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Linguistic meaning is a convention. This article investigates how such conventions can
arise for color categories in populations of simulated “agents”. The method uses con-
cepts from evolutionary game theory: A language game where agents assign names to
color patches and is played repeatedly by members of a population. The evolutionary
dynamics employed make minimal assumptions about agents’ perceptions and learning
processes. Through various simulations it is shown that under different kinds of reason-
able conditions involving outcomes of individual games, the evolutionary dynamics push
populations to stationary equilibria, which can be interpreted as achieving shared pop-
ulation meaning systems. Optimal population agreement for meaning is characterized
through a mathematical formula, and the simulations presented reveal that for a wide
variety of situations, optimality is achieved.
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1. Introduction

It has been recognized for some time that the relationship between a word and its
meaning is conventional. The philosopher W. V. Quine and others have argued that
the nature of this kind of convention must be of a different sort than those that
arise through negotiation or other processes dependent on language (see [18] for a
review). The philosopher D. Lewis, in his seminal book on convention [18], writes:

“Quine [22–25] and White [34, 35] argue that the supposed conventions of
language cannot be very much like the central, well-understood cases of
convention. Conventions are agreements — but did we ever agree with one
another to abide by the stipulated rules in our use of language? We did
not. If our ancestors did, how should that concern us, who have forgotten?
In any case, the conventions of language could not possibly have originated
by agreement, since some of them would have been needed to provide the
rudimentary language in which the first agreement was made. We cannot
even say what our conventions are, except by long trial and error. Did
we know them better when we first adopted them? We have no concept
of convention which permits language to be conventional, but we cannot
say why. We may indulge this inclination — Quine himself does [Lewis’
footnote: At the end of ‘Carnap and Logical Truth’ where he says: ‘The
lore of our fathers . . . is a pale grey lore, black with fact and white with
convention.’] — but we do not understand language any better for doing
it. Conclusion: the conventions of language are a myth. The sober truth is
that our use of language conforms to regularities — and that is all”. (See
p. 2 of [18].)

Lewis’ reply to Quine and White consisted of providing a game-theoretic based
concept of “convention” and applying it to a very narrow and streamlined linguistic
situation involving simple semantics and pragmatics. Others in philosophy continue
this tradition of applying game theory to simple signaling systems for investigating
the evolution of meaning (e.g. [2, 4, 9, 10, 28–30]).

The use of game theory for evolving semantics for simplified linguistic and
signaling systems has also spawned a literature outside of philosophy, particu-
larly in biology, economics, artificial intelligence, and psychology. Philosophical and
other game-theoretic evolutionary modeling of linguistic and signaling systems have
focused almost entirely on situations in which there are enough names or signals so
that each object can have at least one unique name or signal. In such situations,
the necessity for categorization disappears, that is, grouping objects together so
that they each can be denoted by a single name may not be needed. Color naming
on the other hand considers situations where there are many more distinguishable
colors (e.g. an estimated 10 million [20]) than there are names for them.

This article uses evolutionary game-theoretic approaches to color naming to
explore foundational issues involving language, convention, and categorization. For
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example, the nature of color categories allows some evolutionary naming processes
to achieve equilibria that deviates in fundamental ways from Lewis’ definition of
“convention” and its use in developing language semantics. Also, in idealized color
naming, there only exist a small finite number of names to categorize an infinity of
continuously distributed colors in perceptual color space. This presents conceptual
challenges not generally encountered in the evolutionary modeling of simple signal-
ing games; for example, not all colors will be encountered during evolution, because
it follows from the infinite, continuous nature of colors that a given color stimulus,
if encountered, will almost certainly never be encountered again. Also, situations
naturally occur in which the semantics of color naming systems drift over time,
with its pragmatics and logical structure remaining intact. And, of course, there
is the problem of how to introduce psychology into the evolution of perceptual
categories as well as the nature and role of natural kinds in the evolution of color
categorizations.

2. Discrimination–Similarity Games

The central focus of this article is a color naming game — called here the 2-player
teacher game — that was introduced by Komarova et al. in [13]. This game is
repeatedly played by a population of agents or players, where, in each round of the
game, two randomly chosen players interact. In this article, we extend this game
to situations on a lattice where players only interact with their neighbors. The aim
of both kinds of games is for the population to create a simple naming semantics
for a set of colored patches (sometimes referred to as “color chips”), where there
are many more patches than names. Successful strategies in the game require each
patch to receive a name. Because of this, some names must apply to more than
one patch. As a consequence, naming in this game can be viewed as a form of
categorization, that is, the denotation of a name may be viewed as a category —
the set of colored patches denoted by the name.

The colored patches are assumed to be endowed with a simple perceptual struc-
ture derived from elementary, non-controversial psychological considerations involv-
ing discrimination. In particular, it is assumed that there are continuous circular
arrays of colors — called hue circles — that contain all hues. Using English color
terms, this means that colors vary continuously in hue from blue to green to yellow
to orange to red to purple back again to blue without ever repeating a hue except
for the starting and ending hue, and without ever becoming black, white, or gray.a

The discrimination–similarity game is played on a finite approximation of the hue

aFrom various mathematical modeling perspectives, such hue circles are the most natural one-
dimensional reduction of the color space. For example, in the analyses of the dimensional infor-
mation of the human visual system extracts from spectral stimuli, Kuehni [15] describes how the
reflectance functions of twenty Munsell color chips that form a hue circle are reconstructed in the
correct perceptual order (i.e. the Munsell order) in a Principle Components space. He suggests this
implies “that the hue circle is the natural outcome of dimension reduction of spectral functions
having any possible spectral form to three dimensions,” and “a circular contour is generated as
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circle that is designed to match a psychological hue naming experiment. To this
end, a finite number of colored patches are selected and are arranged in the similar
pattern as their hues on the hue circle. It is assumed that these patches are of equal
brightness, equal saturation, and that they are equally spaced in hue in terms of
just-noticeable differences ( jnds). The latter means the following:

Different color patches a and b of equal brightness and saturation are said to be
just-noticeably different in hue, or more briefly, 1 jnd in hue, if and only if the typical
subject is 75% correct in saying whether or not a and b are the same patch. Colors c

and d on a hue circle of equally bright, equally saturated colors are said to be m jnds
apart if and only if m is the smallest positive integer such that there is a sequence
c = c1, c2, . . . , cm, cm+1 = d such that ci and ci+1 are 1 jnd apart for i = 1, . . . , m.
Color patches of equal brightness and saturation on a circular arrangement are said
to be equally spaced in hue if and only if every pair of adjacent patches are the
same number of jnds apart.

In our simulations, we often use a hue circle of 20 equally spaced colored patches.
This is in line with the number of hues employed in many color naming experiments.
The World Color Survey [7] uses color samples of 40 equally spaced hues of equal
brightness with varying saturations for cross-cultural color naming tasks.

The evolutionary link we use between perception and naming is based on the fol-
lowing idea: Because there are considerably fewer color names than colored patches,
two colors within a relatively small number of jnds will have a very strong tendency
to be given the same name. This idea is an obvious consequence of the following
three principles: (i) categorization is important; (ii) to be useful, categorization
should attempt to minimize ambiguity, and (iii) objects of a kind with highly per-
ceptually similar colors tend to similar properties within the kind. The concept of
similarity range, ksim, formalizes these three principles for a circle of color patches.

By definition, for color patches a and b, ksim(a, b) is the minimum number of
colored patches between a and b for which it becomes important to treat a and b

for pragmatic purposes (and not for perceptual purposes) as belonging to different
color categories. It is assumed that ksim is less than the number of color patches.
Pragmatically speaking [see principle (i) above], it is beneficial to assign colors

long as at least two dimension reduction functions are themselves curved and overlapping. It is
the result of mathematics alone” [16, 17].

A hue circle (as opposed to a hue “line”, for example, a line of saturation or a line of brightness)
also captures features of color space relational structure considered to be characteristic of color
(light mixture) stimulus spaces, for example, classical additive light mixture and cancellation
relations (hues that when mixed yield an hue-less appearance) and complementary hue relations
(such as complementary negative afterimage pairs — well described since [36]. In this sense, the
hue circle we use is relationally similar to Newton’s color circle — which was one of the earliest, and
most widespread, ordered system of colors — and reflects hue similarity as it is typically presented
in the literature. Shepard and Cooper [27] found that this structural ordering was present in the
cognitive representation of English color categories, even in individuals who were unable to perceive
color. For these reasons, and a long-standing history of its use as a representational structure in
the cognitive color processing literature, we chose a hue circle as our color stimulus domain.
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outside their ksim-range to different color categories [principle (ii)], and colors within
their ksim-range to the same color category [principle (iii)].

ksim(a, b) is interpreted as being related to the utility of categorizing a and b as
the same or different colors. It is defined by the environment and the life-styles of
the individual agents. It is used to reflect the notion of the pragmatic color similarity
of the patches. For instance, suppose one individual shows another a fruit and asks
her to bring another fruit “of the same color”. It is a nearly impossible task to
bring a fruit of a color perceptually identical to the first, because different lighting,
different color background and slight differences in fruits’ ripeness contribute to
its perceived color. Therefore to satisfy “of the same color” of a fruit’s ripeness in
practical terms, the individual must be able to ignore such unimportant perceptual
differences and bring a fruit that is “of the same color” practically. It may also
be as important to be able to distinguish ripe, edible, “red” fruit from the unripe,
“green” ones.

In many of this article’s evolutionary scenarios, ksim(a, b) will have constant
value for all a and b on circle of patches. In this case we write ksim for ksim(a, b).
In these scenarios, ksim is intended to set a scale at which color differences become
important in the everyday world. It tells us that most of the time, certain objects
with colors of a kind within the ksim range will have similar pragmatic properties,
whereas other objects of the kind with larger color differences need not.

It is important to emphasize that ksim is not another perceptual version of “just
noticeable difference,” because, in general, there will be many colors within ksim

that are easy to discriminate from one another.

2.1. Optimal categorization for the discrimination–similarity game

The colored patches named by the name α defines a category (named by α).
Let N be a set of names. A naming strategy ∆ for N and a discrimination–

similarity game with Q colored patches and constant ksim is a strategy that proba-
bilistically assigns names from N to patches. ∆ is said to be a success for patches
a and b (with the possibility that b is a duplicate of a) if and only if the same name
is assigned to both patches if they are within ksim and different names if they are
outside ksim. ∆ is said to be an optimal naming strategy if and only if its probability
of success for a randomly selected pair of patches (with the possibility of duplicates)
is at least as high as that for any set of names and any naming strategy based on
those names for a discrimination–similarity game with Q patches and ksim.

Results of [13] show that the number of names C∗ from N that is used in an
optimal naming strategy is a natural number closest to

C∗ =
Q

√
2ksim(ksim + 1)

. (1)

Furthermore, each category of an optimal naming strategy is an arc on the hue
circle, and the numbers of patches in any two such categories differ at most by 1.
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The facts about optimality and Eq. (1), which was formulated for individual
agents, extend in obvious ways to naming agreement of a population of agents
playing a repeated discrimination–similarity game.

As an example of this result, the evolutionary simulation in Sec. 3.1 starts with
Q = 20 patches and ksim = 4. By Eq. (1), C∗ =

√
10 ≈ 3.16, and C = 3. Thus the

optimal categorization of this situation will have three categories, each being an
arc on the circle of hues with each such arc containing either 6, 7 or 8 patches —
which, incidentally, is what is observed in the simulation in Sec. 3.1. Of particular
interest about this simulation is that, as described below, although it begins with
a specific number of color categories, it is found to drop categories as required by
Eq. (1), to achieve an optimal solution.

3. Population Discrimination–Similarity Games

The population version of the discrimination–similarity game is a repeated game.
Before the game begins, a finite set of names containing at least two names and a
value for ksim are specified. (Because of the nature of the game, the case of a set
containing only one name produces a degenerate situation that is of no interest for
this article.) In a given round of the game, a subset of the population consisting
of at least two members play. In each round, the players are presented two colored
patches randomly drawn from the hue circle. These patches can be duplicates, so
it is possible that they are identical in color appearance to the players. The players
must independently assign names for the two patches from a set of names provided
at the first round. It is assumed that if the patches are duplicates, then each player
will use a single name to name them. For each player, the round is a personal success
if and only if the player gives the same name to both patches if they are within
ksim and different names if they are outside ksim. Otherwise the round is a personal
failure for that player. The round is said to be a social success if and only if it is
a personal success for both players and they name the color patches in exactly the
same manner.

The game becomes an evolutionary game by (i) specifying an initial naming
strategy for each player in the population, and (ii) providing an updating rule for
each player in each round based on the following: (a) her current naming strategy,
(b) her personal success or failure, and (c) the round being a social success or a
social failure. Komarova et al. [13] considered various kinds of updating, satisfying
the above. This article extends one of these updating rules to a new situation
involving players on a lattice, where each round consists of a player playing with
a neighbor determined by the lattice. Due to space limitations, extensions of the
game to rounds involving more than two players are not considered in this article.

Evolutionary signaling games typically encountered in the literature usually
converge in late rounds to completely successful strategies. This cannot happen in
a discrimination–similarity game, because, for each player’s naming strategy in each
round, there will always exist two names α and β and two colors a and b within
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ksim such that α names a and β names b, and thus, because a and b are within
ksim but have different names, this produces a personal failure and therefore also
a social failure. As discussed in Sec. 4, this feature of the discrimination–similarity
game produces semantics that yield conventions having very different features from
the conventions discussed by Lewis in [18].

3.1. Evolving categorization through social reinforcement

A social reinforcement discrimination–similarity game proceeds by having a pop-
ulation of players play a discrimination–similarity game. At the beginning of the
game, each player has the probabilistic strategy of naming any given colored patch
by randomly selecting a name from a uniform distribution of names. In each round
of the game, two players are selected at random from the population. The selected
players use their current strategies. (If it is a first round for a player, that player
uses a uniform distribution strategy.) At the end of the round, the players in the
round update according to a reinforcement rule that depends on their personal
success or failure in the round and their social success or failure in the round. The
other players in the population, who had no interactions with other players during
the round, perform a null update, that is, they update by leaving their strategy
fixed.

The following notation is used for describing the evolutionary behavior of this
game:

• Q is the number of colored patches.
• N is the set of names.
• pc,α stands for the probability of having the patch c named by the name α.
• For each colored patch c and each name α, Sc,α stands for a number, called the

reinforcement strength, for c having name α.
• Reinforcement strengths are non-negative and vary from 0 to a maximum M .

Reinforcement strength and probability are related by the following equation: The
probability of the name α in N naming the colored patch c is

Sc,α∑
β∈N Sc,β

.

At the beginning of the first round, Sc,α = M
Q for each patch c and each name.

For simplicity, we will restrict our consideration to the case where M
Q is a positive

integer. To keep matters brief, details of updating involving the minimum 0 and
the maximum M reinforcement strengths will sometimes be omitted. The following
provides some basic ideas for updating:

When conditions suggest that Sc,α should be increased by A, Sc,α is updated
by (i) increasing it by A, if Sc,α + A ≤ M , and by (ii) increasing it to M if
Sc,α + A > M . When (ii) applies, the excess, Sc,α + A − M is distributed among
the other reinforcement strengths in a manner so that none exceed M . We have
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experimented with various methods of distributing the excess, e.g. adding it to a
Sc,β that was selected by a specific process involving random selection, dividing it
among the Sc,γ that were not used in the round, etc., and reasonable methods did
not have any effect on the end results of our simulations. Similar comments hold for
decrements of reinforcement strength and the minimum reinforcement strength, 0.

With the above caveat about the maximum and minimum reinforcement
strengths, we now proceed to continue the updating algorithm for a special kind
of social reinforcement discrimination–similarity game, called the 2-player teacher
game.

3.1.1. 2-player teacher game

In a round, suppose the chips i and j are presented to two players, say Player 1
and Player 2, and Player 1 gives chip i the name α and the chip j the name β and
Player 2 gives the chip i the name µ and the chip j the name ν. The following four
cases explain the rules for updating the players reinforcement strengths at the end
of the round, where for each Player Q in the population, SQ

k,γ is Q’s reinforcement
strength for giving color patch k the name γ.

(i) Suppose Players 1 and 2 have personal failures (and therefore social failures).
Player 1 updates as follows:

S1
i,α → S1

i,α − 1, S1
j,β → S1

j,β − 1.

Player 2 updates in a similar manner, using µ in place of α and ν in place
of β in the above expression. Two names σ and τ different from α and β are
selected randomly (without replacement) and Player 1 updates as follows:

S1
i,σ → S1

i,σ + 1, S1
j,τ → S1

j,τ + 1.

Player 2 updates in a similar manner, using µ in place of α and ν in place of
β and performing independent random selections. For all the other players Q

different from Players 1 and 2 and all patches k and all names γ, Q performs
the null update

SQ
k,γ → SQ

kγ .

(ii) Suppose both players have social successes (and therefore personal successes).
Then it follows from the social successes that α = µ and β = ν. Player 1
updates as follows:

S1
i,α → S1

i,α + 1, S1
j,β → S1

j,β + 1,

and Player 2 updates in the same manner. Two names σ and τ different from
α and β are selected randomly (without replacement) and Player 1 updates as
follows:

S1
i,σ → S1

i,σ − 1, S1
j,τ → S1

j,τ − 1.

1150022-8



January 27, 2012 16:24 WSPC/S0219-5259 169-ACS 1150022

Language, Categorization, and Convention

Player 2 updates in a similar manner, using an independent random selection
of names. For all the other players Q different from Players 1 and 2 and all
patches k and all names γ, Q performs the null update

SQ
k,γ → SQ

kγ .

(iii) Suppose one player has a personal success, say Player 1, and the other,
(Player 2) has a personal failure. Then in this situation, Player 1 is called
the teacher, and her updating for i and j is as follows:

S1
i,α → S1

i,α + 1, S1
j,β → S1

j,β + 1.

Two names σ and τ different from α and β are selected randomly (without
replacement) and Player 1 updates them as follows:

S1
i,σ → S1

i,σ − 1, S1
j,τ → S1

j,τ − 1.

Player 2, called the learner, updates by learning from the teacher as follows:

S2
i,α → S2

i,α + 1, S2
j,β → S2

j,β + 1, S2
i,µ → S2

i,µ − 1, S2
j,ν → S1

j,ν − 1.

For all the other players Q different from Players 1 and 2 and all patches k

and all names γ, Q performs the null update

SQ
k,γ → SQ

kγ .

(iv) Suppose no social success but both players have personal successes. Then one
player is chosen randomly to be the teacher and the other the learner and they
update as in case (iii) above.

Komarova et al. [13] carried out many simulations involving the 2-player teacher
game with variations in the parameter settings. The following example is typical.
The simulation had 10 players, 20 color chips, 4 color names, M = 12 as the
maximum reinforcement strength, and ksim = 4. At 10,000 rounds the beginning
of the formation of categories was discernible, and at 80,000 rounds the color chips
were categorized by three categories and remained classified by those categories
up to 1,000,000 rounds when the simulation was stopped. Note that although the
simulation started with four names, the final categorization solution involved only
three.

The simulation yielded an optimal solution according to Eq. (1). Other simula-
tions of the 2-player teacher game yielded similar results [13]. They also investigated
the case of variable ksim. They showed that the 2-player teacher game using vari-
able ksim and an optimality formula related to Eq. (1) yielded simulations with
optimal number of solutions. Jameson and Komarova also investigated 2-player
teacher games involving players with heterogeneous perceptions of the color chips,
e.g. normal color observers and color deficient ones, and they used human data to
determine variable ksim for their players [11, 12, 14].
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As a whole, existing results in [11–14] and additional simulations given later in
this article show that the 2-player teacher game is robust in producing near opti-
mal solutions in terms of maximizing success for a variety of parameter settings
for populations varying from 9 to 100, including situations where the color choices
had different impacts on success, and players were heterogeneous in their color
perceptions. For populations greater than 100, only a few simulations have been
conducted, and they are reported in Sec. 5. They indicate the emergence of station-
ary equilibria, that is, they produce categorizations that remain near one another
for a very long time. However, these equilibria were not near optimal in terms of
total number of successes. As a general principle, as the population increases in size,
with the other parameters of the 2-player teacher game held fixed, more rounds are
needed to achieve a stationary equilibrium, e.g. 108 for a population of size 121
agents.

3.1.2. Implications for Lewis’ theory of convention

The simulations for 2-player teacher did produce categorizations that were near
optimal in terms of total successes for populations ≤ 100. This is in accord with
the use of “convention” in [18]: His final definition of “convention”, which Lewis
used 73 pages of text to arrive at, allows for almost all of the population to be
in a (coordinated) equilibrium-like state instead of the entire population being in
a (coordinated) equilibrium. In the following quotation from [18], P stands for a
population of agents and S for a convention:

“There is no harm in allowing a few abnormal instances of S which violate
some or all of the clauses [of Lewis’s definition of convention as a Nash
equilibrium of a coordination game]. So we replace ‘in any instance of S of
members of P ’ by ‘in almost any instance of S among members of P ’. If
we want more precision, we can replace it by ‘in a fraction of at least d0 of
all instances of S among members of p’ with d0 set slightly below one. Nor
is there any harm in allowing some, even most, normal instances of S to
contain a few abnormal agents who may [violate the conditions of S being
a convention]” (see p. 77 of [18]).

The stationary equilibria achieved in the above simulations may be viewed as
conventions containing “a few abnormal instances” — or put another way, of con-
ventions that hold almost universally. However, having a convention to hold almost
universally does not necessarily lead to that convention being an “almost equilib-
rium of a coordination game”, which in our reading of Lewis is his intended inter-
pretation of “convention”. As shown in Sec. 4, there are discrimination–similarity
games whose dynamics yield conventions with non-stationary equilibria. The exis-
tence of such conventions present a need for reformulation of Lewis’ definition of
“convention” and its use in providing an evolutionary account of meaning.
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4. Discrimination–Similarity Game with Smoothing Updating

Komarova et al. [13] investigated various updating rules for discrimination–
similarity games. One of these, called the smoothing updating rule, is like the
2-player teacher game in many respects, the principal difference being that it does
not use reinforcement. Like previously, smoothing updating rule assumes that

• each player in the population starts the first round with a random naming
strategy,

• and for presented chips i and j in the round under consideration, Player 1 names
them respectively α and β, and Player 2 names them respectively µ and ν.

The updating part of the smoothing rule is divided into four cases. In each case,
the players different from 1 and 2, perform a null updating, that is, they keep their
naming strategies the same.

Case 1. The round is a social (and therefore a personal) success. Players 1 and 2
perform a null updating, that is, they keep their naming strategies the same.

Case 2. The round is a social failure and both players have personal failures.
Player 1 changes her naming strategy by assigning each presented patch a ran-
domly chosen name and leaves the rest of her naming strategy unchanged. Player 2
similarly changes his naming strategy.

Case 3. The round is a social failure and one player has a personal success and
the other has a personal failure. This case is divided into two subcases:

• Subcase A. Player 1 has a personal success and Player 2 has a personal failure.
In this subcase, Player 1 null updates her strategy, that is, leaves it unchanged.
Because of the result of the round and Player 2’s interaction with Player 1,
Player 2 changes his strategy to follow Player 1’s strategy for patches i and
j, that is, Player 2 changes his name for i to α and j to β and leaves the rest of
his naming strategy unchanged.

• Subcase B. Player 1 has a personal failure and Player 2 has a personal success.
Same as Subcase A except that the roles of Players 1 and 2 in updating are
reversed.

Case 4. The round is a social failure and both players have personal successes.
One of the players of the round, called the chosen player, is chosen at random and
performs a null updating of her naming strategy. The other player, called the other
player, changes his strategy to follow the chosen player’s strategy for patches i and
j, that is, the other player changes his name for i to the name the chosen player
used for i and makes a similar kind of change for j, and leaves the rest of his naming
strategy unchanged.

Recall for a population playing the 2-player teacher game, the solution remained
in the vicinity of a nearly optimal configuration for a very long time. However, for
a population using the smooth updating algorithm, Komarova et al. [13] observed
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a non-stationary convergence to a near optimal categorization that slowly drifted
outside the vicinity of that categorization and into the vicinity of another optimal
categorization. They comment,

“Non-stationary conventions like those observed for the populations of
smoothing and reinforcement learners behave locally like conventions based
on almost equilibria — that is, behave like conventions based on almost
equilibria for appropriate intervals about times t, where t is some time
after the convention has been established — but globally behave differently
from almost equilibria in that the conventional meaning of signals changes
with time”. (See p. 380 of [13].)

They observed (but did not report in their article) that for each name, its
meaning — i.e. the color denoted by it — slowly drifted around the entire color
circle with the order of the names’ meanings remaining intact.

Not all meanings in a non-stationary signaling system need to drift with time.
Consider the case of a population discrimination–similarity game with the color
names yellow, orange, red, purple, blue, and green. Suppose, as in the above simu-
lated game with a smooth learning algorithm, a non-stationary convergent solution
is reached at time t, where the meanings for the color names are also organized
in the same circular pattern as the colors they name, say counterclockwisely as:
yellow, orange, red, purple, blue, and green. Then the proposition, “Θ: orange is
immediately between yellow and red ”, is true for a very long time for times beyond
time t, even though the conventional meanings of the individual color names are
slowly changing with time. We interpret the proposition Θ to be an example of
what Lewis [18] called “a consequence of the convention”, while noting that Lewis
formulated his concept for conventions that did not drift.

A deeper consequence of the above convention is that hue color names have
circular structure that is invariant for a very long time after time t. (This follows
from consequences of conventions involving the color names and the between rela-
tion.) This circular structure of names, which agrees with English color semantics,
is not derived from cognitive representations of the players, because individual play-
ers in the simulations are not capable of anything remotely corresponding to such
representations. Instead, it is a result of the players’ attempts, and their ultimate
achievement, of producing pragmatically meaningful communications in an evolu-
tionary scenario that selects among coordinated naming strategies.b

bIt is interesting that many in the social sciences assume that the organization of category words,
derived by methods such as multidimensional scaling, reflect how the denotations of the words — or
more sophisticatedly, the individual’s perceptions of the denotations of the words — are organized
in the world. In our smoothing algorithm simulation, the organization of the words result from
their pragmatic use in communication and not through use of internal psychological structure. A
similar result is implicit in a famous human experiment conducted by Shepard and Cooper [27].
In that experiment, normal and impaired color vision participants were given nine English color
names and nine color chips corresponding to names dictated by English semantics. Using standard
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Komarova et al. (see [13], p. 380) comment the following about drifting
conventions:

“Conventions are at the heart of concepts like social contracts, norms, and
conformative behavior. To our knowledge formulations of conventions that
allow for drifting meaning have not appeared in the literature, although
such “drifting conventions” are important in the modeling of some forms
of social and institutional change”.

It should be noted that in the case discussed just above concerning hue naming,
the drifting convention result depends on the circular nature of the hue circle.

5. Simulations Involving von Neumann Neighborhoods on a Torus

In the 2-player teacher game, it is very likely that each player in the population will
play with each other player. At the other extreme are interactions among geometri-
cally distributed players, where each player plays only with its geometric neighbors.
This section investigates the analog of the 2-player teacher game restricted to such
geometrically determined interactions.

A torus is divided into a grid of n2 isomorphic rectangular-like regions, each
region being identified with an unique player from a population of n2 players. A
von Neumann 4-neighborhood, abbreviated as VN4, of a player α on the torus
consists of the four players who are adjacent to α according to the grid — that is
the players that share a “side” with α.

The torus 2-player teacher game is the same as the 2-player teacher game
described previously except for the selection of players in a round: The first of
the two players is selected at random and the second is selected from the first’s
VN4 neighborhood.

The torus simulations presented in this section use the following parameters:
names = 6, color patches = 50, ksim = 6, stack size M = 20, and population
size 121.

methods, the sets of color names and color chips were separately multidimensionally scaled for
each participant. The chips were chosen so that it was expected that the normals (normal color
vision participants) would multidimensionally scale the names and the chips in hue circles, and this
turned out to be the case. The color deficient participants (dichromats and monochromats) scaled
the color names in the same manner as the normals, but scaled the color chips in a different man-
ner — a manner that reflected the nature of their color perception deficiency. Thus for the deficient
participants, their cognitive organizations of the color names did not agree with the organization
of their perceptions of the denotations for those names. In other words, for the abnormal partici-
pants, linguistic meaning based on similarity (as measured through multidimensional scaling) was
inconsistent with perceptual meaning based on similarity (as measured through multidimensional
scaling). In general, most psycholinguistic approaches to meaning do not attempt to account for
the obvious fact that language is used to communicate among members of a population and its
semantics is to a large extent based on the communications being pragmatically effective, and
such pragmatic effectiveness does not require homogeneity in cognitive or perceptual meaning or
in linguistic shared denotative meaning for the population.
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We ran 50 simulations of the 2-player teacher game on a VN4 torus with 121
players (grid 11 × 11). In all these simulations, the population of agents converged
to a single solution prior to 2.5× 106 rounds and remained stable until 107 rounds
when the simulation was stopped. Of the 50 simulations, 33 solutions consisted of 4
continuous categories, 9 solutions had 5 continuous categories, 1 solution had 6 con-
tinuous categories, and 7 solutions were idiosyncratic in that there were somewhat
continuous categories but with some small regions of discontinuity that was present
in all agents.

We note that earlier results by Komarova and Jameson [14] involving the
2-player teacher game with comparable numbers of agents, used 100 agents instead
of our 121, employed a larger number of rounds (108) instead of our 107, had global
population random interactions instead of local VN4 neighborhood random inter-
actions, and produced no idiosyncratic solutions. To address these differences and
to give the torus simulations additional opportunities to reach a stationary equilib-
rium, we ran an additional 10 simulations with 108 rounds for the 2-player teacher
game on the torus with 121 players and VN4 neighborhoods and, for comparison
purposes, 10 simulations with 108 rounds for the 2-player teacher game with 121
players using random interactions.

For games with the torus VN4 neighborhoods, we found in all of the simula-
tions that multiple spatial regions developed in which the agents within a region
converged to a single optimal solution (5 continuous categories) and the solutions
across regions were noticeably different from one another. The size, boundaries
and solutions of each region continued to change until either the entire population
converged to a single optimal solution or until the simulation was stopped at 108

rounds with multiple regions still discernible. Of the 10 simulations, half converged
to a single optimal solution prior to 108 rounds and half had multiple regions at 108

rounds, when the simulations were stopped. For the random interaction scenario
we found convergence, but to a sub-optimal population solution, usually consisting
of 4 categories. Conclusions involving the random interaction and torus versions of
the 2-person teacher game are presented in Sec. 7.

6. Extensions Involving Similarity and Memory

It is reasonable to consider cases where the number of stimuli is so huge and diverse
with respect to the number of signals that agents experience only a small fraction
of the possible stimuli. Our algorithms, as currently formulated, do not apply to
such cases, because they require each chip to be updated, usually a large number
of times. For better and more realistic modeling, the learner needs to be able to
generalize her experience so that she can extend her learned semantic categories to
colors never previously encountered.

The need for such generalization is common in categorization (e.g. see Sokolov
[31]), and is relevant to evolutionary situations depending on categorization
involving a large number of objects. However, generalization processes are rare or
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non-existent in evolutionary game theory. One type of generalization we are inves-
tigating is a streamline version of “generalization” that has been much studied in
psychology, particularly by the psychologist Roger Shepard. He writes in [26] about
the importance of similarity and generalization as cognitive processes: “Recogni-
tion that similarity is fundamental to mental processes can be traced back over 2000
years to Aristotle’s principle of association by resemblance. Yet, the experimental
investigation of generalization did not get under way until the turn of this century,
when Pavlov [19] found that dogs would salivate not only at the sound of a bell
or whistle that had preceded feeding but also at other sounds — and more so as
they were chosen to be more similar to the original sound, for example, in pitch.
Since then, numerous experimenters have obtained empirical ‘gradients of stimulus
generalization’, relating the strength, probability, or speed of a learned response
to some measure of difference between each test stimulus and the original training
stimulus”. (See p. 1317 of [26].) Various methods for describing similarity, e.g.
multidimensional scaling, have been used by psychologists to describe mathemati-
cally the “difference between each test stimulus and the original training stimulus”.
Shepard in [26] considered the psychological basis for similarity to be a product of
evolution that had universal characteristics across people and animals. He provided
some empirical support for this idea.

Cognitive psychology assumes that a name gets attached to an item through
perception and memory: The percept of an item is matched to a perceptual memory
that is associated with a name. The matching and association takes place in long-
term memory. More precisely, consider an item c presented to the participant. This
invokes, with probability p(c), the perceptual memory m(c) in long-term memory.
Attached in long-term memory, with probability q(c), is the name n[m(c)] that
the participant gives to c. In place of the perceptual memory m(c), we use an
item from the set of items called an icon item that we denote by I(c). I(c) need
not be an item that was or will be presented to the participant. Thus the name
n[I(c)] has probability q(c)p(c) of being used by the participant to name c when
it is presented. Our previous modeling of color naming degenerates to the special
case where I(c) = c and p(c) = 1. In icon item modeling, only icon items I(c)
and the probabilities q(c) and p(c) associated with them get updated. Additionally
and importantly, icon items can move: That is, updating can change the icon item
associated with a given item. This captures an important property about memories:
They can drift. Additional properties of memories can be incorporated if needed.
For example, psychological laws describing the probability distribution of items
having a given name can be incorporated into evolutionary algorithms. Much is
empirically known about such laws for the categorization of physical stimuli, and
in particular for color. Theoretically, there are reasons to believe that these laws
extend more generally (e.g. see [26]). Thus they can, in principle, be used outside of
perceptual categorizations to apply to various social concepts that play central roles
in evolutionary game theory, e.g. reputation. Such uses will provide a more realistic
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psychological basis in the evolutionary modeling while simultaneously providing
richer modeling possibilities.

One approach to extending our color chip naming algorithms to cover these
cases is to evolve for each name used by player α an icon chip. Intuitively an icon
chip approximates a feature of human long-term memory in the naming of a newly
or previously presented color chip (this is similar to Hering’s view of color memory
as described in [1]). This feature is based on the concept of ksim: Two color chips
are said to be k-similar if and only if they are within ksim of each other. Recall
that Sα

c,n stands for player α giving color chip c the name n. Formally, any color
chip c occurring in a game is named by player α as follows:

(i) If there is no icon chip to which c is k-similar, play the game, give c the name
dictated by the result of the game, compute Sα

c,n for each name accordingly,
and make c an icon chip.

(ii) If i is the only icon chip to which c is k-similar, play the game for c with c having
i’s name, recompute Sα

i,n for each name n to reflect the result of the success or
failure of the game (even though the game was played with c), remove i as an
icon chip and replace it with a new icon chip i′ that is a chip that is nearby i in
the direction of c, and set Sα

i′,n = the recomputation of Sα
i,n for each name n.

(iii) If there are more than one icon chip to which c is k-similar, randomly select
one of those icon chips i, play the game for c with c having i’s name, recompute
Sα

i,n for each name n to reflect the success or failure of the game (even though
the game was played with c), and retain i as an icon chip.

In this approach, chips that are judged are only given names of icon chips,
and only icon chips are updated. The approach may be viewed as a means of
incorporating a primitive form of perceptual memory into the evolutionary process,
with the presented chips being analogous to “perceptions” and the icon chips to
“memories”.

There are many approaches to the use of icon chips. The first to be carried out by
our UC Irvine color research group is described in an article by Steingrimsson [33]. In
that article, simulations of the 2-player teacher game, modified to include icon chips
and their updatings, yield the same sort of near optimal equilibria as the 2-player
teacher game. Interestingly, these simulations show that structural differences can
occur in players’ organization of icon chips, producing situations where players’
homogeneous color perceptual experience produces heterogeneous cognitive color
organization while producing near optimal population naming behavior.

7. Discussion and Summary

Before the advent of evolutionary game theory, Lewis in 1969 [18] advocated an
evolutionary game-theoretic approach to meaning for simple language systems. He
argued that language was a self-organized convention that arose from evolution-
ary processes that were not dependent on previous language based agreements. His

1150022-16



January 27, 2012 16:24 WSPC/S0219-5259 169-ACS 1150022

Language, Categorization, and Convention

views on language and convention had — and continue to have — much impact
in philosophy. As evolutionary game theory developed, the evolution of meaning in
simple communication systems was studied by biologists, mathematicians, compu-
tational scientists, and others. Most of these researchers were apparently unaware
of Lewis’ contributions. An exception was the philosopher Skyrms [28] who refor-
mulated and extended Lewis’ ideas about language and convention in terms of the
evolutionary game theory of the time.

The early game-theoretic applications of the evolution of shared meaning
involved simple, language-like communication systems where names were assigned
to individual states of the world. In each round of such a game, some players, called
senders, see the state of the world, and they communicate it to certain other players,
called receivers, by assigning it a name from a list of names. At the beginning of the
game, these names had no meanings. Each receiver acts on the senders’ information,
that is, acts on the names they receive. If a receiver’s action is effective for the state
of the world seen by the sender, then both the sender and receiver are rewarded; oth-
erwise they are punished. In such games, depending on various conditions and the
evolutionary dynamics employed, shared meaning can evolve in the sense that the
actions taken by the receivers are always effective. The earliest applications that the
authors are aware of involving game-theoretic evolution of the shared meaning of
categories (as opposed to the game-theoretic evolution of shared meanings of indi-
vidual objects) are Belpaeme’s 2002 Ph.D dissertation, [5], Dowman’s 2003 arti-
cle [8], and the well-known 2005 article of Steels and Belpaeme [32]. These appli-
cations involve the categorization of color. Subsequent to the Steels and Belpaeme
article, several other evolutionary game-theoretic approaches to color categorization
have appeared in the literature (e.g. [3, 11–14, 21]).

In our game-theoretic, evolutionary approach, we choose the reduced color space
of the hue circle because (i) it simplifies calculations and simulations, and (ii) from
various theoretical and mathematical modeling perspectives, it is the most natural
one-dimensional reduction of the color space. [Footnote a discusses (ii).] We chose to
include as little psychology as we could into our simulations in order to emphasize
that pragmatic and simple communication constraints were enough to drive the
evolutionary dynamic to produce stationary equilibria that are similar to those
observed in similar situations in cross-cultural empirical data. We do not interpret
this as saying that the kinds of results observed in empirical situations did not
involve more complicated psychological or social processes in their evolutions, but
only that the use of such richer psychological or social processes for explaining data
require, at a minimum, richer data than those of the kind that can be explained by
simple evolutionary processes like those we use.

Our group’s naming studies extend the evolution of meaning to the categoriza-
tion of color. With the few exceptions described above and our work, the evolution
of meaning was generally restricted to the naming of individual states and actions
in simple signaling systems. Results of our group, starting with [13] showed that
the conventions that were the end results of their simulated social reinforcement
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dynamics were near optimal in terms of individual and group success. [13] also
showed that varying the pragmatic importance of portions of the hue circle pro-
duced optimal categories having certain specific sizes. When such pragmatic impor-
tance was included as a part of their simulations, near approximations to the
optimal categorizations were achieved. These results are in contrast to the Lewis–
Skyrms theory and most other evolutionary naming and signaling studies, which
are based on homogeneous items to be named or signaled. Also other studies by our
group [11, 12, 14, 33] considered non-homogeneous players in terms of perceptual
or cognitive abilities and again achieved near optimal results — again, in contrast
to most of literature that use homogeneous players.

Previous research of ours showed the 2-player teacher game yielding near optimal
solutions under a number of sampling of parameters.

For the intended applications of the interpretations of the discrimination–
similarity game, it would be unrealistic and unfortunate if the results of the simula-
tions critically depend on a player interacting with another player randomly chosen
from the population. The simulations of the 2-player teacher game on a torus, where
the players only interacted with other players in von Neumann 4-neighborhoods,
alleviated this concern by showing that in some situations playing the 2-player
teacher game on a VN4 torus appears to be more likely to yield an optimal solu-
tion than playing the 2-person teacher game on the same size population but with
random interactions.

Another modification of the 2-player teacher game was the use of icon chips
to incorporate a simple model of players’ memory into modeling. Simulations by
Steingrimsson [33] demonstrated using icon chip modeling that players with homo-
geneous perceptual systems and evolved heterogeneous cognitive systems yielded
near optimal solutions similar to those in the 2-player teacher game. (Note that the
situation in [33] is in contrast to those of [11, 12] involving the 2-player teacher game
in which players had heterogeneous perceptual systems and evolved homogeneous
cognitive systems.)

In other research, we have used discrimination–similarity game simulations to
provide counterexamples to substantive theories in the literature and to demon-
strate how variables of interest in color research trade-off or interact. For such
purposes, the number of rounds to achieve a near optimal categorization is not of
interest, and thus for such applications we are not bothered that some of our sim-
ulations involve a typical player having several hundred of thousands interactions
with other players.

The dynamics of our algorithms are based on a form of reinforcement learn-
ing. In this article, it is applied to two extreme conditions: random interaction in
a population, and random interaction in a von Neumann 4-neighborhood. Nei-
ther condition begins to approximate interactions involved in human or other
forms of naturally occurring communication, and thus they cannot take advantage
of evolved communication structures or social evolutionary updating rules. The
discrimination–similarity game’s reinforcement updating procedure is very slow in
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changing a player’s strategy, especially if compared to social evolutionary updating
rules based on imitation. In future work, we plan to investigate the discrimination–
similarity game using social evolutionary modeling on networks with populations
of tens of thousands of players. We expect to find that for the kind of issues consid-
ered in this article, successful population categorization can be achieved with each
player interacting with another player a realistic number of times.

In his early definitions of “convention” in his 1969 book, Lewis had a convention
being a perfect, coordinated equilibrium. He had in mind what is today called
a “Nash equilibrium”. In such a perfect equilibrium, no player can do better by
choosing another strategy, and a player deviating from her strategy will make her
and the other players worse off. In his final definition of “equilibrium”, Lewis strives
to make matters better conform to actual conventions, by allowing minor deviations
that produce a non-perfect equilibrium. An optimal solution to a discriminabilty–
similarity game that penalizes for personal failures will always produce a non-perfect
equilibrium, because there will always be color patches within ksim that straddle
a category boundary that will produce a personal failure. Our discriminabilty–
similarity games based on reinforcement algorithms achieve optimal, non-perfect
equilibria that remain near one another for a very long time, i.e. they yield results
that are, for a long time, optimal stationary equilibria. However, there is a type of
non-perfect, coordinated equilibrium that does not fall under Lewis’ definition: a
“drifting equilibrium”. We showed that the discriminability–similarity game with
a smoothing algorithm produced a solution that drifted in the following sense: The
meanings assigned by individual players to names rotated in a coordinated manner
over time while maintaining near optimal categorization for a very long time after a
specified time t. The meanings of these color names drifted to a degree that for each
name n and each color patch c, there would be a not-too-distant time after t when
c will be named with n. Of particular note is that even though the meanings of
the color names drifted over time, the semantic structure among the names did not
drift, e.g. if English names were used and a solution had English naming semantics,
in particular, the “orange” patches were between the “red” and “yellow” patches
on the hue circle, then in all subsequent solutions (in the not-too-distant future
after t), the patches designated as “orange” will remain between those on the hue
circle designated as “red” and “yellow”, even though in some cases the meanings,
that is the colors on the hue circle assign to “red”, “orange”, and “yellow” change
dramatically.
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