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Finding an appropriate order for a hierarchy based on probabilistic
dominance
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Methods of ranking individuals in a dominance hierarchy that use transitivity of relationships may
obscure irregularities. Furthermore, these methods use only a small proportion of the information
available from dominance encounters. This paper presents an intuitively appealing and easily imple-
mented alternative to existing methods for ordering dominance data, developed from the work of
Batchelder et al. (1992, Journal of Mathematical Psychology, 36, 185–212). The procedure presented here is
based on a mathematical model of paired comparisons and it involves only simple estimation procedures.
We illustrate its use with data on dominance among red deer, Cervus elaphus, stags. The results indicate
that dominance relationships are well characterized by the scale values that the model provides, and,
because the method provides predictions for all pairings of animals, dominance predictions also exist for
pairs of animals that have yet to be observed. Moreover, the dominance outcomes predicted by the model
using the order scale are highly correlated with actual dominance observations at all levels. Overall, the
procedure described provides a solution to the problem of identifying an appropriate order for a
near-linear dominance hierarchy.
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Dominance hierarchies in groups of animals are widely
studied, yet methods for the description of hierarchies are
still under discussion. In particular, many hierarchies
appear to be linear or near-linear. In a linear hierarchy,
one individual dominates all the others, a second domi-
nates all but the first and so on. Linear hierarchies are rare
except in small groups of animals (Wood-Gush 1955;
Drews 1993), and in near-linear hierarchies the question
arises of how best to order the group members. de Vries
(1998) has recently reviewed methods that have been
used for such ranking. The majority are based not on
dominance interactions or encounters, but on domi-
nance relationships within pairs of animals (dyads). In
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many dyads, one member wins most or all interactions:
indeed, that is the definition of dominance (Drews 1993).
A matrix of encounters can therefore be simplified into a
matrix of relationships with each entry being either 1 or
0: usually a 1 indicates that the ‘row individual’ is domi-
nant to the ‘column individual’, a 0 that it is subordinate
(missing and tied relationships are also possible). The
criterion of dominance used for this purpose may be
simply that one individual has won the majority of
interactions, or that the proportion of interactions it has
won is significantly greater than half by binomial test. de
Vries (1998) argues in favour of methods using 1/0 domi-
nance relationships, principally because alternatives may
assume that individual dominance encounters are statisti-
cally independent, an assumption that is unlikely to
hold. This point will be discussed below.

A common approach to ranking using relationships is
to arrange the individuals in an order that minimizes the
instances of individuals dominating others higher in rank
(Schein & Fohrman 1955; Brown 1975). This approach
assumes that dominance is transitive: thus, among ani-
mals A, B and C (a triad), if A dominates B and B
 1999 The Association for the Study of Animal Behaviour
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dominates C, then A will also dominate C. Before using
such a method, it is therefore appropriate to test statisti-
cally whether dominance is more transitive than chance
(Appleby 1983). de Vries (1998) describes a number of
methods that formalize Brown’s (1975) approach, and
presents a new method of his own.

Two problems remain with such methods. First, as
pointed out by Beilharz & Mylrea (1963) and emphasized
by Appleby (1983), ‘tidying up’ hierarchies in this way
may be misleading. Just because transitivity holds statisti-
cally does not mean that every triad not known to be
intransitive can be assumed to be transitive.

For example, a weak dependence of dominance on the
absolute characteristics of the individuals involved would
be sufficient to produce significant linearity in a large
group, and assuming dominance to be transitive through-
out could obscure various irregularities in the hierarchy
(Appleby 1983, pp. 605–606).

The main reason for ranking group members must be to
consider the correlates of rank, including causes and
effects. If there is no intrinsic reason for using transitivity
in ranking, then it may be inappropriate. Alternative
methods of ranking using relationships that do not
involve transitivity of dominance include simple indices
such as the proportion of opponents encountered that are
beaten (Wagnon et al. 1966) and more complex indices
that take into account success of opponents (Wei 1952;
Kendall 1955; Clutton-Brock et al. 1979).

Second, information on dominance in groups of
animals is often incomplete. This problem can be made
worse if only some of the information collected is used,
as occurs when multiple encounters in a dyad are
represented simply in a 1/0 form. For example, Appleby
(1983) found that the pattern of relationships among
seven red deer, Cervus elaphus, stags could not be dis-
tinguished from random, suggesting that no hierarchy
was present. Iverson & Sade (1990), however, showed
that when the individual interactions were taken into
account, the pattern of wins and losses was clearly non-
random. Freeman et al. (1992) further explored analyses
of encounters and asked not only ‘who beats whom?’
but also ‘who fights with whom?’ and ‘who fights at
all?’ (page 239), although the detail of some of their
conclusions was later called into question (Appleby
1993).

Both these problems are addressed by a method offered
by Boyd & Silk (1983). Their index of dominance does not
assume transitivity, and uses all the information available
from individual dominance encounters rather than just a
simplified matrix of relationships. In addition, their
method has the attractive feature of an iterative pro-
cedure that uses the success of opponents to yield rank-
ings even in cases where many dyads in the group have
never been seen to interact. Unfortunately the method
has a number of restrictive requirements and assump-
tions, in addition to the assumption that individual
dominance encounters are statistically independent. de
Vries (1998) recognized both the procedure’s disadvan-
tages and advantages in describing it as ‘the method that
is based on the most restrictive model, but that also yields
the most informative results’ (page 833).
Boyd & Silk (1983) assume that dominance is not
deterministic. They see it as essentially stochastic, such
that depending on fluctuations in health, fatigue and the
like, either of a given pair of animals might win any
particular encounter. In the present paper we also take
the probabilistic approach, and introduce an alternative
probability-based method that is more appropriate for
application to dominance interactions than that pro-
posed by Boyd & Silk (1983). In common with all the
methods discussed above, the method presented here
is appropriate for ranking near-linear hierarchies. It has
yet to be proven appropriate for more complex social
structures, such as those in mixed groups of male and
female animals with partially independent hierarchies, or
groups with frequent alliances or maternally inherited
dominance. Such complexities are particularly common
in primates (Sade 1992). However, in studies of complex
human behaviours like chess playing (Elo 1978), our
method is ideal as a procedure for assigning perform-
ance rankings of individual chess players involved in
tournament play. Thus it is plausible that our method
may be amenable to more complex structures of animal
dominance, but this question is not addressed in the
present paper. However, for near-linear hierarchies, this
paper provides an intuitively appealing and easily imple-
mented alternative to existing methods for ordering
dominance data. We illustrate the method by applying it
to data from observations of 68 red deer stags on the Isle
of Rhum (Appleby 1982).
THE BOYD & SILK MODEL

Both the model proposed by Boyd & Silk (1983) and the
one that we introduce here are based on Thurstone’s
(1927) method of paired comparisons. Thurstone’s
method involves observing a series of events in which
pairs of objects are formed in such a way that one object
in each pair is selected. The win/loss matrix defined above
is generated by just such observations. The events that
the ethologist observes are agonistic encounters; the
object selected is the winner.

The model described by Boyd & Silk was originally
introduced by Bradley & Terry (1952). Consider a particu-
lar pair of animals ai and aj. Let ðij be the probability that
in any encounter ai dominates aj. Then the Bradley–Terry
procedure uses probabilities to assign a dominance scale
value s(ai) to each animal ai in the community. The
procedure assigns dominance scale values to ai and aj in
such a way that the probability ðij is a monotone increas-
ing function F of the difference between their scale
values:

ðij=F[s(ai)"s(aj)]

The values of ðij are assumed to be continuous and are
estimated from the observed proportions pij defined
above. The magnitudes of the pijs are used to estimate
values of s(ai) by using a maximum likelihood procedure.

The model itself requires three assumptions: (1) the
underlying distribution of dominance is continuous; (2)
the probability that a particular animal will defeat a
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particular other, ðij, is constant; and (3) the outcome of a
particular encounter between any pair of animals is inde-
pendent of the outcomes of their previous encounters.
These assumptions may be questionable in behavioural
terms, but they are essential in any stochastic approach.
As mentioned above, the third assumption has been
particularly questioned (de Vries 1998). However, it
should be noted that neither the method described by
Boyd & Silk nor the alternative that we suggest below are
statistical tests, requiring independent data. Although the
theory that produced the algorithm makes assumptions of
independence of individual dominance encounters, the
results of the algorithm can be tested directly without that
assumption, as explained below (also see Discussion).

Greater difficulties are raised by three additional
assumptions that must be met in order to estimate the
parameters of the Bradley–Terry model. First, estimating
values of s(ai) requires the use of an iterative computa-
tional procedure to solve a set of nonlinear equations.
Unfortunately, the procedure converges on a solution
only when the data meet a rather stringent and, for this
application, probably inappropriate, additional condition
that there should be no extreme individuals. As Boyd &
Silk (1983, page 49) describe it, ‘. . . convergence is not
achieved in groups that include individuals who are
never dominated by other individuals . . .’, but we can
also add that convergence is not achieved when an
individual is dominated by all the others. In a linear
order, however, there is a top-ranking animal that is
never defeated and a bottom-ranking animal that is
always defeated, and because we are seeking an approxi-
mation of such an order, the Bradley–Terry model is of
questionable utility for this application.

Second, an estimation of s(ai) entails the assumption of
constant interaction rates. Boyd & Silk describe it as
assuming ‘. . . that the rate of interaction between indi-
viduals is independent of their relative dominance ranks
. . .’, but it has been established, at least for some species
(Cole 1981; Clutton-Brock et al. 1982; Freeman et al.
1992), that interaction rates are strongly associated with
relative dominance positions of the individuals involved.
So, again, we see that the Bradley–Terry model is not
really appropriate for applications to dominance.

The third and perhaps most telling deficiency of the
Bradley–Terry model in this context is that to get stable
estimates of its parameters, the data must include
repeated observations on each pair of individuals. Thus,
the data must provide information on a kind of extended
round-robin series of encounters (Roberts 1990). How-
ever, ethologists cannot usually produce this kind of
information. In natural settings, it is almost universally
true that a good many pairs of individuals are simply
never observed interacting. Although the Bradley–Terry
model has many strengths, overall, it is probably not the
model we want for applications to dominance.
THE BATCHELDER–BERSHAD–SIMPSON (BBS)
SCALING METHOD

Batchelder & Bershad (1979) introduced an alternative
model also based on Thurstone’s paired comparisons.
Their model was later elaborated by Batchelder &
Simpson (1989) and Batchelder et al. (1992). The
Batchelder–Bershad–Simpson (BBS) method is a formal
statement of an idea that was originally developed infor-
mally by Elo (1978), a statistician and chess enthusiast. Its
original aim was to provide a systematic procedure for
scaling the performance of a relatively large number of
chess players on the basis of outcomes from a relatively
small number of pairwise games. Because the data from
animal communities that concern ethologists also tend to
display this kind of sparseness, the BBS model has some
special properties that make it appealing for application
to dominance data.

The BBS model shares the same assumptions about
continuity, stability and independence of outcomes with
the model discussed above, but, in addition, Batchelder &
Bershad add a fourth assumption that permits each ani-
mal to be assigned a scale score, even under conditions
like those we are faced with here, where the entries in the
dominance matrix are relatively sparse. Their additional
assumption is that the distribution of dominance
that underlies the observed behaviour is normal, an
assumption which is discussed below.

The BBS model uses a simple equation to provide initial
estimates of scale values s(ai) for each animal:

s(ai)=[á(2Wi−Ni)/2Ni] (1)

where á=√2ð=2.50663 is a constant, taken from the
Taylor expansion of the normal distribution; Wi is the
number of encounters in which animal ai was observed to
have won; and Ni is the number of encounters in which
ai was involved. Using this equation, each animal is
assigned an initial scale score as a simple function of the
proportion of agonistic encounters it won. Then, given
the initial scale scores provided by this first equation, a
second equation is used recursively to rescale the animals
repeatedly until their scale scores become invariant:

s(ai)=[2(Wi"Li)/Ni]+Qi (2)

where Li is the number of encounters in which animal ai

lost; and Qi is the mean scale score of those animals that
ai met in agonistic encounters.

Thus, an animal’s scale position depends on (1) the
proportion of wins in its encounters with others, (2) its
proportion of losses, and (3) the scale scores of the others
that it has met in agonistic encounters. This measure is
similar to the one proposed by Clutton-Brock et al.
(1982), which is based on the numbers of opponents
beaten and lost to, and the success of those opponents.
The measure proposed here takes similar features of the
data into account.

This equation is applied repeatedly to observed data.
Initial values of Qi are calculated from the initial scale
scores. Then, as a result of that first calculation, each
animal is assigned a new scale score that depends, in part,
on the scale scores of its opponents. These new scores are
then used to calculate new values of Qi for each animal.
Using successive score updates, this process is repeated
until the scores converge and continuing calculations no



994 ANIMAL BEHAVIOUR, 57, 5
longer induce changes. These final scale scores can then
be used to order the animals. The scale scores for a given
pair of animals ai and aj are s(ai) and s(aj). If s(ai)>s(aj),
then the model concludes that ai is dominant to aj. And if
s(ai)<s(aj) then aj is judged to be dominant.
Predicting Dominance Outcomes from a Derived
Dominance Ordering Scale

An additional important feature of the BBS method
rests in its ability to predict unobserved dominance
patterns using the formal model and the obtained
dominance scale. This feature is valuable, has been found
to be robust under empirical test, and is not a feature that
is presented by the existing methods in the literature.

Briefly, if A={a1, a2, . . ., an} denotes the set of n animals;
and S={s(a1), s(a2), . . ., s(an)} denotes the convergent
dominance scale, then the model’s predictions are
obtained by employing each scale value s(ai) in a piece-
wise linear equation given by the model to predict out-
come probabilities for all possible encounters between
scaled animals (see Jameson 1996 for details). The essen-
tial feature of this Thurstonian-based procedure is that
the model’s predictions are a monotonic function of the
difference between the true dominance rankings of
the animals being considered. This procedure derives the
complete n#n matrix of conditional probabilities for all
pairings of animals, including estimating outcomes for
agonistic encounters between animals that have never
previously met.
Table 1. A portion of the Appleby (1983) data consisting of the raw dominance encounter matrix for 68 red deer
stags

BUDY CLEC MAXI SBBW HAMI SOOC RGRC YHOC PETE SLIP . . .

BUDY 0 0 0 0 4 0 0 0 0 0 . . .
CLEC 0 0 0 0 0 1 0 0 0 0 . . .
MAXI 3 1 0 7 4 2 3 0 0 6 . . .
SBBW 0 11 0 0 0 3 4 0 0 0 . . .
HAMI 0 5 0 13 0 7 3 5 0 1 . . .
SOOC 0 4 0 0 0 0 1 0 0 0 . . .
RGRC 0 2 0 0 0 1 0 0 0 0 . . .
YHOC 0 0 0 8 0 3 5 0 0 0 . . .
PETE 8 0 0 1 1 0 3 0 0 1 . . .
SLIP 5 3 0 3 7 3 1 3 0 0 . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
Table 2. Initial estimated dominance scale ordering for 68 red deer
stags

FERD 1.2533 TRCC 0.2121 MYRC −0.5371
CORK 1.2533 BLTC 0.2040 HECT −0.5371
ORPH 1.2533 YHOC 0.1119 COC4 −0.5396
BL45 1.2533 FROD 0.0964 RGCC −0.5483
PETE 1.2533 SOOC 0.0869 SPRI −0.6133
MAXI 1.2533 CRTC 0.0836 UPCC −0.6267
JUNC 1.0743 CR14 0.0783 TR34 −0.6267
LICC 0.8355 BDLT 0.0000 TAL5 −0.6650
BREA 0.8322 STUL 0.0000 ELSI −0.6963
BLT2 0.7976 CLEC −0.0404 BST4 −0.7110
SLIP 0.7365 SOLO −0.0418 RG14 −0.7127
CONA 0.7050 SBBW −0.0508 COCC −0.7520
HAMI 0.6611 FEAT −0.0836 BROC −0.9984
SX95 0.6483 UPT3 −0.0917 GRE4 −1.1059
BOSS 0.5994 REDC −0.1139 BST5 −1.1320
FECC 0.5106 RGRC −0.1253 CHE5 −1.1725
CLYD 0.4896 LTSP −0.2027 M4 −1.2533
TORM 0.4700 TALC −0.2243 DOR5 −1.2533
DICK 0.4424 CHOC −0.2938 RECC −1.2533
YEST 0.4178 TA24 −0.3374 RGR4 −1.2533
CLCC 0.3531 GIPS −0.3418 ALTO −1.2533
BUDY 0.2984 SC01 −0.3581 SCO5 −1.2533
GILL 0.2350 WHIC −0.4178
An Application to Dominance Data

To show how the BBS model works, we used Appleby’s
(1982) data from a field study of 68 red deer stags during
a 3.5-month period, from January to April 1978 on the
Isle of Rhum. This data set records all of the encounters
among the (68)(67)/2=2278 pairs of stags that were
observed during this period (Table 1). Of these 2278 pairs,
1632, or 72%, were never observed together in any
encounter. Thus, the dominance matrix for these red deer
stags is, as is typically the case, relatively sparse.
The data exhibit many of the problems typically found
in studies of dominance. There were 24 pairs of stags that
did not display a completely stable pattern of dominance.
When confrontations occurred between the two animals
in these pairs, sometimes one of them won and some-
times the other; in four of these cases, each animal in the
pair won exactly half of their encounters with each other.
There were 12 triads of stags that displayed cyclical
patterns, where one stag dominated a second, the second
dominated a third and the third dominated the first.
Stags varied widely in their aggressiveness, from individ-
uals that initiated over 100 interactions to others that
initiated none, and they distributed their aggression
unevenly, attacking some opponents more than others
(cf. Freeman et al. 1992).

Initial scale values were assigned to individual animals
according to equation (1) above (Table 2).

We then used the number of encounters that each
stag won and lost, and the initial scale scores of the
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Table 3. Dominance scale ordering of the final scale scores conver-
gent at iteration 17, for 68 red deer stags

PETE 3.0073 YHOC 0.3218 SPRI −1.1691
MAXI 2.3447 GIPS 0.2379 ELSI −1.2256
BREA 2.0432 SBBW 0.2376 COCC −1.2651
TORM 2.0244 BDLT 0.2073 RGCC −1.3209
BLT2 1.9716 BLTC 0.1388 BROC −1.3432
CONA 1.9591 FROD 0.1352 TR34 −1.3584
JUNC 1.8876 CRTC 0.1253 TA24 −1.3591
SLIP 1.7518 RGRC 0.1042 UPCC −1.4714
CORK 1.7356 TALC 0.0687 COC4 −1.5565
SX95 1.7292 LICC 0.0676 BST4 −1.7059
ORPH 1.6363 SOOC −0.0114 CR14 −1.7671
HAMI 1.3478 TRCC −0.1676 RECC −2.0114
BOSS 1.2056 CLEC −0.1778 RG14 −2.1087
YEST 1.0609 HECT −0.2142 M4 −2.1676
CLYD 0.9318 BL45 −0.2521 TAL5 −2.2521
BUDY 0.8802 FECC −0.2640 GRE4 −2.3151
LTSP 0.7758 CLCC −0.3056 RGR4 −2.4543
GILL 0.7316 FEAT −0.3953 DOR5 −2.4929
DICK 0.7042 CHOC −0.4213 ALTO −2.5023
FERD 0.6239 REDC −0.4707 CHE5 −3.0757
UPT3 0.4474 SC01 −0.4929 BST5 −3.0960
STUL 0.4284 WHIC −0.5259 SCO5 −3.3591
SOLO 0.3225 MYRC −0.7918
Table 4. Comparison between dominance relationships predicted
by the BBS model and those observed

Probability
range
excluded

Pairs
excluded

Pairs
retained

Kendall’s tau

100% Data 90% Data

None 0 642 0.853 0.847
0.45–0.55 56 586 0.925 0.912
0.40–0.60 111 531 0.958 0.941
0.30–0.70 195 447 0.991 0.982

Values of Kendall’s tau are presented both for the complete data set
(100% Data) and with 10% of the predictors removed from the
computations (90% Data). Successive rows were calculated as pairs
of animals with relatively poor predictability were excluded.
individuals he had encountered to estimate new scale
scores. We repeated this process until the resulting scale
converged on the 17th recursion (Table 3).

The resulting scale, in which no two stags had the same
score, allowed us to rank all 68 individuals. In general,
scale scores need not be uniquely assigned to animals.
For example, if two animals are observed with identical
interaction patterns (i.e. encountering exactly the same
animals, and sharing identical patterns of wins and
losses), both will earn the same scale score.

Note that the range of initial scores presented in
Table 2 is "1.25–1.25, whereas that presented in Table 3
is "3.35–3.0. The difference between these ranges
reflects the influence of scaling factor Qi in equation (2),
which incorporates scale information about the ratings of
a given animal’s opponents into Table 3. In contrast,
the scale in Table 2, derived using equation (1), simply
reflects a scaling factor equal to zero, an initial
consequence of the normal distribution assumption.

The model uses the overall pattern of wins and losses to
generate an order for all the pairs of animals, those that
were observed and those that were not. We can see how
well this order captures the observed pairwise data by
using the model results to estimate which animal in each
pair was dominant and compare this with actual obser-
vations. We can then calculate a proportional reduction
of error measure to determine whether the results of the
model are better than chance.

The predictions made by this model are obtained by
using each animal’s scale value in a piecewise linear
equation that produces predicted probabilities for all
possible encounters between the animals scaled (Jameson
1996). Because most of the pairs studied here were never
observed together, we cannot evaluate the performance
of most of these predictions. We can, however, evaluate
those predictions that were generated for all the pairs in
which the two animals were actually observed together.
Because the predictions of the model are based only on
each individual animal’s overall pattern of wins and
losses and on the average win/loss pattern of those he
encountered, this is a rigorous test.

A corollary of the BBS model suggests that animals
whose dominance scale scores are close together will give
rise to more error in the estimation process. As a conse-
quence of this consideration, we calculated several
indices of agreement (Table 4). One index was based on
all the pairs for which an order was observed. One index
excluded 56 pairs that yielded predictions near 50/50,
that is, those falling in the range from 0.45 to 0.55.
Another index further excluded 55 pairs that fell in the
range from 0.40 to 0.60, and a third excluded another 84
pairs that fell between 0.30 and 0.70.

The penultimate column of Table 4 shows that the
dominance outcomes predicted by the model using the
order scale were highly correlated with actual dominance
observations at all levels. Not too surprisingly, the results
also show that the model was more effective as a predictor
for those pairs of animals with large differences in scale
values. Thus, the assumption of the Thurstonian model is
correct, in that the error in the estimation process is
systematically distributed in a way that is consistent with
differences in dominance estimates. In contrast to a
uniformly distributed estimation error, the model’s esti-
mation error decreases as the difference between two
dominance scale estimates increases. This is what one
would expect to observe if the Thurstone model were
appropriate for dominance data.

Table 4 demonstrates that actual dominance inter-
actions can be predicted by the scale values the model
provides, and, because the model provides predictions
for all pairings of animals, dominance predictions also
exist for pairings of animals that have yet to be
observed. We can get a sense of this potential by elimi-
nating some of our observations and repeating the
scaling process. We randomly selected 65 (10%) pairs
among those for which a dominance order had been
observed, and dropped those observations. We substi-
tuted zeros in their matrix cells as if no encounter had
been recorded. Then we repeated our calculations to
produce a new initial scaling (like Table 2), and a new
final order (like Table 3), and a correlation table (final
column of Table 4). The final correlations demonstrate
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that there was very little loss of predictive power even
with the loss of input data.

So, even when the BBS model is confronted with sparse
data and circular triads, it can obtain an order with very
little distortion of the observed patterning of pairwise
dominance. This order can then be used to predict domi-
nance interaction outcomes for any possible encounter
between scaled animals.
DISCUSSION

The BBS model provides a workable approach to the prob-
lem of identifying an appropriate order from dominance
data that are not quite linear. It uses only minimal infor-
mation about individual animals (their overall propor-
tions of winning and losing encounters and an index of
the dominance level of their opponents) to estimate the
overall dominance patterning of all the pairs, including
those pairs not observed together in any encounter.
Perhaps the most important feature of this model is that
its estimates are based on assumptions not automatically
violated when applied to dominance data. While the
Bradley–Terry model can provide estimates only by
assuming that there are no extreme individuals and that
there are constant interaction rates, the present model
involves no such restrictions. Because the computational
algorithm we used assumes that dominance is normally
distributed, the present model requires only simple and
direct estimation procedures that entail no additional
counterintuitive assumptions. Two assumptions made by
the BBS model need discussion. The first assumption is
that the outcome of a given encounter between two
animals is probabilistically independent of the outcomes
of previous encounters. This assumption, which is com-
mon to both the Thurstone Case V model (Thurstone
1927) underlying the BBS algorithm and to the Bradley–
Terry model (Bradley & Terry 1952) employed by Boyd &
Silk (1983), gives ease of derivation of the underlying
mathematical form and permits a characterization of
dominance interactions using just a few parameters.
Without this assumption, these relations involve more
parameters than data points, making a solution indeter-
minate. As mentioned above, the assumption of the inde-
pendence of individual dominance encounters is a
theoretical assumption that allows for one method of
justifying the algorithm. The procedure and results of the
algorithm and the methods of testing the dominance
rankings do not assume independence of dominance en-
counters. Thus, the assumption of independence is not
tantamount to acceptance of an unrealistic expectation
for behaviour, rather it is a simplification made at the
level of the underlying model which imposes no serious
constraints or expectations at the level of the observed
behaviour.

However, we may also note that the outcomes of
encounters observed in a study are not wholly dependent
either. This is because observations record only a short
period in the longer ongoing life of the group, except in
studies of newly formed groups, and thus, the encounters
observed will be only a subset of a longer sequence. So
the probability of ai beating aj in the second observed
encounter may not be completely independent of the
outcome of the first, but the influence of the first
encounter is diluted by the influence of all previous
unobserved encounters. Indeed, in many dyads, the
probability will in fact be nearly 1 or 0 and will not
change over time.

In addition, results from psychological research suggest
that the BBS method is likely to be of use in studies of
newly mixed groups, in which the encounters observed
really are the first, second and so on. The special case of
hierarchy formation, as opposed to hierarchy mainten-
ance, is addressed elsewhere (Chase 1974; Chase et al.
1994), and future applications of the BBS method will
clarify the utility of the procedure in the case of hierarchy
formation.

The second assumption is that the distribution under-
lying dominance interactions is normal. This is the only
new assumption made by the BBS method. Indeed, it can
be questioned whether the notion of a distribution
underlying dominance interactions is a valid construct.
On this point Iverson (1987) demonstrates, in a direct
generalization of the model, that the binary choice prob-
ability of animal x dominating animal y (denoted Px,y) is
a function of a random variable representation of the
underlying (dominance) process, denoted Ux and Uy,
respectively. Thus, the probability that x will dominate y
is:

Px,y=P(Ux>Uy)

According to Iverson (1987, page 221) ‘the assumption
that the random variables Ux [and Uy] are normal appears
quite arbitrary . . . Thurstone himself was well aware of
the apparent arbitrariness involved in making such a
strong distributional assumption . . . [However,] suppose
the normality assumption is replaced by some other
distributional hypothesis. What happens typically is that
no simplification of the [Px,y] equation ensues, even if the
random variables Ux, Uy underlying a comparison of x
and y are assumed to be independent.’ Iverson concludes
that the normality assumption is not critical to this
general class of Thurstonian models. Furthermore, as it is
used here, the normal assumption has been shown to
provide a reasonable approximation of a number of other
possible underlying distributions (Yellott 1977).

Intuitively it also makes sense that the random vari-
ables Ux, Uy are approximately normally distributed for
the case of animal dominance. In any reasonably large
group of animals, factors that affect dominance, such as
competitive ability, will display a range of variation, and
these features of individual animals are typically nor-
mally distributed. Clearly, if dominance were determin-
istically given by the distribution of size in the herd, then
a given animal’s dominance process (represented by Ux)
would be normally distributed with respect to every other
animal in the herd.

Finally, the assumption is further supported by the
usefulness of the model as presented here and elsewhere
where it has been proven to be robust in empirical tests
with psychological phenomena (Batchelder & Simpson
1989; Alvarado & Jameson 1996; Jameson 1996).
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Despite its statistical appropriateness, there might
nevertheless be concern that the assumption has implica-
tions for the distribution of scale values derived for
animal dominance hierarchies. Any method using only
ranks produces an ordinal scale and has no meaningful
metric-distance function. In particular, for such ordinal
ranking scales there is no distance information conveyed
by adjacency in the ranking data. The BBS procedure,
however, yields probabilities associated with pairs of
ranks, so that for any two animals, information on how
much one animal dominates the other is given in terms
of probability. This represents an improvement over
cardinal dominance scales for the purposes of charac-
terizing and predicting closeness of ranks within a
dominance structure.

Data exhibiting shifts in dominance over encounters
present serious difficulties for deterministic linear domi-
nance models. The BBS model was designed to account
for such shifts. The ordering derived from it satisfies the
following weak form of stochastic transitivity: if A domi-
nates B in more than 50% of the encounters and B
dominates C in more than 50% of the encounters, then A
dominates C in more than 50% of the encounters. If the
assumptions of the model were to hold and the data
consisted of a very sparse sample (for example, a sample
like the kind of data collected for this article), then, due to
sampling, one would expect part of the data to exhibit
violations of the above form of stochastic transitivity. (Of
course violations of this form of stochastic transitivity as
well as other kinds of intransitivities are taken into
account in evaluating how well the stochastic order-
ing derived from the BBS algorithm fits the observed
probabilistic data.)

Stochastic intransitivities that do not result from
sampling are a realistic possibility for animal hierarchies:
a hierarchy as an exact ordering of individuals is a
theoretical construct (Appleby 1993) and methods that
use transitivity of dominance to find a ranking (Brown
1975; de Vries 1998) are based on the assumption that the
hierarchy is linear. Yet, there is no logical reason why
dominance should be transitive; indeed, transitivity is
not all-or-nothing but generally intermediate between
these extremes (Tufto et al. 1998).

Although stochastic intransitivities not due to
sampling are inconsistent with BBS model, the stochastic
ordering derived from the BBS algorithm may still be very
informative, either as a good linear approximation of the
hierarchy or as an ordering that ranks animals in ‘group’
terms. In the ‘group’ case, the relative rank of two animals
is interpreted in terms of their individual success or
failure in encounters with other animals, rather than in
terms of their dominating behaviour with respect to each
other. In either case, the obtained stochastic ordering can
be used to consider correlates of rank, including causes
and effects.

Thurstone (1927) formulated a strong version of the
Case V model with assumptions of independence and an
underlying normal distribution, which involves explicit
estimation of a few parameters. As a model of dominance
relations, the Case V model can be rejected. This is an
important point because the goal in modelling animal
interactions is not so much to determine which of the
many possible models might underlie dominance
relations, but rather which models best predict and
characterize animal behaviours.
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