when color encodes sa-
lient classification information, and desaturated codes should be
avoided when very small field sizes are used. These results are
consistent with known perceptual effects on dimensional interac-
tions, even though we used nonstandard and novel stimuli masked
by statistical noise.

As has been suggested elsewhere (Jameson, 1997; Jameson &
D’ Andrade, 1997), the present results support the notion that a
person can independently respond to brightness information in
spite of the fact that he or she is also processing color, which
further supports the notion that the dimensions of hue, brightness,
and saturation are perceptually salient and psychologically mean-
ingful characteristics of human color processing. This is indicated
by the findings that the dimensional constructs of brightness and
hue are easily untangled in the present tasks, which have as their
express aim the goal of pushing detection thresholds (using strin-
gent d' levels). In general, our results suggest that multidimen-
sional codes—at least two-dimensional ones—are viable, espe-
cially when the two dimensions are robust psychologically as is the
case with the brightness and hue dimensions used here. Principled
procedures were given for developing information codes that are
extendable, that are generalizable across devices, and that address
perceptual inconsistencies (e.g., hue percepts that vary with bright-
ness contrast). We showed that such issues can be accounted for by
an information code that uses a perceptual space as a basis for
construction, without reducing information representation capabil-
ities and without any significant effort beyond that normally in-
vested when engineering-based methods are used to devise a
physically based information code. On the basis of these results,
we suggest the development and use of psychologically based
codes for multidimensional information representation because
they are feasible and effective.
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