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Abstract 

Research presented introduces a new approach for empirically investigating generative or 
inductive-like systems. Two versions of a generative model of the uppercase English alphabet are 
examined. The approach is both formal and interdisciplinary, applying techniques developed by 
psychophysics to a problem that is typically linguistic. Experimental results presented illustrate 
empirical methods and analytic tools used, and demonstrate how the techniques advance the 
psychological study of the English alphabet. Two different theoretical models of the alphabetic 
system are evaluated strictly on the basis of empirically observed two-alternative forced-choice 
data. Scaling methods described produce a numerical scale for generated alphabetic items which 
permits informative comparisons between scale values and across independently derived scales. 
The scaling theory used is a variant of Thurstone's Case V model. The methods can also be 
utilized to further model construction. Implications of the findings for the existing body of 
writing-system research, and the generalizability of the approach to other domains of investigation 
are also discussed. 
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1. Introduction 

This paper presents new results in the formal study of symbolic information systems 
and cognition. The research is interdisciplinary in nature, applying empirical methods 
and analytical techniques from psychophysics to a linguistic model of the uppercase 
English alphabet. 

The paper has two goals: First, to present new methods of data collection and 
analysis that provide stronger tests of generative models than are possible using 
techniques existing in the literature, and to illustrate how variation in methodology 
influences the descriptive power and generalizability of empirical findings. Second, 
empirical tests of a cognitive model of the uppercase English alphabet are presented, 
demonstrating how the new methods are employed and serving as a valuable substantive 
test of the model. 

The present research is based on the work of immediate predecessors, but the aim is 
to go beyond typical experimental research on the nature and functions of generative 
cognitive models. 

The approach employed here is easily generalized to testing theoretical models that 
have generative or inductive capabilities. Specifically, these methods are useful for 
investigating psychological processing in probabilistic categorization judgments, and for 
evaluating judgments for which correct answers may be unknown. The methods 
presented are interdisciplinary and are appropriate for use in many psychological 
applications. 

Here these new methods are applied to investigate a generative model of the English 
uppercase letters which is similar in many respects to models commonly used to 
describe aspects of natural languages. This research demonstrates that, for the alphabetic 
model examined, the approach yields results that are detailed, informative and that can 
be used for model improvement. 

The paper first gives a brief background of previous research on alphabetic models, 
discussing data collection and analysis methods. Second, is an overview of the tested 
alphabetic model, emphasizing possible ways it can be empirically tested. Third, 
rationale for the present methods is discussed, including the use of empirical judgments 
of acceptability, improvements the approach presents over existing methods, and 
advantages of generalizing these methods to examine other generative models. Fourth, 
data collection and analysis methods are described and the results from three empirical 
studies, and their bearing on the alphabetic model, are explained. The emphasis is on 
contrasting and comparing the effects of (a) variants of paradigm design, (b) different 
methods for deriving a Rating Structure from the data, and (c) calibration approaches for 
combining independent rating structures. Finally, empirical results are summarized and 
the usefulness of the approach in investigating other psychological domains is discussed. 

2. A brief background of relevant writing systems research 

Serious psychological experimentation using simple figures (letters and other designs 
of like complexity) began in the 1930's (e.g. Fehrer, 1935). Early work on typical errors 
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that people make when trying to remember or perceive visual symbols is well illustrated 
by the work of Bartlett (1932) and by Carmichael et al. (1932), and later by the work of 
Bruner et al. (1952). Modern research into the analysis of pictorial symbols began with 
the well-known computational archaeologist J.C. Gardin (1958), who apparently was the 
first to analyze two-dimensional figures into their distinctive features. 

Beginning in the early 1960's, strong interest in analyzing the letters of the alphabet 
as an organized symbol system became prevalent at various research centers in the 
United States and elsewhere. Two distinct but sometimes related paths can be distin- 
guished: (a) pattern recognition, which had as its major goal the machine identification 
of printed or written characters; and (b) visual experimental psychology, which had as 
one goal to discover how those same characters are identified by humans. The first is 
typified by the efforts by Eden and Halle (1961) to produce an analysis capable of 
enabling a machine to read handwriting, whereas the second is typified by the work of 
E.J. Gibson and her associates and students, their goal being the reduction of printed 
capital letters to distinctive features modelled on those then under development for the 
sounds of language. The premise of Gibson's group was that such an analysis could map 
putative human visual detection features similar (or identical) to those then being 
discovered in the cat (e.g. Hubel and Wiesel, 1962, 1965); their ultimate goal was the 
development of an explanation for misreadings and other performance errors (e.g. 
Gibson et al., 1963; Gibson, 1965). During the 1960's this area was actively researched. 
At other centers experimentalists were subjecting letters, both capital and lower-case, to 
various sorts of analytic procedures, including multi-dimensional scaling (Kiinnepas, 
1966), distorted and permuted reading experiments (esp. Kolers, 1968, 1969), and factor 
analyzes for linear scalings of letter similarity (e.g. Dunn-Rankin, 1968). Some of these 
efforts continued into the mid-1980's, at which time at least one reached its presumed 
zenith in the work of Townsend and his associates (Townsend et al., 1984), where a 
complete confusion matrix for all twenty-six capital letters was presented. 

The empirical methods employed by, and in part created for, this early research, 
although formally sound, were not aimed at addressing experimental tests of the 
generative aspects of alphabets. Instead they sought to examine the perceptual, or 
discrimination, aspects of alphabet processing. In contrast, the present research provides 
formal methods of data collection and analysis designed to examine the generative 
aspects of alphabetic systems and the cognitive induction carried out by users of those 
systems. To achieve this end, paradigms typically employed in psychophysical investiga- 
tions are generalized and modified so that they can apply to the issues at hand. 

3. An overview of Watt's alphabetic model 

The alphabetic models examined here are the work of Watt (1975, 1980, 1981, 
1988a). 2 In these papers Watt characterized the twenty-six uppercase letters of the 
English alphabet via generative rules using a small number of primitive attributes to 

2 As discussed below, more than one variant of Watt's Model is examined in the present investigation. 
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account for learners' errors and therefore for the changes of written letter forms that 
people make during the course of mastering and using the alphabet. The general model 
in effect weights certain attributes and attribute-combinations in such a way as to predict 
that they will tend to be replaced, unintentionally, by other attributes or combinations, 
thus explaining why 'N' is often reversed and why 'd' is almost always by people just 
learning the alphabet, whether they are modern schoolchildren or ancient Greeks. 
(Ancient Greek had a backwards '1_' that acted like modern 'd' in this respect.) By 
accounting for the 'errors' that have changed the alphabet over time, Watt's analysis 
provides an answer to the question, Why is the alphabet the way it is (i.e., contains the 
letter-forms that it does), instead of some other way? Apart from explaining these 
'errors' the generative rules offer a broader psychological application as well, since they 
also map into the compositional rules people use in constructing the letters (chiefly, in 
writing or printing them). 

Inspired by the results of Townsend et al. (1984), Eden and Halle (1961), and Gibson 
et al. (1963; Gibson, 1965), Watt also aimed to provide a deeper analysis of what 
'greater similarity' between letters consists. His conclusion: similarity increases as the 
number of attributes in common increases. (But which attributes?) Unfortunately, while 
Watt could show that his model was supported by perceptual data, he did not have 
appropriate methods to test the generative, or inductive, aspects of his model. The 
methods available for testing inductive-like systems (especially those used in linguistics 
for testing the grammaticality of generated sentences) were ill-suited for examining 
degrees of grammaticality which implicitly play an important role in his theory and 
model. 

Watt's model, referred to as a 'generative grammar', consists of syntactic rules which 
involve three distinct, yet interactive, levels of evaluation for the 26 uppercase English 
letters and other highly letter-like forms. These three levels of description include a level 
of fundamental aspects (which Watt has referred to as 'Abyssal' (Watt, 1988a)), a 
visual-pattern level (or 'Phanemic Level' (Watt, 1981)), and a motor program level (or 
'Kinemic Level' (Watt, 1980)). The three levels of principles interact and influence the 
formal descriptions put forward by the others. 

The deepest of these levels, the Abyssal, is a set of abstract rules that underlie the 
visual and motor rules. The Abyssal rules describe the most fundamental aspects of the 
set of letter-forms: aspects such as homogeneity of the alphabetic set, criteria governing 
excessive visual confusibility of any two items in the set, and rules that constrain the 
complexity of items. At the Abyssal level letters are described syntactically as combina- 
tions of line-segments and concatenators. Abysally, features are assigned to letter 
components, or letter-form 'phonemes' (Watt, 1975, p. 322). Thus, the Abyssal descrip- 
tion of the component parts of 'D' consists of the vexillum 'l' and the cusp ' )' (the 
latter being composed, at this level of the grammar, of the two line segments: ' \ '  and 
, / ,) .  

The next two levels of description, visual patterns and motor programs, both employ 
syntactic distinctive feature analyses and both are characterized by rules expressing 
generalizations over the set of letters. 

In the visual-level description each letter-form is analyzed as a member of a set of 
coherent visual patterns, and each is characterized with respect to such properties as 
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visual symmetry, redundancy of features among letter-forms, and the complexity of the 
distinctive feature description. Thus, the visual description only specifies the formal 
syntactic descriptions of the visual pattern aspects of the writing system (see Watt, 
1981). 

The motor-level descriptions of Watt's model analyze and modify the descriptions 
given by the preceding levels with the goal of satisfying criteria concerning the 
'competence' of a letter-form's production program as a reasonable procedure for a user 
of the system. The syntactic descriptions of these motor programs provide vector, or 
'stroke', descriptions of the letter components (Watt, 1981). At this level the kinemic 
rules respecify the values for direction and orientation of the line segments and the 
concatenators issued by earlier levels of analysis. Thus, both visible and invisible strokes 
(line segments and concatenators) are examined, and curved and rectangular values for 
conjoined segments are determined and made explicit in the description. 

As in the preceding levels, generalizations about the distinctive feature components 
of the motor programs come into play. Thus, for the vexillum '1' which is the first 
distinctive feature in 'D', the following generalization applies: Always begin the 
production program with the left-most line segment, and if it is vertical or near-vertical 
in orientation then begin with a down-stroke. The formal model applies many such 
'generalizations' in both the visual and motor analyses. 

These three levels of description make up the generative model which characterizes 
the set of 26 uppercase English letters and all other highly letter-like extensions of that 
set. 3 The derivative syntactic descriptions of individual letters are quite intricate in 
detail and are not reproduced here. Readers interested in examples of the syntactic 
descriptions should consult Watt (1975, 1980, 1981, 1988a). 

As mentioned above, Watt's system is supported by evidence from common acquisi- 
tion errors of young children learning to write the capital English letters, as well as in 
historical examples (Watt and Jacobs, 1975; Watt, 1975). However, only recently 
(Jameson, 1989; Jameson and Romney, 1990; Jameson, 1994) has empirical support of 
Watt's alphabetic model been reported. 

3.1. The relevance of  Watt's alphabetic model to psychology 

The scope and intentions of Watt's model are straightforward. Watt aimed to describe 
the properties of the set of items composed by the Uppercase English Alphabet. In doing 
so, Watt also described the properties of the larger macro-set of all possible Uppercase 
English letters. Watt's goal was to explain how the alphabet came to be in its present 
form, and to describe why it became what it is as opposed to some other way. This latter 
point involves important cognitive issues, as Watt points out, in that the driving dynamic 
behind the numerous changes that led up to the English alphabet's present form is the 
peculiarities inherent in human cognitive processing of alphabetic forms. Thus, for the 
purposes of explaining the English writing system, Watt's model had to address the 
psychological processing of that system. 

Hereafter the term 'generative formal model' (or 'alphabetic model') will be used to identify what Watt 
calls a 'generative grammar' and that grammar's 'analysis'. 
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An important feature of Watt's model is that it is foremost a model of the cognitive 
aspects of writing system processing. This distinguishes Watt's model from other 
alphabetic models which are largely perceptual, or discrimination, models (cf., Townsend 
and Ashby, 1982; Townsend, 1971a,b; Gibson et al., 1963; Gibson, 1965, 1969; Eden 
and Halle, 1961). Much in the way linguists have developed grammars for generative 
phonology (e.g., see Chomsky and Miller, 1963; Chomsky and Halle, 1968), Watt 
devised his generative model of the English uppercase letters. Just as English phonology 
is generative and therefore must allow for phonologically-wellformed 'pseudowords' 
currently not existing in the language (such as flin, prip, spiff), so too Watt's model 
generates extensions of the alphabet beyond the set of canonical letters. Thus, Watt's 
putative cognitive model is generative and it proposes that subjects access this cognitive 
grammar of the alphabet similar to the way a native English speaker constructs and 
evaluates new words in the English language. 

Justifying a generative alphabetic model may seem difficult since instances of 'new 
letters' are not common to everyday experience, whereas new words are. However, the 
somewhat arbitrary fact that the present day English alphabet is a static system, does not 
erase the fact that at one time the alphabet was dynamically 'evolving', nor does it 
exclude the possibility that individuals learning the alphabet might acquire a cognitive 
representation involving properties similar to those acquired for other generative lan- 
guage skills (e.g., English phonology, morphology, and syntax). The similarities be- 
tween the generative properties of language and the generative aspects of writing 
systems have been aptly stated by Watt (1979, 1988b) and is a topic beyond the scope of 
this paper. The important point Watt's model makes for psychology is that a discrimina- 
tion-based 'perceptual' model of the restricted set of letters known as the English 
alphabet may not be adequate to explain the cognitive processing carried out by a user 
of that alphabet. What is needed is a more 'cognitive' treatment of alphabetic process- 
ing, and Watt's model of the English uppercase letters attempts to provide just such a 
model. 

Watt's model is the only model of the alphabet which fully explains the psychologi- 
cal acquisition errors frequently observed in young children in the processing of learning 
the alphabet; the production errors commonly observed in those same children; the 
execution and confusion errors found in written historical accounts employing alphabetic 
precursors to the present-day writing system; and, as will be shown below, subjects' 
preferences for possible extensions of the set of uppercase English letters. And the 
notion central to Watt's model, that of capturing the generalities of the alphabetic set as 
opposed to only explaining the actual letters contained in that set, was not examined by 
Watt's precursors. 

4. Empirical tests of Watt's alphabetic model 

Generative properties of Watt's model permit empirical tests beyond the twenty-six 
letters through a rule-based manufacture of new letters. New letters generated through 
proper applications of the rules are described as well-formed new letters. Other forms, 
generated imperfectly through misapplication of the rules, are referred to as ill-formed 
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A sample alphabet: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
Sample new letter forms: 

(i) ~ ( ( i i )  ~ (iii) U (iv) :1= (v) 09 

Fig. I. An example of a 26-letter sample alphabet, as well as examples of new letter forms ranging in 
grammaticality from highly grammatical, (i), to highly nongrammatical, (v). 

new letters. Fig. 1 shows a sample alphabet and some examples of new letters which we 
will hereafter refer to as 'pseudoletters'. 

Watt's model is applied in pseudoletter classification to wellformedness categories 
(e.g., grammatical, semigrammatical, and nongrammatical), which depends strictly upon 
the degree of conformity or adherence to the model's rules and mechanisms. The model 
and analysis determines how easily a pseudoletter item is obtained from the underlying 
rules. If that item is redundant or confusible with an already existing item then it should 
be excluded on the basis of excessive homogeneity (Watt, 1979). If, on the other hand, a 
new item is deviates in form from the canonical set of alphabetic letters too much, then 
the item is excluded on the basis of excessive heterogeneity (Watt, 1979). In conjunction 
with this higher level analysis, each pseudoletter is analyzed for its distinctive feature 
properties and its coherence to the distinctive feature patterns and programs of the 
canonical uppercase letters. Together these two levels of analysis can be applied to a n y  

potential new letter for classifying that letter to a grammatical category. 
The theory implicit in Watt (1988a) suggests that well-formed pseudoletters should 

be perceived by native speakers of English as more acceptable then ill-formed ones. The 
present studies assess this claim empirically by asking subjects to make judgments about 
the appropriateness of a candidate new-letter in a specified context of sample letters. 

To assess the correctness of Watt's model an experimental paradigm of two-alterna- 
tive forced-choice (2-AFC) design is employed to obtain judgments of acceptability for 
proposed 'new-letter candidates' as extensions of the set of existing 26 English letters. If 
Watt's model is correct, subjects should be much more likely to choose in a 2-AFC task 
well-formed pseudoletters over those ill-formed (see Appendix A). 

Subjects were instructed that the 2-AFC task represented an attempt to extend the 
existing set of the 26 letters of the English alphabet by introducing newly created 
letter-forms. They were told to examine each of the two alternatives and to decide which 
alternative 'best belonged with' or could be considered 'a member of' an extended 
version of the uppercase English alphabet. 

Judgments of acceptability were employed to assess choice behavior for two reasons: 
(a) they provided an easy format in which to assess subjects' awareness of the 
generative properties of Watt's model; and (b) because they permitted the comparative 
assessment of pseudoletters that varied greatly along a continuum of grammaticalness. 

5. Advantages of the empirical methods presented 

The empirical methods suggested here improve upon methods most often employed, 
in that they eliminate methodological flaws often found in investigations of 'acceptabil- 
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ity' and 'grammaticality'. Problems typically inherent in studies of linguistic acceptabil- 
ity (discussed in Quirt and Svartnik, 1966) which are relevant to the present investiga- 
tion are the following: 

(1) What is the relationship between grammaticalness and acceptability? It is assumed 
that acceptability judgments can be employed to gauge degrees of wellformedness or 
grammaticalness. However, the suggested 2-AFC method does not require that degrees- 
of-grammaticality be explicitly accessible to the subject for evaluation, as is the case in 
direct-questioning techniques. In the present studies the subject need only form a 
judgment regarding which of two items is preferred. The present methods provide a 
means by which subjects may accurately access degrees of grammaticality even though 
they may not be able to describe mechanism(s) underlying such a judgment (as is often 
the case with inductive mechanisms). Additionally, the methods can be used to assess 
specific and subtle aspects of grammaticality, of which subjects may have no sponta- 
neous conception, but which nevertheless play a relevant role in the preference for 
pseudoletters. 

(2) The empirical methods presented here can be employed to insure that subjects' 
classification behaviors exhibit transitive properties. 4 Intransitive choice data may be 
due to confusion patterns often present in acceptability judgment data, and can thereby 
alert one to performance drop-off that frequently occurs with tasks involving much item 
similarity. In addition, transitive choices can also be used to monitor performance 
improvements due to habituation in the course of the test, as found by Miller and Isard 
(1963). 

(3) Of course to fully assess the transitivity of a given subject's data, one should 
obtain responses for all possible (N(N- 1)/2) pairwise comparisons of N stimuli. 
(This is often impractical empirically.) As discussed below, this problem is addressed 
through an overlapping-design paradigm and data analysis techniques that function very 
well on sparse and unsystematic data. The employed methods provide complete within- 
subject choice data for stimuli that otherwise would have required 2211 judgments per 
subject if collected as a single complete-design experiment. 

(4) The three most often employed techniques from linguistics (e.g., the 'direct 
question technique', the 'translation task' and the 'operation test') have many drawbacks 
compared to the empirical methods suggested here. The more commonly used tech- 
niques (see Quirt and Svartnik, 1966) are subject to criticisms that are either avoided or 
resolved using the present methods. Among the more serious criticisms are: an over-reli- 
ance on individual idiosyncratic response data, insufficient objectivity with respect to 
data collection methods, and no underlying formal model for the treatment of collective 
data observations. These issues, and others, are addressed in the present research through 
principled data aggregation methods, objective and rigorous paradigm designs, and 
mathematically-modelled data analysis procedures. 

4 'Transi t ive '  is defined: given pseudoletters a i, aj, and a k, and the conditional probability, denoted 
P(ax[axay) for any of three pseudoletters chosen in a pairwise comparison, the ordered relation: 

I f  P(ai[aiaj) > 0.5 and P(ajlajak) > 0.5, then P(ailaiak) > 0.5 

reflects a transitive choice pattern. 
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(5) An additional strength of the suggested methods is that the results do not rely 
strictly upon within-subject choice data and thus permit the evaluation of data across 
subjects, eliminating reliance upon the idiosyncratic choices of a given individual. This 
is an improvement over standard empirical approaches for assessing linguistic accept- 
ability in that it provides a principled procedure for handling aggregate data and 
understanding such data; comparatively, standard methods are oversimplistic and do not 
provide much external objectivity. This focus on aggregate group data is concordant 
with investigating alphabetic models for groups of individuals rather than investigating 
the responses of individuals - the latter being the focus of Watt's work and in general 
the focus of many other linguistic-like studies. 

Data from 2-AFC paradigms are used to derive a numerical scale of Performance 
Ratings for the tested pseudoletters. To do this a performance rating algorithm is applied 
to the data, according to a mathematical theory, yielding a continuous-valued numerical 
scale with values for each pseudoletter tested. The resulting performance-rating rank- 
ordering, and the individual rating scale estimates, are then used to evaluate Watt's 
formal model. 

To describe these Performance Ratings a generalization of Thurstonian scaling is 
presented (hereafter referred to as the Rating System). An important feature of these 
methods is that, in conjunction with 2-AFC paradigm, the Rating System method 
preserves the continuous-valued acceptability relations present in subjects' evaluations. 
This approach yields rich and highly-structured data, making it a major improvement 
over the standard paradigms used for assessing acceptability. Thus, the presented 
methods yield data that capture a continuous scale of wellformedness (free of constraints 
imposed by category classification tasks), which can be used to test either a formal 
model that posits a continuum of wellformedness, or a model which simply classifies 
pseudoletters into discrete grammatical categories. 5 

Using the suggested paired-comparison methodology to derive a numerical scaling of 
pseudoletters from subjects' choice data is considered, for theoretical and methodologi- 
cal reasons, a better method than an alternative scaling method frequently used in 
psychology, that is, Direct Scaling. 

Direct Scaling was not used in this research for several reasons: While it is an easier 
way to collect data than paired-comparisons, it has a number of theoretical and 
methodological drawbacks not encountered in the paired-comparison paradigm. 

The first drawback is that Direct Scaling lacks a theoretical foundation, and because 
of this, there are no good criteria for deciding when Direct Scaling is an inappropriate 
methodology. The second drawback is that the direct scalings of individuals can only be 
aggregated into a common scale by making assumptions that (a) individual direct 
scalings belong to a ratio or interval scale and that (b) the scale values of different 
individuals can be compared in a meaningful way. The assumption in (a) is usually a 

5 Although in theory Watt 's model assumes a continuum of wellformedness, for the purpose of illustrating 
the proposed methodology, here Watt 's  model is only employed to analyze categories of wellformedness. 
Although finer continuous-level analyses are possible via these methods and are desirable, this simplifies the 
levels of  analysis of Watt 's  model in cases where two or more pseudoletters are grammatical 'equals" and 
which complicate interval level comparisons with the rating scale. 
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completely ad hoc assumption based on no empirical evidence. (The rigorous checking 
of this hypothesis would require much more complicated experiments thus completely 
eliminating Direct Scaling's advantage of easy data collection.) Assumption (b) is a 
philosophically loaded assumption, generally discredited by researchers who have 
looked into the issue deeply. (See Aczrl and Roberts, 1989, for a discussion of what is 
needed to aggregate subject's direct scales, and why the usual aggregation method via 
arithmetic means may be inappropriate; and Narens and Luce, 1983, for a discussion 
about comparing direct scale values of different individuals.) In addition, for compli- 
cated cognitive stimuli like the pseudoletters used in this study, there is enormous 
potential for nonconvergence of direct scale orderings with that of paired-comparisons. 
(See Bostic et al., 1990, for a discussion of this issue.) 

6. A brief description of the Rating System and its scaling algorithm 

In the present investigation a good scale of grammaticality is considered one which 
has the following properties: (a) it should accurately represent the empirically observed 
ordering of pseudoletters such that for any given pair of pseudoletters i and j, with 
performance ratings r i and rj (where r i 4= r )  the performance rating scale should give 
accurate predictions for the empirical preference of i over j. (b) A good scale would 
reflect the continuous nature of grammaticality through continuous-valued performance 
ratings. (c) To the extent that the preferences for pseudoletters are described by the 
Thurstone Case V model (Thurstone, 1927) the performance rating scale should also 
approximate empirical preferences when interval-scale information is used for predic- 
tions. 

The Rating System Model (Batchelder and Bershad, 1979; Batchelder and Simpson, 
1988) is a formal scaling model based on the paired-comparison methodology used by 
the international chess playing community to rate the performance abilities of players, as 
described by Elo (1978). Chess games, like many forms of two-player competition, have 
two opponents and the result is either a win, loss, or a draw. A system for measuring 
chess playing ability is called a 'chess rating system'. Batchelder and Bershad's goal 
was to create a system that overcame "a  number of methodological problems that have 
limited the applicability of paired-comparison scaling in psychology" (Batchelder and 
Bershad, 1979, p. 40). Their Rating System represents a formal, yet simple, variant of 
Elo's chess rating system. 

Batchelder and Bershad also show that Elo's system is, in essence, a "system of 
approximations designed to render serviceable a modified version of Thurstone's Case V 
model" (Batchelder and Bershad, 1979, p. 42), thus connecting the theory underlying 
Thurstone's model with Elo's algorithm. 

To derive the performance-rating scale, the pseudoletters are treated as players in 
games of pairwise comparisons in which the judgments of human subjects determine 
which one wins, or is more alphabet-like. Using subjects' aggregate data, the Rating 
System algorithm produces Performance Ratings for each pseudoletter which can be 
compared with performance ratings of any other form incorporated into the same 
paradigm and scaled in the rating structure. 
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6.1. Advantages of  the Rating System Model 

There are quite a few advantages to using the Rating System algorithm over other 
types of numerical scaling schemes (cf. Batchelder and Bershad, 1979, pp. 41-42). 

First, the Rating System algorithm can produce valid numerical performance-rating 
estimates from unsystematic and sparse data sets. Most estimation schemes typically 
used in psychology require multiple observations and complete paired-comparison data 
sets (here called round-robin data sets) - often an impractical demand in empirical 
settings. The Rating System algorithm eliminates the need for systematic sampling of 
stimuli and thereby greatly facilitates the application of paired-comparison methodology 
in many empirical domains. 

Also the Rating System algorithm can efficiently incorporate a new stimulus item 
into the system of a set of already scaled objects using only a few new comparisons, 
thereby addressing the problem of introducing and scaling newcomer stimuli. Most 
psychological scale estimation methods currently used in psychology require deriving a 
stable estimate for the new object and then rescaling the entire system to adjust all the 
estimates. The algorithm used here provides procedures for the accurate estimation of 
new items as soon as they are introduced into the system. 

Finally, the Rating System's easy-to-apply closed-form estimation methods permit 
explicit estimation of the performance-rating scale values. As Batchelder and Bershad 
point out "most  parameter estimation schemes for paired-comparison systems in 
psychology involve complicated implicit equations for the estimated scale values . . . .  
(and) the scale value for an object depends on the results of choices not involving that 
object" (1979, p. 41). Asymptotically the Rating System algorithm is a random-variable 
choice model similar to the discriminable dispersion models of Thurstone (1959). The 
difference is the underlying distribution assumed (Yellott, 1977), and the estimators for 
Thurstone's models are in general not unbiased (Batchelder and Bershad, 1979, p. 46). 

6.2. The Uniform Model 

The specific form of Rating System used here is what Batchelder and Bershad call 
the ' Uniform Model' (1979). It has the following properties: (1) it closely approximates 
the Thurstone Case V model, yet its estimates are unbiased (unlike the Thurstone 
model); (2) the formulae of the Uniform Model produce performance rating estimates 
that are consistent and asymptotically normal and include no more than .01 error per 

6 game; (3) the estimators of the Uniform Model are simple to compute; and (4) one can 
directly obtain information about the sampling distribution of the joint estimator of the 
rating scale differences and a draw parameter (see Batchelder and Bershad, 1979, pp. 
44-45). 

As summed up by Batchelder and Bershad: 

" I f  one were interested in paired-comparison scaling where underlying choice 
probabilities were constrained away from 0 and 1 - even as loose a constraint as 

6 In the present application the '0.01 error per game' derives from the draw parameter being equal to zero. 
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Pij ~ (0.1,0.9) - one could use the Uniform Model for both static and dynamical 
scaling. Even if the true model was quite different, such as the Thurstone model, 
fairly accurate scale values can be obtained from sparse and unsystematic data 
structures." (1979, p. 56) 

Putting aside many technical details not essential to the present argument, a fixed 
theoretical function F from the open interval ( - 2 , 2 )  into the open interval (0, 1) is 
used, and a real-valued function u on pseudoletters is empirically estimated so that for 
all forms f and g that have been compared empirically, the observed probability Pfg, 
that f is chosen over g is given by 

p r g = F [ u ( f )  - u ( g ) ] ,  (1) 

where ' = ' means approximately equal. In this sense u measures the wellformedness of 
pseudoletters. The underlying rationale is that this probability is a function of the 
difference of values from the underlying wellformedness scale. 

The advantage of estimating u through this algorithm is that it does not require the 
complete item-by-item half matrix. (For the 67 pseudoletters a complete half would 
contain 2211 entries, whereas the designs of Experimental Series 1 and Series 2 
presented below require only 833 pairwise comparisons to achieve a stable estimate of 
u.) Through the model expressed in Eq. (1) this procedure yields an interval-level 
wellformedness scale (of which u is one of its representations) that produces a good 
approximation of Psg" In cases where the representation in Eq. (1) can be obtained, u is 
often called a scaling function and the system is called a monotone paired-comparison 
system. 

7. The experimental studies 

The experiments presented below employ the numerical scaling techniques discussed 
above in a test of Watt's cognitive model. Two separate Experimental Series are 
presented for deriving performance ratings for 67 tested pseudoletters. In addition, a 
third experiment is presented which tests the predictive capabilities of the empirically 
derived numerical scale. 

7. I. Experimental series 1 

The procedure employed in Experimental Series 1 (hereafter Series 1) is a modified 
round-robin design which incorporates items into the system across a series of overlap- 
ping experiments, in which later experimental designs are contingent on the outcome of 
earlier experiments. The five experiments of Experimental Series 1 are now presented. 

7.1.1. Experiment 1.1 subjects and method 
This study collected acceptability data for complete pairwise matches between 14 

pseudoletters, shown as items 1-14 in Table 1. These 91 paired comparisons were 
presented to all subjects in the same random order. Twenty college undergraduates 
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participated in the experiment for partial course credit. Subjects recorded their accept- 
ability judgments using pencil and paper examination forms. They were allowed one 
hour to complete the questionnaire, but in general finished the experiment within 30 to 
45 minutes. An example of the Series 1 task is presented in Appendix A. 

The experimental task consisted of 2-AFC questions involving pseudoletters. Subjects 
chose the better candidate as an extension of the sample alphabet provided. No criteria 
were provided on which to base their judgments, but subjects were instructed to guess if 
they could not easily choose between the two alternatives. Prior to the experiment, 
practice-trials and questions about the instructions were solicited. 

The data of the 20 subjects yielded 1820 datapoints. The aggregate data of these 20 
subjects were analyzed using the Unrated-Player formula from Case 4 in Batchelder and 
Bershad (1979) to determine the first performance-rating estimates, rl  i (for i = 1 to 14), 
for the 14 pseudoletters in the experiment. 7 That formula is: 

rl  i = {e~(2Si- N) + 2N} + Q, (2) 

where, 
et is the constant [sqrt (27r)], 8 
S i is the total observed frequency of 'wins' for pseudoletter i plus 1 /2  for a 

hypothetical game against self, 9 
N is the total observed frequency of games per pseudoletter in the aggregate 

round-robin tournament plus a single hypothetical game against self, 
and, Q is the mean rating of all pseudoletters involved in the computation, here equal 

to zero by the Standard Normal distribution assumption. 
Based upon the initial performance ratings of the first 14 pseudoletters, denoted 

rl ~... r114, the next two experiments in Series 1 were designed. 

7.1.2. Experiments 1.2 and 1.3 subjects and method 

Experiments 1.2 and 1.3 followed the same general design of Experiment 1.1 except 
that a heuristic was employed to select the pseudoletters for use in Series 1.2 and 1.3. 
That is, the r l ' s  of pseudoletters involved in Experiment 1.1 were rank-ordered; those 
pseudoletters in odd positions of the rank order were assigned to Experiment 1.2, and 
those in even positions were assigned to Experiment 1.3. This produced, in both series, 
a representative spread of scaled items. In addition, pseudoletters 15 to 21 (see Table 1) 
were assigned to Experiment 1.2 and pseudoletters 22 to 28 were assigned to Experi- 

7 Rather than 20 individual analyses, the aggregate data of the 20 subjects were analyzed to promote the 
testing of a common cognitit,e model. This is further discussed in Jameson (1994). 

8 The parameter ct (equal to sqrt ( 2~ ) )  is a scaling constant defined by the Taylor expansion of the 
cumulative distribution function of the Standard Normal Distribution, qb(x). The value of ~ can depend on the 
range of x considered, here x is assumed - 1.75 _< x _< 1.75 (see Batcbelder and Bershad, 1979). 

9 For 8 i, wins count + l, and losses count +0 .  We incorporate the scaling constant equal to 0.5 (for a 
hypothetical pairing against itself) in this initial estimate computation for consistency with the Case 4 scaling 
equation presented by Batchelder and Bershad (1979). In general, however, unless such a pairing is observed, 
or draws are permitted as response outcomes, then the hypothetical-game score can be eliminated, with no 
substantive impact, from the computation of the rating structure. One should note that the potential to use 
2-AFC 'no preference' outcomes, or 'draws' ,  is a valuable feature of this scaling model. 
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ment 1.3. Thus, Experiments 1.2 and 1.3 each incorporated seven previously-rated 

pseudoletters from Experiment 1.1 and seven n e w c o m e r  pseudoletters from Table 1. 
As in Experiment 1.1, Experiments 1.2 and 1.3 were designed to obtain acceptabili ty 

data for tested pseudoletters. Ten undergraduate subjects were sampled for each 

Table 1 
Pseudoletter alphabetic model classifications and rating scale estimates 

Item 
Number Pseudo-Letter Model 1 Model 2 

CRS 1 CRS2 
Series 1 Series2 Performance- Performm, ce- 

Scale Scale Ra0ng Estimate Rating Estimate, 

1 )' G G 
2 O S S 
3 g N N 
4 F; N N 
5 ,~ G G 
6 g G G 
7 ¢ G S 
8 k G G 
9 B S S 
10 ~: G G 
11 0 S S 
12 X G G 
13 ] N N 
14 I" G G 
15 -~ G N 
16 X G G 
17 I~ G G 
18 k G N 
19 "~ G N 
20 F G N 
21 M N N 
22 Y G G 
23 I, G G 
24 0 S S 
25 + G G 
26 l" G N 
27 tJ G G 
28 14 G G 
29 6 G S 
30 R G N 
31 fi G G 
32 1, G G 

-0.174 -0.276 -0.168 -0.018 
0.103 --- 0.217 0.168 
-0.502 --- -0.388 -0.239 
-0.256 -0.191 -0.167 -0.073 
0.206 -0.06 O. 13 0.237 
-0.184 --- -0.07 -0.025 
-0.02 0.493 0.294 0.085 
0.165 0.309 0.294 0.209 
-1.117 . . . .  1.004 -0.651 
0.903 --- 1.017 0.705 
-0.01 -0.399 -0.147 0.092 
0.709 --- 0.822 0.574 
-0.645 -0.153 -0.342 -0.335 
0.452 0.247 0.406 0.402 
0.047 -0.342 -0.091 0.130 
0.232 0.432 0.389 0.254 
0.493 --- 0.607 0.429 
-0.938 -0.368 -0.596 -0.531 
-0.338 -0.491 -0.358 -0.129 
-0.276 0.115 -0.024 -0.087 
-0.892 -0.559 -0.668 -0.500 
0.447 0.77 0.665 0.398 
0.37 0.687 0.585 0.347 

-1.199 -0.43 -0.758 -0.707 
-0.292 -0.399 -0.288 -0.098 
-1.215 -0.37 -0.736 -0.717 
0.432 1.109 0.827 0.388 
0.309 --- 0.422 0.306 
-0.492 -0.307 -0.342 -0.232 
-0.892 -0.707 -0.742 -0.500 
0.493 --- 0.607 0.429 
0.093 0.155 0.181 0.161 
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Table 1 (continued) 

33 ~ S G -0.122 -0.337 -0.173 0.016 
34 I- G G 0.309 --- 0.422 0.306 

35 P G G 0.647 0.893 0.827 0.533 

36 ~ S S -0.553 --- -0.439 -0.273 

37 E S S 0.093 --- 0.207 0.161 

38 g N N -0.122 -0.143 -0.076 0.016 

39 ~ G G 0.739 --- 0.853 0.594 

40 II S N 0.062 -0.122 0.027 0.140 

41 I~ G G 0.678 0.23 0.511 0.554 

42 A G G 0.709 --- 0.822 0.574 

43 ~ N G --- 0.03 0.03 0.03 

44 X N G --- 0.773 0.773 0.773 

45 & N N --- 0.432 0.432 0.432 

46 R N N --- 0.124 0.124 0.124 

47 ÷ N G --- 0.955 0.955 0.955 

48 o~ N N --- -0.491 -0.491 -0.491 

49 ,~ N N . . . .  0.342 -0.342 -0.342 

50 ~ N N . . . .  0.153 -0.153 -0.153 

51 :~ N N . . . .  0.614 -0.614 -0.614 

52 9: N N . . . .  0.627 -0.627 -0.627 

53 ~q N N --- 0.124 0.124 0.124 

54 ~' N N --- 0.278 0.278 0.278 

55 O N G --- 1.087 1.087 1.087 

56 D" N G --- 0.678 0.678 0.678 

57 ® N N . . . .  0.799 -0.799 -0.799 

58 -r N N . . . .  0.245 -0.245 -0.245 

59 ~ N S --- 0.315 0,315 0.315 

60 ~ N S --- 0.217 0.217 0.217 

61 4 N S . . . .  0.06 -0.06 -0.06 

62 8 N G . . . .  0.085 -0.085 -0.085 

63 ~ N S --- 1.047 1.047 1.047 

64 O" N N . . . .  0.491 -0.491 -0.491 

65 8 N N . . . .  0.891 -0.891 -0.891 

66 N N N . . . .  0.17 -0.17 -0.17 

67 .1- N G --- 0.617 0.617 0.617 

Note: In columns 3 and 4, G denotes grammatical, S denotes semigrammatical, and N denotes nongrammati- 
cal pseudoletters. CRSI and CRS2 denote Calibrated Rating Scales I and 2 respectively. 

Experiments 1.2 and 1.3. In every other respect these experiments were identical to the 

methods and design of  Experiment 1.1. 

Experiments 1.2 and 1.3 each produced 910 data points. A portion of  these data were 

analyzed solely for the purpose of  establishing rating estimates for the newcomer players 
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(i.e., players 15-21 and 22-28). These newcomer rating estimates were computed 
independently for Experiments 1.2 and 1.3 and utilized only datapoints from newcomer 
items matched against previously-rated items from Experiment 1.1. 10 The estimation 
formula for evaluating newcomers is: 

r l  i = {(a + 2 N ) ( W  i -  Li) } + Q, (3) 

where, 
a is the constant defined in Eq. (2), 
N is the total number of observations per pseudoletter being utilized in the computa- 

tion, 
W/ is the number of wins pseudoletter i obtained, L i is the number of losses. And, Q 

is the mean rating of all rated pseudoletters involved in the computation. The critical 
difference between this equation and Eq. (2) is that Q in Eq. (3) reflects the established 
r~'s for all j paired against i. This follows recommendations in Batchelder and Bershad 
(1979, pp. 47-52). The rationale is that recursively re-estimating with updated Q values 
will yield a closer approximation to 'true' scale values than will simply re-estimating 
with Q set constant. 

Using Eq. (3) pseudoletters 15-21 were given r l ' s  using a portion of Experiment 1.2 
data and pseudoletters 22-28 were given r l ' s  using a portion of Experiment 1.3 data. 
This preliminary analysis was undertaken for the design of Experiments 1.4 and 1.5 
which are now described. 

7.1.3. Experiments 1.4 and 1.5 subjects and method 
Experiments 1.4 and 1.5 employed the same design as Experiment 1.1 with a few 

exceptions: First, as in Experiments 1.2 and 1.3, ten undergraduate subjects participated. 
Second, the pseudoletters selected for the experiments were determined by the rank- 
ordering of the newcomer pseudoletters from Experiments 1.2 and 1.3 - the items in the 
odd positions of the rank order were assigned to Experiment 1.4, those in the even 
positions were assigned to Experiment 1.5. In addition, pseudoletters 29-35 were 
assigned to Experiment 1.4 and pseudoletters 36-42 were assigned to Experiment 1.5, 
(see Table I). Experiments 1.4 and 1.5 each consisted of complete pairwise matches 
between seven previously-rated pseudoletters (Experiment 1.2 and 1.3's 'newcomers') 
and seven newcomer pseudoletters. 

Experiment 1.4 and 1.5 data analysis paralleled exactly that of Experiments 1.2 and 
1.3. The combined data analyses for Experimental Series 1 (Experiments 1.1 to 1.5) 
produced initial scale values for each pseudoletter 1-42. However, these scale values are 
not intended for comparison against the alphabetic model because (a) the scale did not 
incorporate all available data (i.e., newcomers' games with each other and previously- 
rated players' against each other); and (b) the rating procedure, which uses a combined 

~0 These are only 490 pairwise datapoints rather than the complete 910 datapoints available from each 
experiment. 
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rank-ordering of two independent scales across Experiments 1.2 and 1.3 for constructing 
Experiments 1.4 and 1.5, yields only rough approximations of the true scale values. It 

Utilizing all data (including that mentioned in (a)), Series l 's  initial scale estimates 
were refined through a method given in Appendix B. To summarize, Eq. (B l) is used to 
recursively to recompute all pseudoletter's estimates by randomly selecting from the 
5460 datapoints and, for each comparison, recomputing the ratings for the two players 
relevant to the observations. Here recursive estimation was carried out until the variance 
between scale estimates reached, or approximated, zero. Theoretically the iterative 
method will almost always produce a better approximation of the true performance 
rating estimates than the initial estimates derived from Eq. (2) or (3) (Batchelder and 
Bershad, 1977). 

7.1.4. Experimental Series 1 rating scale 
Frequently numerical scaling results in psychology are difficult to extend, or general- 

ize, beyond the studies in which they are obtained. This is because usually those scales 
relate only to a specific set of experiments and are not easily updatable through 
additional data observations. A major goal of Experimental Series 1 was to (1) 
demonstrate that an initial rating structure can be easily established via these methods, 
and (2) provide the opportunity to subsequently demonstrate that independent data (from 
moderately different stimulus formats and items) can be used to extend the Series I 
rating structure, yielding informative empirical scale structures. The actual test of Watt's 
alphabetic model presented below depends upon the data of both Experimental Series 1 
and 2, thus Series 1 results are reported in conjunction with Experimental Series 2 
results below. ~2 

7.2. Experimental Series 2 

The goal of Experimental Series 2 (hereafter Series 2) was to determine whether 
newcomer pseudoletters could be effectively introduced into the rating structure estab- 
lished by Experimental Series 1 with a minimum of empirical observations. The 
performance ratings from Series 1 served as a basis to scale the newcomers involved in 
Series 2. Paradigm modifications in Series 2 aimed to generally increase the flexibility 
of empirical designs and allow for easy extension of the Series 1 rating structure. Series 
2's paradigm design is essentially the same as Series 1 with a few exceptions. For 

J l Implicit in the present research is the notion that there exists a wellformedness continuum along which the 
pseudoletters vary, and that this continuum can be quantified through the Rating System's approximations of 
the true scale values of this continuum. 

12 Jameson (1989) reports analyses of the 42 pseudoletter rating estimates from the Series 1 scale which 
suggest that the scale accords with a variant of Watt 's alphabetic model (Model 2). As is discussed in detail 
again below, Scale 1 and the model are well correlated, showing the rating scale to be a good empirical 
measure of the continuum of wellformedness suggested by the alphabetic model. 
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example, the Series 2 experimental booklets employed enhanced graphic presentation of 
the pseudoletters. ~3 

Series 2 produced performance ratings for additional pseudoletters beyond the 42 
used in Series 1 (see Table 1). The new pseudoletters provide a more balanced sample 
from the pseudoletter categories (esp. 'semigrammatical' and 'nongrammatical'), com- 
pared with the mostly 'grammatical' set of Series 1, allowing a better test of the range of 
possible pseudoletters captured by Watt's model. 

Finally, Series 2 was conducted to determine if the empirical rating-scale agreed with 
the alphabetic model in view of simplifying modifications in paradigm design and 
scaling procedures - changes which might also depress model agreement. The modifica- 
tions are: (a) Series 2 is not an overlapping round-robin design, as was Series 1; and (b) 
the Series 2 rating-scale is an independently derived structure loosely based on the 
Series 1 rating structure. If the phenomenon remains tractable under these modifications, 
Series 2 represents an expedient way to introduce new stimuli in tests of a generative 
model and to compare the results with existing scales using a minimum of empirical 
manipulation. The expectation is that Series 2 will yield findings similar to those 
observed in Series 1 even under these modifications. 

The Series 2 modifications were motivated by the need to practically and efficiently 
incorporate new stimuli into an existing rating structure. Intuitively, Series 1 's overlap- 
ping design seems to involve an excessive number of pairwise matches. The Series 2 
design reduces that number by taking advantage of the information existing in the rating 
structure from Series 1. If Series 2's results accord with those from Series 1, then these 
improvements create the potential for more efficient testing of the alphabetic model. 

Issues considered below are: Will the Series 2 scaling modifications yield valid rating 
estimates for the new pseudoletters? And, can the Series 2 numerical scale estimates be 
compared with the estimates of pseudoletters scaled in Series 1? 

7.2.1. Experimental Series 2 subjects and method 
Differences between Experimental Series 1 and 2 designs are: (a) Series 2 consists of 

four round-robin experiments rather than five. (b) These four experiments do not employ 
the overlapping design of Series 1, however, each Series 2 experiment includes some 
pseudoletters previously used in Series 1. (c) The pseudoletters incorporated in Experi- 
ments 2.2, 2.3 and 2.4 are not based on the outcome of prior experiments in Series 2. 
And (d) Experimental Series 2 assigned pseudoletters to the experiments via a selection 
heuristic which aimed to both maximize performance-rating estimate diversity, and 
optimize the diversity of pseudoletters across alphabetic categories. 

7.2.2. Experimental Series 2 pseudoletter selection 
Pseudoletters were assigned to four booklets of Series 2 as follows: First, new 

pseudoletters (43-67 in Table 1) were randomly assigned to each experiment. Next, 
because they were few in number, previously-rated semigrammatical and nongrammati- 

13 The pseudoletters used in Series 2 were created using finer dot-per-inch resolution and smoothing than 
the characters used in Experimental Series 1. This is seen in different samples of the two experimental 
booklets available in Appendix A. 
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cal pseudoletters (i.e., Series 1 items) were randomly assigned in proportions which 
yielded booklets consisting of approximately equal numbers of  items from the three 
alphabetic categories. Series l ' s  rated Grammatical pseudoletters were selected on the 
basis of  performance-ratings with the aim being to include in each experiment a 
representative sample of  pseudoletters from the Series 1 rank ordering. Selecting Series 
2 pseudoletters in this way pairs Series 2 's  newcomers against previously-rated players 
which fairly represent the spread of the Series 1 scale rank-ordering. 

Thus, Series 2 consisted of three experimental booklets involving complete 2-AFC 
pairwise contests between 14 pseudoletter players (previously-rated and newcomers). A 
forth experimental booklet (Experiment 2.4) otherwise identical to the three described, 
used seven newcomers rather than six. Thus this fourth booklet involved 15 pseudolet- 
ters, Each booklet was adjudicated by ten undergraduate subjects participating in the 
experiment for partial course credit. Series 2 data total 3780 pairwise datapoints. 

7.2.3. Scaling the Experimental Series 2 data 
As in Experimental Series l, the Batchelder and Bershad algorithm was applied to the 

Series 2 data to derive performance-rating estimates for pseudoletters. Identical scaling 
methods were used, but the Series 2 rating structure was independently generated from 
that of  Series 1. Deriving an independent rating structure for Series 2 was necessary to 
gauge the impact of  paradigm changes and to determine whether incorporating addi- 
tional pseudoletters could be successfully achieved using the simpler nonoverlapping 
design of Series 2. 

Also, Series 2 data are scaled separately from that of  Series 1 to determine if 
independently Series 2 's  rating scale is consistent with the alphabetic model. Such a 
result would both support the Series 1 findings, and demonstrate that the Series 2 
methods can be used to independently introduce newcomers into an existing rating 
structure and permit comparisons across experimental series. 14 Although the scaling 
methods used in the two series are the same, the procedures for scaling Series 2 data are 
somewhat simpler, as is explained below. 

As in Series 1, all Series 2 newcomers were given initial scale estimates, r l ' s ,  using 
only the datapoints arising from newcomer items matched against previously-rated 
items. These r l ' s  were derived using Eq. (3), and were computed within experiment as 
was the case for Series 1 newcomer estimation. 

The rerating of Series 2 pseudoletters differed from that of  the Series 1 (Appendix B 
details the Series 1 rerating procedure). In Series 2 all estimates subsequent to r l (e.g., 
r2  through r7)  were determined recursively using Eq. (B 1) in Appendix B. Thus, the r2 
through r7  estimates computed for the pseudoletters introduced in Series 2 were 
computed on a game-by-game basis using all available Series 2 data and across all 
booklets. 1~ 

~4 Note that Series 2 and Series 1 have separate scales that each contain uniquely determined rating 
estimates for pseudoletters incorporated in both Series 1 and 2. 

~5 To parallel Series l as much as possible, the Series 2 recursive estimation was carried out through r7. In 
both Experimental Series I and Series 2 the between rating vector variances appeared relatively stable after the 
first iterative computation (in the case of Series l this was r5 and Series 2 it was r2). 
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Fig. 2. Plot of performance ratings for pseudoletters involved in both Experimental Series 1 and Experimental 
Series 2. N = 28. 

Experimental Series 2's rating structure is related to that of Series 1 only by the 
'reference point' of performance ratings of the pseudoletters involved in both experi- 
mental series. This reference-point refers to both the parameter Q which reflects the 
Series 1 average scale estimates of pseudoletters paired against new items, and tr 
reflecting the spread of the estimates. Thus, the two rating structures are linked only by 
the influence of a subset of Series 1 estimates upon the initial computation of Series 2 
rating estimates. 16 

7.2.4. Experimental Series 2 rating scale 
Initial analyses aim to ascertain whether agreement is found between the Series 1 and 

Series 2 scales. A comparison of performance ratings for the subset of pseudoletters 
involved in both experiments shows that Experimental Series 2 scale largely matches 
the Series 1 scale (see Fig. 2). (Series 2 scale is correlated with the Series 1 scale by 
Pearson's r = 0.751, n --- 28, for the items involved in both series). 

Further analyses assessed the measure of agreement between the alphabetic model 

16 If the test paradigm modification did not require an independent determination of the Series 2 scale, then 
Series 2 pairwise data could have easily been incorporated into the Series 1 rating structure through recursive 
estimates on the aggregate Series 1 and Series 2 data. This would have produced a single scale with estimates 
for all 67 pseudoletters (the 42 used in Series 1 and the 25 additional newcomers introduced in Series 2) all 
incorporated into the same rating structure and calibrated on the same scale. 
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and (1) the Series 1 scale, and (2) the Series 2 scale. Pseudoletters tested in Series 1 and 
Series 2 were shown by Goodman and Kruskal Gamma measures (hereafter ",/' or 
'Gamma' )  to be independently scaled in accord with the alphabetic model tested. 
Gamma is a nonparametric measure of association that makes no scaling assumptions 
beyond the ordinal level and ignores tied data, and therefore is the preferred measure for 
the present data. A rationale for using Gamma in this context is given in Jameson (1989, 
pp. 91-92), and in general for the Gamma statistic in Goodman and Kruskal (1954); and 
that for Gamma as an ordinal measure is in Freeman (1986). 17 

For pseudoletters scaled in each series: Series 1 scale is correlated with the alphabetic 
model at ~/= 0.74 (n = 42); Series 2 scale is similarly correlated ~ = 0.61 (n - -53 ) .  
Demonstrating that Experimental Series 2 supports the findings of Series 1. These 
results are encouraging since (a) pseudoletters in Series 2 were separately scaled using a 
simplified scaling procedure; and (b) the Series 2 scale was based on data garnered by a 
modified paradigm requiring far fewer observations (only 378 pairwise contests) than 
either an overlapping round-robin or a complete pairwise design would have required. ~8 

However, to optimally compare the ratings of two pseudoletters, each appearing 
exclusively in a different experimental series, one must consider the issue of calibrating 
the two series' scales. We turn to that now. 

7.3. Calibrated performance Ratings Scales from Series 1 and Series 2 

According to the Rating System model, it is appropriate to compare the rating 
estimates of the Series 2 newcomers with those pseudoletters previously estimated in 
Series 1. However, it is recognized that this is not the most accurate comparison possible 
because the two separate scales are independently derived and are therefore not 
calibrated measures. What is needed is a quick method to calibrate them. 

The goal is to combine the ratings from the two scales in some principled way that 
makes use of the scale values of pseudoletters common to the two series to effect the 
calibration. Two methods which aim to accomplish this (called Methods i and 2) are 
described in Appendix C, and their respective 'Calibrated Rating Scales' are hereafter 
called CRS1 and CRS2. 

Once a properly calibrated scale is obtained one can examine how this scale is 
associated with an alphabetic model. The CRS 1 scale (Table 1 col. 7) was presented by 
Jameson and Romney (1990) and Jameson (1994) for this purpose. 19 The CRS2 scale 
and its analysis are introduced here (Table 1 col. 8.). 

t7 Gamma is easily interpreted as the proportion of hits between two variables by the transformation: 
p = (1 + ~/)/2. Where p is the proportion of cases in which the two variables are in agreement and ~/ is the 
observed Gamma statistic between the two variables. Because gamma disregards tied data, the p presented 
here is a proportion-of-agreement measure for the cases that Gamma considered (i.e., the total number of 
datapoint comparisons minus the number of tied cases). 

is If implemented as an overlapping round-robin design Series 2 would have required 601 pairwise matches 
involving 146 additional pairwise observations and an additional scaling step beyond that used in the Series 1 
design. Note that for Series 2 each pairwise match was judged by ten subjects and therefore yielded ten 
observations per pairing. 

~9 Jameson and Romney (1990) found the CRS1 scale to be strongly supported in independent empirical 
studies. 
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7.4. The expected results 

Results are presented below for calibrated performance ratings and two variants of 
Watt's alphabetic model, hereafter called 'Model 1' and 'Model 2'; both versions are 
described in Jameson (1994). 

Put briefly, Model 2 can be described as an improved variant of Model 1. Therefore, 
Model 2 is predicted to perform better as a description of the empirical data than Model 
1. In essence, Model 2 is an elaboration of Model 1. That is, it incorporates additional 
rules which, for a given pseudoletter, often produce distinctive feature descriptions 
which differ from those of Model 1. 

For our purposes, the key difference between these models lies in how they relate to 
the pseudoletters used in the present experiments. Model 1 makes predictions about 
pseudoletter acceptability on the assumption that informants would mostly ignore 
relatively minor departures from the canonical letters. (For instance, Model 1 assumed 
that informants would accept pseudoletter P as an ordinary 'P '  ignoring the angularity 
of its cusp.) In contrast, Model 2 was developed after pilot experiments demonstrated 
that informants were in fact attending to what had previously been considered very 
minor departures from conventional letterforms. 

Some differences between Model 1 and Model 2 are seen in Fig. 3 representing 
pseudoletter ' P '  analyzed using both models. Model l 's  characterization assigns ' P '  to 
the grammatical set of pseudoletters, whereas Model 2 assigns it to the nongrammatical 
class. Model 2 reevaluates and improves upon Model l 's  analysis at the level of 
distinctive-feature analysis. For example, Fig. 3 shows that characterizing certain 
features of ' ~ '  is problematic for Model 1 at the Kinemic level of analysis, because 
Model l 's  assumption is that this kind of criteria would not dramatically enter into 
subjects wellformedness judgments. Pilot studies, which employed a small subset of the 
67 items used here, found such Kinemic criteria to apparently impact subjects' judg- 
ments, and Model 2 gives a finer analysis of such feature relations. Model 2 thus 
predicts that ' ~ '  would prove relatively less grammatical. Models 1 and 2 are further 
discussed by Jameson (1994, pp. 247-254, 280-285) and are generally considered by 
Watt (1994, pp. 103-107). 

Below two basic questions are explored: (a) Are pseudoletters' performance ratings 
consistent with the grammatical classification of pseudoletters given by Watt's models?; 
and (b) are the outcomes of unobserved pairwise contests between two pseudoletters 
reliably predicted by the numerical scale and the Rating System model? 

With respect to (a) above, we expect the average performance ratings from the three 
grammatical classes to be ordered: 

Grammatical > Semigrammatical > Nongrammatical. (4) 

Concerning the predictive capabilities of the Rating System model, mentioned in (b) 
above, we expect the pairwise outcomes predicted by the model to describe accurately 
the behavior of new subject samples for both previously tested pairwise comparisons 
and pairwise comparisons never before tested. 
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Analysis: 
Model 1 Model 2 

Model 1 Model 2 

Segments: 1 2 3 1 2 3 4 5 

VRT + + + ^ + + ^ 
^ + ^ + A + + 

TCE + + + + + + + + 
FLN + 4 3 1 1 2 
CCV ^ + + ^ ^ ^ ^ ^ 
VSM + ( ) + ( ) 
HSM + ( + ) + ( ) 

Fig. 3. Pseudoletter ' ~ '  characterized by Model 1 and Model 2. 
Note. The feature assignments above are given the values + ,  - ,  or ~. Excepting the feature "FLN', a 
line-length feature, which in Model 2 is assigned either the value '4' (for full-length), '3',  '2 '  and '1'. Lengths 
'2" and '1', which do not occur in the canonical English letters at all, assign low wellformedness ( =  low 
predicted acceptability) to any letter in which they occur. This and the lack of local symmetry in Model 2's 
analysis of ' p ' changes the grammatical classification for this item. Concatenators have been omitted from 
this illustrative analysis, as they make only a negligible contribution to wellformedness/acceptability. Model 1 
assumes that subjects would consider ' ~ '  as simply a slightly abberant (or poorly-drawn) normal 'P'; 
accordingly ' ~ ' was classified as Grammatical and considered acceptable to subjects. Model 2 presents a 
reanalysis of ' [-J ' and classifies the item as illformed, or nongrammatical, and thus predicts the item to be of 
low acceptability. The author would like to thank W.C. Watt for the analyses in Fig. 3. 

7.5. The empirical results: Calibrated performance rating scales compared with the 
alphabetic model 

In i t ia l  f i n d i n g s  o f  t he  e x p e r i m e n t s  d e s c r i b e d  a b o v e  are  p r e s e n t e d  in T a b l e  2 w h i c h  

g i v e  a n a l y s e s  f o r  t he  t w o  c a l i b r a t e d  p e r f o r m a n c e  r a t i ng  s ca l e s  d e s c r i b e d  above .  

T a b l e  2 c o n t a i n s  a v e r a g e  p e r f o r m a n c e - r a t i n g  m e a s u r e s  fo r  e a c h  c a l i b r a t e d  sca le .  A s  

p r e d i c t e d ,  t he  da t a  in T a b l e  2 i n d i c a t e s  tha t  the  p e r f o r m a n c e  r a t i ngs  f r o m  b o t h  c a l i b r a t e d  

s c a l e s  s u p p o r t  M o d e l  2 m o r e  s t r o n g l y  than  M o d e l  i .  T h i s  is s e e n  in t he  f i n d i n g  tha t  

M o d e l  2 c l a s s i f i c a t i o n s  s a t i s fy  t he  r e l a t i on  e x p r e s s e d  in Eq .  (4 )  a b o v e ,  w h e r e a s  M o d e l  1 

c l a s s i f i c a t i o n s  d o  not .  H o w e v e r ,  s im i l a r i t i e s  b e t w e e n  c a l i b r a t e d  s ca l e s  are  no t  ea s i ly  
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Table 2 
Average performance ratings for pseudoletters according to two rating scales and two alphabetic models 

Grammatical Semigrammatical Nongrammatical 
n: 29 8 30 

CRS1 Scale Ix 0.250 -0.259 0.002 
and Model 1 ~ 0.497 0.416 0.540 

CRS2 Scale Ix 0.182 -0.132 0.079 
and Model 1 ~ 0.354 0.343 0.524 

n: 29 12 26 

CRS1 Scale Ix 0.474 -0.038 -0.309 
and Model 2 tr 0.383 0.526 0.343 

CRS2 Scale Ix 0.391 0.013 -0.257 
and Model 2 ~ 0.297 0.444 0.341 

Note: For row headings: n denotes the number of ratings in the computation; IX denotes the average 
performance-rating; and tr denotes the standard deviation; CRS1 denotes calibrated rating scale 1 and CRS2 
denotes calibrated rating scale 2. 

determined by the descriptive measures in Table 2, for this the Goodman and Kruskal 
Gamma is considered. 

The CRS1 and the CRS2 methods produce rating scales which are correlated at 
= 0.88, n = 67. Because the two calibrated scales are very similar only the results for 

CRS2 are presented hereafter. 
Gamma statistics correlating the entire CRS2 rating scale with two versions of Watt's 

alphabetic model are: ~/(CRS2 & Model l ) =  0.22 (n = 67) and ~/(CRS2 & Model 
2) = 0.67 (n = 67). These Gammas indicate that Model 2 is clearly much better at 
predicting the empirical data than is Model I. 20 

To interpret the finding that the numerical rank-orderings support the pseudoletter 
classifications of Watt's cognitive model, one might examine possible 'psychological' 
constituents underlying the decision processes subjects employ in making choices in the 
2-AFC experimental task. 

Note that the 2-AFC task employed here is not a 'perceptual-discrimination' task. 
Asking subjects to evaluate pseudoletter acceptability aims to elicit a context dependent 
'cognitive' judgment. No criteria are suggested to subjects as a basis for their judgments, 
and the claim is that the task does not naturally prompt perceptual criteria as a basis. 

How can this claim that the task elicits cognitive rather than perceptual judgments be 
examined? While many alphabetic criteria might impact acceptability judgments, sup- 
pose for example that subjects primarily based their judgments on a pseudoletter's 

20 Incidentally, CRS1 is similarly correlated with Model 2. Whether considering all 67 pseudoletters, or a 
subset that excludes semigrammatical items, measures of association suggest that Model 2 out performs Model 
l at predicting the empirically obtained rating scale rank-order. 
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confusibility with, or discriminability from, a canonical letter. 21 If this was the primary 
criterion for acceptance, then the rating scale rank-order of pseudoletters would contain 
highly-discriminable, nonconfusible pseudoletters in the top most positions of the 
rank-order, and less-discriminable, confusible pseudoletters in the bottom most ranking 
positions. The empirically observed preference rank-ordering shows this not to be the 
case. Rather, a measure of interletter similarity shows top-ranked and bottom-ranked 
pseudoletters to be equally similar to the closest canonical English alphabet 
counterpart. 22 This analysis suggests that a simple explanation of pseudoletter rankorder 
using discrimination-based criteria is not a fitting explanation for our empirically 
observed preference scale. What is needed is an exploration of possible cognitive criteria 
underlying subject choices - an examination that is beyond the scope of this paper. 

7.6. Considering the predictive capabilities of the Rating System 

Additional scaling issues deserving consideration are (1) the general prediction of 
subsequently observed pairwise preferences, and (2) the prediction of outcomes for 
pseudoletters never before empirically paired. If the Rating System is a valid model of 

21 This particular criterion (i.e., confusability with existing letters) is but one possible factor underlying 
subjects' choice behavior. There are several other criteria (e.g., ease of production in specific writing contexts, 
deviant level of complexity, degree of asymmetry of form, etc.) possibly contributing to the empirically 
observed preference ordering, but none of these criteria alone come close to explaining the observed 
rank-order when compared with the explanatory power of Watt 's model. 

22 Actually, the top-ten ranked pseudoletters are more similar to their canonical counterparts than are the 
bottom-ten ranked pseudoletters. That is, using a measure of interleuer similarity suggested by Townsend 
(1971b), a ~template' measure of each pseudoletter's similarity with the most similar existing uppercase 
English letter counterpart was computed. This 'template' measure involves superimposing templates of 
canonical letters with pseudoletters and quantifying the amount of overlap for the two forms. An Overlap Ratio 
is thus computed for each pseudoletter defined as the proportion of overlap with a canonical letter relative to 
the total area of the pseudoletters. (The proportion of overlap provides a similarity index independent of 
complexity of compared forms). This simple measure of physical similarity was found by Townsend to explain 
50% of the variance of the similarity structure in the confusion data as represented by Luce's choice model 
similarity parameters computed upon scaled distances. Holbrook (1975) found this measure (i.e., Townsend's 
'template' measure) to offer a fairly strong prediction of a Luce choice-model similarity measure (Luce, 1963), 
and reported Townsend's set of similarity parameters to be the most reliable and valid of the available 
measures (pp. 533-535). For two sets of pseudoletters considered (i.e., top-ten ranked and bottom-ten ranked), 
an "Average Overlap Ratio' was computed. It was found that the average overlap-ratio for the top ranking 
pseudoletters equaled 62%, whereas the average overlap-ratio for the bottom ranking pseudoletters equaled 
49%. If subjects were basing their choices on 'discrimination' criteria, then we would expect to observe 
greater average-overlap for bottom-ranked pseudoletters compared to the average-overlap observed for 
top-ranked pseudoletters. In fact, the opposite relation is observed. 
This suggests that confusability and discriminability as measured above are not the primary criteria underlying 
preferences for pseudoletters in the 2-AFC experimental task. This is further demonstrated by the fact that 
subjects 'accept' certain pseudoletters despite the fact that these items are more redundant to, or more similar 
to, canonical letters and are thereby, as predicted by analogous confusion matrix results of Townsend 
(1971a, b), more easily mistaken for existing uppercase English letters. These results eliminate the possibility 
that the rank-order performance scale of pseudoletters is simply a measure of pseudoletter acceptance based 
upon 'perceptual' criteria. 
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pseudoletter degrees of acceptability, then performance ratings should suggest what is to 
be expected in subsequently observed pairwise data. 

7.6.1. Deriving predictions from the calibrated scales 
Properties inherent in the Rating System permit predictions of outcomes for pairwise 

matches to be computed from performance ratings. Through these predictions, for the set 
of 67 pseudoletters A = {a~ . . . . .  a i . . . . .  aj . . . . .  a67}, one can examine the observed 
conditional probability with which any given item in A is preferred over any other item, 
denoted Po(a~laiaj), and compare that value with the same conditional probability 
predicted by the Rating System Model, denoted PM(aila~aj) (see Appendix D's 
procedure for deriving predictions). The expectation is that in considering all possible 
pairings of items, the probabilities predicted by the model will largely resemble the 
observed probabilities. Such a finding would further support use of the Rating System 
model in the present application. Such a finding would also imply that the model can 
predict the outcomes for pairwise comparisons of items which have net'er been 
empirically paired, even when the predictions are based solely upon performance ratings 
from incomplete pairings of the 67 pseudoletters. 

The basic idea underlying the predictions of PM(a~la~aj) is that it is a monotonic 
function of the difference in the true ratings of two pseudoletters. Such an assumption is 
typical of those frequently used by mathematical psychologists in measurement and 
scaling settings (Batchelder and Simpson, 1988, p. 295). The formal rationale is given in 
Batchelder and Simpson (1988, pp. 298-300). Once the model predictions have been 
derived, the two matrices separately containing Po(aila~aj) and PM(aila~a~) can be 
compared. 

7.6.2. Comparing model predictions PM(ailaiaj) with empirically observed outcomes 
Po(ailaiaj) 

As a measure of similarity between the two matrices PM(ailaiaj) and Po(ailaiaj) 
Goodman and Kruskal's Gamma statistic is employed. Gamma is appropriate for this 
comparison because it permits evaluation of hypotheses concerning variation of the 
conditional probabilities on the level of a rank-order analysis. This evaluation disregards 
local variation in the conditional probabilities and supports the prediction model if the 
rank-order of items is preserved. This rank-order analysis is preferred over other 
commonly used matrix similarity measures. For example, a Chi-square measure of 
matrix similarity tests for any level of random variation and linear deviation, and thus is 
not the desired test of the stated rank-order hypothesis. 

The Goodman and Kruskal Gamma measure between the matrices of Series 1 and 2 
observed probabilities and CRS2 predicted probabilities is ~ = 0.696, n = 1440. 23 This 
shows that the calibrated rating scale gives rise to predictions that very closely model 
the empirical data. 

Although Gamma is the preferred measure for comparisons between Po(ai] a i a i) and 

23 CRS2 Gamma computations involve comparisons of two matrices each containing 1440 conditional 
probability datapoints. 
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PM(ailaiaj), it is conservative in that it only makes use of ordinal information in the 
data. A second measure, Hubert's QAP (Hubert and Schultz, 1976), is presented below 
which is more sensitive to variation in comparisons of the conditional probabilities 
Po(ai[aiaj) and PM(ai[aiai) because it uses an interval scale analysis. This interval 
scale analysis is presented with Experiment 3 data below. 

7. 7. Experiment 3: An experiment to test the predictions of the Rating System Model 

While the Goodman and Kruskal Gamma measures presented for Series l and 2 data 
imply that the Rating System predictions accord with subjects' preferences, a stronger 
test of the Rating System as a model of pseudoletter acceptability is in the prediction of 
comparisons not previously observed. A third experiment was conducted to test such 
predictions. 

Experiment 3 collected pairwise data like those of Series 1 and 2. These new data are 
compared against the conditional probability matrices predicted by the Rating System 
(see Appendix D). If the Rating System model accurately models subjects' preferences 
for pairwise compared pseudoletters, then these new data should be predicted by the 
Rating System. 

7. 7.1. Experiment 3 subjects and method 
The 2-AFC design previously employed was used in Experiment 3. However, a single 

nonoverlapping round-robin among 14 pseudoletter players was tested using a single 
booklet containing 91 2-AFC questions. It involved 58% not-previously-observed pair- 
wise competitions and 42% previously-observed ones. The goal was both to test the 
predictive capabilities of the Rating System model and to gauge the amount of 
between-experiment variation in the Rating System models' predictions. Pseudoletters 
were selected for Experiment 3 to satisfy this 58%-novel/42%-replicated constraint, 
however pseudoletters were also chosen to be evenly distributed across the CRS2 scale. 
Forty undergraduate subjects each provided data for 53 nm'el pairwise comparisons and 
38 replicated pairwise comparisons. 

7.7.2. The results of Experiment 3 
Experiment 3 data are examined only as conditional probabilities observed for 

pseudoletters pairings, not as a source for rating scale estimation. In addition to 
Goodman and Kruskal Gamma measures discussed above, alternative analyses between 
Experiment 3 observations Po(ailaiai) and prediction matrices PM(ailaia i) are now 
presented. 

7.7.3. Goodman and Kruskal Gammas for Experiment 3 data 
Gammas between Experiment 3's observations Po(ailaia ~) and the model's predic- 

tions PM(ailaiaj) suggest that repeated observations are well predicted. CRS2 was 
found to predict Experiment 3 choice-data at about the same level as that observed 
earlier in Experimental Series 1 and Series 2. Moreover, Experiments 3's novel 
observations are predicted as well as replicated observations. That is, the overall Gamma 
between CRS2 predictions and Experiment 3 observations equalled ~, = 0.662 for all 
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pairwise comparisons considered (n = 182); and, considering only novel comparisons 
equaled ~/= 0.656 (n = 106), whereas a similar Gamma considering only replicated 
comparisons equaled ~ = 0.669 (n = 76). 

7.7.4. Hubert's QAP analysis of Experiment 3 data 
Interval-scale level analysis of these data is given by Hubert's Quadratic Assignment 

Program, hereafter QAP (Hubert and Schultz, 1976). QAP yields an index value, called 
QAP-Gamma, that measures structural closeness between two matrices. QAP evaluates 
interval association between two matrices, becoming, in effect, a specialized significance 
test for the ordinary Pearson correlation coefficient. It also provides Z-scores for the 
obtained index value for significance tests of the structural similarity of two matrices 
(Hubert, 1980; Hubert and Baker, 1978). This index is defined as: 

QAP Gamma = "Z~,( O( i, j)  * M( i, j)  ), 

where O(i, j) and M(i, j) are values of the two matrices to be compared. The observed 
value is evaluated relative to a distribution of the QAP Gamma indices based upon a 
random permutation of rows and columns of the two matrices. The standard normal is 
assumed as the underlying distribution, and structural similarity between two matrices is 
measured by the standard Z-score, the null-hypothesis being interpreted as no structural 
similarity between the two matrices (Hubert and Schultz, 1976). 

The QAP test is read backwards from the Chi-square test. In the Chi-square, 
presented below, a large Chi-square and small probability means that the two matrices 
are very different. Conversely, a high QAP Gamma and a small probability indicate that 
the two matrices are very similar. 

The results from the QAP analysis of Experiment 3 data are presented below. In 
addition to the Z-scores from the QAP analysis, Pearson's Correlation Coefficients for 
the data (taking values of the two matrices as two interval-level random variables) are 
also presented. 24 

The QAP Gamma measure between Experiment 3's Po(ai[aiai) and the CRS2 
model's predictions PM(ai[aiaj) equals 49.95 (Z-score 25.461, p < 0.001), and the two 
matrices are correlated at Pearson's r =  0.84. This Z-score ( Z =  25.461) indicates a 
very significant structural similarity between the CRS2 prediction matrix and the 
observed Experiment 3 data matrix. This again confirms that the Rating System Model 
gives rise to a performance-rating scale that predicts independently observed preference 
data for pseudoletters. The manner in which the observation and prediction matrices 
differ, however, is better suggested by the analysis below. 

7. 7.5. Chi-square analysis of Experiment 3 data 
Although Chi-square is not an ideal statistical model for goodness-of-fit comparisons 

between Po(ailaiaj) and PM(ai[aiaj) (it is not a test at the level of the stated rank-order 
hypothesis mentioned above, and the assumption of observation-independence is not 

24 Correlation coefficients are monotonically related to the QAP Gamma and may be more widely 
understood than the QAP Gamma might be. 
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met), it is used here to explore pseudoletter pairings that possibly represent problematic 
2-AFC comparisons. Chi-square can be thought of  as a kind of  distance measure. The 
probability is interpreted as the chance that the two matrices could be that distant by 
sampling error alone. The Chi-square values for the 91 comparisons between Po(ailaiaj) 
and CRS2's  PM(ailaia j) is  X 2 ( 9 1 )  = 232.92, p < 0.001. The average Chi-square value 
for these 91 individual comparisons equals 2.56, and may give a more general 
impression of  the extent to which a predicted outcome typically deviates from the 

25 observed outcome. 
If  we examine the 'fit '  of each individual comparison (i.e., with criterion: × z ( 1 ) >  

3.841, p < 0.05) we find 20 of the 91 are poor and that these are largely comparisons in 
which 3 specific pseudoletters are involved. 26 Comparisons that exceeded the stated 
criterion were either: (1) largely due to new-item pairings (these accounted for the most 
extreme Chi-square values); or (2) were found to be large Chi-square measures from 
previously observed pairs associated with predictions based on a small number of  
observations (i.e., 10 compared to the maximum 40 possible). Further analyses did not 
find commonalities in comparisons exceeding the criterion. For example, no consistent 
patterns were observed with respect to rating estimates, grammatical classification, 
possible change in classification from Model 1 to Model 2, old-pairings versus novel- 
pairings, etc. 

These results suggest that the conditional probabilities arising from comparisons 
involving these pseudoletters are problematic with respect to the Rating System model. 
The problem might, in some cases, be due to fewer observations for some pairings; or 
could reflect a high level of  intransitivity in subject's paired-comparison choices among 
distantly ranked pseudoletters. At present these are speculations. Further empirical work 
and model assessment are needed to determine what factors of rating scales, alphabetic 
models, or behaviors in the forced-choice task, might depress the predictive capabilities 
of  the Rating System methods. 

7.8. Summary of the empirical findings 

7.8.1. Summary of Experimental Series 1 and 2 findings 
Comparisons between calibrated rating scales and two variants of  Watt 's  alphabetic 

model were shown to generally support Watt 's  model. Specifically, statistical analyses 
found an improved variant, Model 2, was a better model of  the empirical phenomena 
than the Model 1 variant. Methods presented for calibrating independent rating scales 
produced a combined scale informative in evaluating alphabetic models. Finally, Good- 

25 This Chi-square is given by the following computations: the values in the lower-half matrix of 
Po(ailaiaj) are compared against the corresponding values in PM(ailaiai). These proportions are binomial 
distributed and are approximated by the Normal Distribution and are thus Chi-square distributed with 1 
degree-of-freedom. Individual Chi-square measures are computed using observed and predicted sample 
frequencies, and these 91 Chi-squares are summed to produce an overall Chi-square value with 91 degrees of 
freedom. 

26 These three pseudoletters are items 36, 38, and 50 in Table 1. They are involved in 14 of the 20 
Chi-square computations which exceed the 3.841 good-fit criterion. 
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man and Kruskal Gamma statistics comparing observed conditional probabilities with 
those predicted by the Rating System model found the calibrated scale served well as a 
basis to predict the observed conditional probabilities. 

7.8.2. Summary of Experiment 3 findings 
Experiment 3 tested the accuracy of the Rating System model for predicting pairwise 

conditional probabilities not previously used in constructing the rating scales. Two 
different analyses (Goodman and Kruskal's Gamma and Hubert's QAP) showed the 
Rating System model overall to predict accurately. As expected, replicated pairwise 
contests were well predicted by the Rating System model, and, surprisingly, novel 
pairwise contests were predicted at the same level. A cell-by-cell examination of 
Chi-square measures between Experiment 3's observed conditional probabilities and 
Rating System predictions proved useful in identifying specific pairwise comparisons 
that may represent inherently problematic 2-AFC items. The findings of Experiment 3's 
Gamma analysis parallel that observed for Experimental Series 1 and 2 data. 

7.8.3. Summary of methodological advances 
The methodological advances given by the present investigations can be summarized 

as follows: Experimental Series 1 introduced a empirical paradigm and scaling tech- 
niques employed for testing Watt's alphabetic model. Experimental Series 2 established 
that a simplified paradigm and scaling procedures could be alternatively employed to 
obtain empirical results similar to that found in Experimental Series 1. Both studies 
support the continued use of the empirical methods in the testing of generative 
alphabetic models. 

Possible methods for combining separate rating scales from independent experiments 
were presented and were found to yield a calibrated scale which was (a) interpretable 
with respect to the alphabetic models tested, and (b) useful in distinguishing between 
two competing variants of Watt's alphabetic model as models of the empirical phenom- 
ena. Moreover, predictions of paired-comparison outcomes derived from the calibrated 
scale and the Rating System model were found to closely approximate independent 
pairwise observations from Experiment 3, suggesting that the presented scaling tech- 
niques can be utilized for predicting paired-comparison outcomes which have yet to be 
empirically assessed. 

But what indicates that a 'good' rating scale is given by the suggested calibration 
method? As stated earlier a good scale of grammaticality is one which (a) for any given 
pair of pseudoletters i and j, it predicts accurately the empirical preference of i over j, 
(b) reflects the continuous nature of grammaticality through continuous-valued perfor- 
mance ratings, and (c) approximates empirical preferences when both ordinal and 
interval-scale information is used for predictions. Empirical findings presented here 
indicate that the obtained rating scale satisfies these criteria. 

8. General discussion 

A major goal stated at the outset of this paper was to provide new methods for testing 
empirically generative or inductive-like models similar to Watt's model of the alphabet. 
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To this end the Batchelder and Bershad Rating System was employed in a new paradigm 
to provide numerical measures for assessing the generative aspects of Watt's cognitive 
model of the alphabet. Findings from experiments presented here demonstrate that the 
Rating System serves as a valuable method for testing the empirical viability of 
generative alphabetic models, and for identifying, in a test between two models of the 
phenomena, the generative model which best describes the empirical data. To my 
knowledge these empirical findings are the first instance in which the Batchelder and 
Bershad Rating System has been successfully employed as an empirical test in the 
psychological literature. 

The methods presented here also represent a significant advance for writing-systems 
research and other studies of inductive systems, since they permit strong tests of 
generative models (see earlier discussion in Section 5. Moreover, because these investi- 
gations involve the numerical scaling of data derived from judgments for which the 
correct answers are unknown (i.e., are only known by way of a theoretical alphabetic 
model), one would expect that the presented methods would easily generalize to 
categorization judgments involving probabilistic category assignments and, theretbre, 
are made by subjects with some uncertainty. 

8. l. Methodological implications of the present techniques .fi,r psychology 

The numerical scaling techniques and experimental methodology presented in this 
paper are considered useful methods for psychology in general. This is because the 
procedures can be generalized to many psychological situations involving (a) tests in 
which 'inductive' or 'generative' processes are examined, (b) tests of these processes in 
which either within-subject or between-subjects analyses are needed, and (c) tests which 
simply need to evaluate large numbers of items in complete comparisons without 
overtaxing subjects by requiring an excessive number of judgments. 

Just as independent analyses were employed to confirm the results presented above 
(see footnote 19), similar Consensus Model analyses can be employed for the purposes 
of independently validating the Rating System results in other psychological domains, 
and to determine if subgroups from within the subject sample are found to consistently 
employ different decision strategies, or criteria, when making choices in a paired-com- 
parison task. 

Possible uses of the presented methods are: 
( l)  Generalizations to other symbol systems: The presented methods could be used to 

evaluate, and improve, generative models of a variety of writing and symbol systems, 
including widely employed iconic systems of the kind currently use in computer 
user-interfaces and air-traffic control systems, and symbolic data representation. Such a 
test of symbol systems would involve tasks in which subjects evaluated symbols or 
icons as a signifiers of a particular meaning or concept, or as acceptable extensions of an 
existing set of items. Similar to the designs presented here, the task would involve 
forced-choice judgments in which subjects choose items, from a pairwise comparison. 
that are optimal descriptors of a given semantic value, or those which best extend the 
existing set of symbols. Psychological studies like these could make important contribu- 
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tions to the scientific study of symbol systems by providing an empirical basis for 
implementing 'psychologically optimal' information systems. 

(2) Generalizations for categorization studies: A different class of problems in which 
the present methods could apply are studies involving 'categorization' and prototype-ex- 
emplar investigations. 

One possible study, which investigates a domain involving continuously varying 
stimuli, is the investigation of the psychological relationship between color appearance 
and color semantics. Such a generalization would involve numerically scaling color-ap- 
pearance samples based upon subjects' preferences for pairwise compared color samples 
as 'best exemplars' of a given color name. The structure of the scaling of the color 
samples could be examined for a meaningful correspondence to the organization of a 
psychophysical color space. 27 This investigation could provide important data concern- 
ing the cognitive relationship between perceived colors and color-names. One other 
psychological domain that has been investigated using these methods is the relation 
between facial expressions and verbal emotion-labels (Alvarado and Jameson, 1996). 
These studies suggest that the present methodology can give new insights in otherwise 
well-investigated domains of psychological phenomena. 

A second generalization of the present methods is to investigations of cognitive 
categories involving stimuli with discrete representations. Such a study could address 
issues surrounding 'prototype' theory or investigations of 'natural categories' (e.g., 
Rosch, 1973). Generalizing the present methods to a specified cognitive domain, the 
experimental task could assess preferences for pairwise compared items in the context of 
category membership. Numerically scaling subjects' preferences for items' membership 
in a category, or as 'prototypes' or 'exemplars' of a cognitive domain (i.e., 'living' 
things), might provide a simply derived, yet informative, scale of category membership 
or exemplar-prototype status. 
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Appendix A. Sample experimental booklets 

Experimental Series 1 sample question 

27 Research involving just such a generalization is currently being carried out by the author. 
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Question #1 : 

ABCDEF GHIJK LMNOP ORS T U V W X Y Z 

Which of  the following choices is the best "new letter" candidate? 

1. x 
2 . ~  

Experimental Series 2 sample question 

Question #1" 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

Which of the following choices is the best "new letter" candidate? 

l . g  

2. A~ 

Appendix B. Refining performance ratings through recursive reestimation 

Using all of  the data collected from each of  the five round-robin experiments r2  
estimates, a second performance rating, were computed within experiment. A portion of  
data used in computing r2 estimates are new data which was not utilized in rl  
calculations. 2s These r2 estimates reflect a more informative Q value. That is, r2 
estimates were determined using Q values reflecting all 14 representative r l  estimates 
for the 14 pseudoletters incorporated in each of  the five experiments, whereas the rl  
estimates were calculated using Q = 0 for the first 14 rating estimates, and only 
nominally representative Q values (each reflecting the estimates of  only 7 pseudoletters 
rather than 14) were used for the remaining 28 r l  estimates. The r2 estimates are 

28 For example, considered for the first time are the outcomes of games from experiments 1.2, 1.3, 1.4. and 
1.5 involving unrated players against other unrated players. (Contests of this kind total 1680 additional 
datapoints.) 
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considered better approximations of  the true performance ratings of pseudoletters than 
the prel iminary r l estimates. 

The r2  estimates were established dynamical ly  for each pseudoletter using the 
formula for previously-rated players where true ratings remain unchanged across 
tournaments (see Batchelder and Simpson, 1988). The estimation formula is 29. 

rn i = {2~r(W i -  Li) / U }  + Q, (B1)  

where, 
~r is the standard deviation of  the underlying distribution of  true ratings, 3o 

L i and W, represent the ith p layer ' s  number of observed losses and wins, respec- 
tively (for i =  1 to 14), 

N is the number of observations per player  incorporated into the rating computation, 
And, Q is the mean performance rating of  those players engaged in the experiment. 
In general, Eq. (B 1) is sufficient for recursively rescaling initial scale estimates. In 

the general, non-overlapping case this equation would be used for rerating scale values 
until the estimates satisfied a specified stability criterion. However,  in overlapping 
experimental designs, as is the case in Series 1, some additional explanation is required. 
The remainder of  this appendix simply demonstrates the recursive reestimation of 
overlapping round-robin data using Experimental Series 1 as an example. 

Due to the overlapping design and to the fact that r2  ratings were computed within 
experiment,  some pseudoletters '  r 2 ' s  were independently estimated twice. For example,  
the typical player  introduced in Experiment 1.1 is rated once using that data, and again 
using Experiment 1.2 or 1.3 data depending upon the particular pseudoletter being 
considered. (Similarly,  a pseudoletter introduced in Experiment 1.2 or 1.3 is r2  rated 
using that data, and again using the data of  either Experiment 1.4 or 1.5.) For cases 
where r2  i is estimated twice the second of  these estimates is arbitrarily assigned to r3 i. 
Thus players introduced in Experiments 1.1, 1.2, 1.3 (namely pseudoletters 1 to 28) are 
assigned both r2  and r3 estimates, while pseudoletters introduced in Experiments 1.4 
and 1.5 (namely pseudoletters 29 -42)  are assigned r2  estimates only. Thus the vector of  
r2  estimates contains 42 rating estimates, whereas the r3 vector is incomplete with only 
28 rating assignments (the last 14 values being unassigned). 

To utilize the information contained in both r2  and r3, r4 estimates were derived by 
assigning r4 the arithmetic average of  r2  and r3 values when both values were present 

29 Because Eq. (BI) is also later employed in the recursive reestimation of rating estimates a notation 
change is required: The n in rn will take a value to indicate the iteration of the rating estimate at issue. For 
example, the fifth iterative recomputation will be denoted r5. 

3o Sigma, ~, replaces ~ as a scaling constant, eventually permits in later computations an adjustment in 
scale that reflects the spread of the scale. The assumption is that the distribution underlying pseudoletter rating 
scale is Standard Normal which follows from the alphabetic model tested. Overall. an application of the model 
will generate pseudoletter candidates which are normally distributed with respect to wellformedness. The 
assumption is that the distribution of wellformedness will be reflected in the rating scale. Whatever the true 
underlying distribution might be, the Normal Distribution assumption has been shown appropriate through 
empirical validation (Batchelder and Simpson, 1988) and analytic analysis (Yellott, 1977) and is known to be 
valid in cases where the true underlying distribution is the Double Exponential model or Dawkins Exponential 
model. Here the distribution is assumed Normal, N(O, 1 ), therefore ~r = 1. 



K.A. Jameson/Acta Psychologica 92 (1996) 169-208 203 

(i.e., pseudoletters 1 to 28). When r3 was not available the rating estimate in r2  was 

simply assigned to r4. 
Thus the r4 estimates can be described as the performance-rating average of  r2  and 

r3 when a r3 value exists, or simply a reassigned r2  rating estimate otherwise. 
Deriving r4 in this way is consistent with the dynamic estimation procedures described 
in Batchelder and Bershad (1979) given the assumption of pseudoletters '  unchanging 
perlbrmance abilities over time. 3~ 

Finally to test whether the r4 ratings are good approximations of the t rue pertor- 
mance ratings of  pseudoletters a test of  stability over recursive recomputation is carried 
out. To accomplish this Eq. (B l)  is employed to successively recompute rating estimates 
across  experiments,  on a game-by-game basis, for each of  42 pseudoletters until the 
between rating-vector variances reach, or are close to, zero. In other words the outcomes 
of 5460 paired-comparison games, are observed randomly, one-at-a-time, and after each 
observation the performance ratings for the two players relevant to the observations are 
recomputed. 32 This procedure uses all available data from Experimental Series I. If 
after one pass through all the data some pseudoletters were found to continue to exhibit 
sizeable between-rating variances for the most recent estimates, then the iterative 
procedure was carried out again. To satisfy this criterion the iterative procedure was 
carried out three separate iterations which produced a vector of final rating estimates for 
Experimental Series 1. 

Thus stable performance ratings, which theoretically are better than the preceding 
performance ratings, are provided in the r7  estimates of  Series 1 (see Table 1 for Series 
1 scale). In this way Experimental Series 1 data was used to scale the first 42 
pseudoletters in Table 1. 

This technique is presented as a general procedure for obtaining a stable rating scale 
when scaling psychological  data. Depending upon the psychological  stimuli being scaled 
one may find that variations in the iterative process also produce a stable scale. 

Appendix C. Two calibration methods 

For both methods described below the Series 1 scale (hereafter Scale  1) will be 
calibrated to Series 2 scale 's  (hereafter Scale  2 )  standard. The rationale for modifying 
Scale 1 is that it is assumed that Scale 2 is a ' r icher '  scale (by virtue of  more extensive 
empirical base), therefore Scale 1 should be adjusted to Scale 2 's  standard. 

3~ Holding constant the sample alphabet context and the forces underlying the "wellformedness continuum' 
(i.e., the true alphabetic model), a pseudoletter's ability to perform against another pseudoletter in that context 
can not improce or change o~,er time as long as the pseudoletters in question are correctly ordered along the 
wellformedness continuum, and wellformedness is the corollary of ability, then a pseudoletter's ability to win 
pairwise matches will not improve in a closed system. If the model we are using is close to the correct or true 
model the subject's have in their heads, then the model rank-order will largely resemble the true rank-ordering 
given by the wellformedness continuum. 

t2 The random order in which the r 's are recomputed is the same random order in which the questions 
appeared in the experiments. 
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A calibrated performance-rating scale is believed to provide a more accurate ordering 
of the 67 pseudoletters than that given by the ratings reported in Jameson (1989) 
because each items' rating is individually rescaled to reflect the structure of all items' 
ratings. In this way, calibrated performance ratings may more closely approximate the 
true performance ratings of the items. 

C.1. Method I." Calibrating via average rating estimates 

The first method of adjustment aims to provide a rough combining of the information 
in Scale 1 and Scale 2 by using the scale values of pseudoletters with rating estimates in 
both scales. This calibration method yields a scale hereafter referred to as 'Calibrated 
Rating Scale 1', or 'CRSI' .  

Calibration Method I: Every rating estimate from Scale 1 was adjusted by a constant, 
calibrating with respect to the overall averages of the two scales and the averages of 
items with separate estimates in both scales. 33 Then for each pseudoletter involved in 
both experiments the two respective rating estimates (from Scale 1 and Scale 2) were 
averaged, producing a single rating estimate, CRSI(ri), for each item. 34 

This procedure produces a single performance rating for each of the 67 items, 
calibrated to the same scale, and which together represent Calibrated Rating Scale 1 for 
the 67 new-letter forms. 35 Table 1 (col. 7) contains the CRS 1 performance-ratings and 
alphabetic model classification for each pseudoletter. 

C.2. Method II: Calibrating according to both the average rating and the distribution of  
rating estimates 

For the purposes of comparison with CRS1, a second method of calibrating the 
estimates in Scale 1 to Scale 2 was undertaken. Theoretically this method is preferred to 
that given in Method I because it analytically determines the coefficients for optimally 
combining the information in the two scales based solely upon the items occurring in 
both scales. The CRS 1 calibration method uses the coefficients a and b of a linear 
transform represented by the function f:  

f (  ril ) = a( ril ) + b = ri2, (C1) 

where, for i = 1 to n pseudoletters, and ri~ is pseudoletter i's performance-rating from 
Scale 1 and ri: is that from Scale 2. 

33 This was achieved through two steps: First, every rating estimate from Scale 1 was adjusted by a constant 
so that the Scale 1 overall average rating-estimate equaled the overall average of Scale 2. Second, all the 
adjusted Scale 1 estimates were each adjusted a second time by a constant so that the Scale 1 average rating 
for the set of pseudoletters involved in both experiments was equal to that for Scale 2. This two step 
adjustment was used because it separately considers the overall average scale estimate and the average 
estimates of the items common to both scales. However, it is numerically equivalent to adjusting Scale l ' s  
estimates simply once using the sum of the two mentioned constants as the adjustment. 

34 Because Scale 1 contains only ratings for pseudoletters 1 through 42, the ratings for pseudoletters 43 
through 67 in CRS1 are simply equal to the corresponding ratings in Scale 2. 

35 Findings for CRSI are reported in Jameson and Romney (1990) and Jameson (1994). 
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To find coefficients a and b, the expression below is minimized: 
28 

(ri2 -- a (  ril ) -- b )  2. ( C 2 )  
i=1 

The sum in Eq. (C2) is taken over the 28 items which have ratings in both Scale 1 
and Scale 2. Minimizing the expression in (C2) yields an estimate of the desired a and b 
coefficients. Once the coefficients are defined the rating estimates in Scale 1 can be 
transformed, or calibrated, using the algorithm presented below, thereby permitting 
comparisons with rating estimates exclusively in Scale 2. 

Given Scale 1, let i be any given pseudoletter in Scale 1, and for each i, transform 
the Scale 1 value r~ using 

CRS2(ri)  : a( ril ) + b, 

where CRS2(ri) is the calibrated scale value. 
The coefficients a and b were determined by finding the derivatives for the function 

f (see Eq. (C1)) when the slope equaled zero, or at the minimum point in the parabolic 
curve. 36 The CRS2 performance-ratings are presented in Table 1, column 8. 

The calibration methods employed here are only two possible methods. Depending 
upon the scales and stimuli being assessed, better calibration methods may exist for 
combining two scales from different experiments. As long as the method used achieves 
an appropriate linear normalization of the two scales, then it will accord with the Rating 
System model and will yield results similar to the two methods described above. 

Appendix D. Deriving conditional probability matrices 

To compare the model predictions with the empirical observations, the probability 
with which a i is preferred given the pairwise comparison of a i and aj (denoted 
p(a i la ia i ) )  was calculated, for all items which empirically pairwise met, using all data 
observed in Experimental Series 1 and 2. The calculations produced a 67-by-67 partial 
matrix of conditional probabilities consisting of 1440 cell values (a bit more than 
one-third of the values possible in the full matrix). 

To derive the conditional probabilities predicted by the Rating System model a 
generalization of the statistical theory gave the following procedure: Let R =  
{r~ . . . .  ri . . . . .  rj . . . .  r67} denote the set of performance ratings for the 67 pseudoletters. 
For all possible pairs of pseudoletters the differences between the Performance Ratings 
of each item was determined, denoted d~j for all i and j. Next these d~j's were 
employed in the following piecewise linear equation given in Batchelder and Bershad 
(1979, p. 44): 

1 - b, for d~j > B 

L ( d i j  ) = 1 / 2  + a -  l d i j ,  f o r  - B  < dij  < B 

b, for dij  < - B  

36 The coefficients were determined as a = 0.67133 and b = 0.0984. 



206 K.A. Jameson/Acta Psychologica 92 (1996) 169-208 

where  di / deno te s  the p e r f o r m a n c e - r a t i n g  di f ferent ia l ,  and  whe re  B = 1.75, b = 1 / 1 6 ,  

and  a = 4, are g iven  by  a p p r o x i m a t i n g  the  c u m u l a t i v e  d i s t r ibu t ion  func t ion  of  a 

S t anda rd  N o r m a l  Di s t r ibu t ion  in the  reg ion  + 1.75 by  a l ine s e g m e n t  wi th  s lope 1 / 4 .  

This  a p p r o x i m a t i o n  whi l e  be ing  r o u g h  numer ica l ly ,  was  s h o w n  by B a t c h e l d e r  and  

B e r s h a d  (1979,  p. 44 )  to sa t i s fac tor i ly  a p p r o x i m a t e  actual  ra t ings .  C o n s t r a i n e d  to the 

in terval  ( - 1 . 7 5  < dij_< 1.75) the  sys t em g i v e n  a b o v e  acts l ike a m o n o t o n e  ra t ing  

sys tem for  ra t ing  d i f fe rences ,  di i, and  is re fe r red  to as the U n i f o r m  Sys t em in B a t c h e l d e r  

and  S i m p s o n  (1988,  p. 300).  
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