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Joint Receipt and Certainty Equivalents of Gambles*

R. DuncaN Luce

University of California, Irvine

Several rules have been proposed for calculating the utility of the
joint receipt of two amounts of money in terms of their individual
utilities and/or the utility of their sum. This paper explores how the rules
can be generalized to gambles. A concept of a structure of gambles with
a joint receipt operation & and a certainty equilvalence (CE) mapping
is described [Definitions 1 and 2). Monotonicity of @ relative to
preference permits simple generalizations of the rules to gambles
{Theorem 1}, and general properties of the utility function are related to
general properties of CE {Theorem 2). The latter establishes that several
apparently plausible properties are inconsistent, which raises empirical
guestions. For the restrictive case of totteries {random variables), 1t is
shown that if the convolution operation is monotonic in preference,
then the CE mapping is onto addition {Theorem 3)}. It is argued that
gamblers, at feast, must fail monotonicity of cenveolution. Finally, a
homogeneous scaling property is introduced that leads to a class of
joint receipt operations that have not yet received attention
{Theorem 4).  © 1995 Academic Press, Inc.

1. INTRODUCTION

The joint receipt of two {or more) things is an everyday
experience. The mail often includes two or more checks or
a mix of checks and bills; gifts typically are opened in
clusters; etc. Recently, Thaler and others (Linville &
Fischer, 1991; Thaler, 1985; Thaler & Johnson, 1990) have
explored empirically ways in which such joint receipts of
sums of money are evaluated. And Luce (1991, 1992b; Luce
& Fishburn, 1991) introduced the operation of joint receipt
into axiomatizations of rank-and sign-dependent theories
for the utility (abbreviated, RSDU) of gambies that
generalize Kahneman and Tverskys (1979; Tversky &
Kahneman, 1992) prospect theory to arbitrary finite gam-
bles with uncertain as well as risky events.

In studying the joint receipt of pure sums of money,
Thaler proposed what he called the “hedonic rule.” He
assumed the existence of a utility function U over money

* This reasearch has been supported in part by National Science Foun-
dation Grant SES-9308959 to the University of California at Irvine. Peter
C. Fishburn, A. A, ], Marley, and Vladimir I. Rotar have provided useful
comiments on an earlier version, and two anonymous referees made hetpful
suggestions that improved both the exposition and the results,

and, according to Fishburn and Luce’s (1993) interpreta-
tion' of his rule, the utility of the joint receipt of two sums
x and y, x @ p, 1s given by the larger of the utility of the sum
and the sum of utilities, i.e.,

Ulx @ y}y=max[ Ulx + y). Ulx) + U(»)], (1)
Fishburn and Luce {1995) explored the consequences of
Eq. (1) on the assumption that U/ is concave for gains and
either concave or convex for losses. The complexity of
Eq. (1) arises when xy < (.

This rule is, of course, quite special and others have been
suggested, although none has been as thoroughly studied as
Eq. (1). For example, D. von Winterfeldt proposed?

Ux@y)=allx+y)+(1—a}[Ux)+ U] (2)
where o may differ in the four quandrants of gains and
losses. Again, this rule presupposes that the crucial terms
are the utility of the swun and the sum of the utilities. To my
knowledge this rule has not been studied,

Whenever x + y arises, as in Eqs. (1) and (2), one can
always write it as

x+y=U""TUx)]+ UL U] {3)
and so all of the examples described can be thought of as
special cases of the gencral proposition that there is a func-
tion F: R x R — #& that is strictly increasing in each variable
such that

Ulx @ y) = FLU(x), U(p)]. (4}

Note that for rules such as Eqgs. {1} and (2) it is not
immediately obvious how lo exlend them to general gam-
bles (uncertain alternatives) which involve an assignment of

! Thaler’s text is ambiguous as to what consistutes the hedonic rule:
Eq. (1) itself or Thaler's description of the regions where he believed
x4+ y)> Ulx)+ U(y) to hold assuming Eq. (1) and that U is concave
for gains and convex for losses. As Fishburn and Luce (1995) showed, the
two are not exactly equivalent, even under the assumptions about the
shape of U.

2 Persenal communication, June 29, 1993,
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consequences to a finite partition of an uncertain event, In
the most general case, no probability distribution is
assumed to be provided, only a description of the events
giving rise to the consequences. In generalizing the hedonic
rule, the only issue is what to substitute for x + y. One
possibility that comes to mind 1s to replace all occurences of
gambles by their (monetary) certainty equivalents. If we let
CE( g) denote the certainty equivalent of the gamble g, then,
for example, the natural analog to Eq. (1) is
Ulg @ h) =max{ U[CE(g) + CE(h)], U(g) + U(R)}.  (5)

A second possibility also arise in the special case of
lotteries, 1.e., gambles for which the consequences are money
and the event partition has a probability distribution
associated to it. In this case we may think of the lotteries as
random variables with finitely many distinct vatues and of g
and 4 as therr distributions, Then, a natural analog of + is
the sum of the (independent) random variables, which has
as its distribution the convolution of g and %, denoted g+ /.
So, for that case the second natural generalization of
Thaler’s rule is

Ulg@h) =max[ U(g=h), U(g)+ U] (6)
Theorem 3 demonstrates that if the operation = is
monotonic in the preference order 2 (see footnote 4 in
Definition 2 below), then Eq. (6) reduces to Eq. {5).

One question to be addressed are the conditions under
which Egs. (5) and (6) are not only generalizations of
Eq. (1), but which are consequences of it as well. We begin,
however, in the more general setting of Eq. (4).

2. CERTAINTY-EQUIVALENT STRUCTURES

Since the major trick in relating Eq. (5) to Eq. (1) is to
introduce certainty equivalents of gambles, we must provide
a formal structure within which that is feasible. To that end,
consider the following.

DerFiniTION 1. Suppose G is a set, 2 is a binary relation
{of weak preference) on G, and CE is a function from & into
the real numbers, R. We say that ¥={G, >, CE> is a
certainty-equivalent structure® provided that.

(1} RedG.

(2) ForxeR, CE(x)=x.

(3) Forg, heG, g= hiff CE(g)=CE{h).

At this point, the compass of the set & is limited only to

its elements being something for which judgments of
preference make sense. The intended interpretation for {r is

* This is very similar to the structures studied by Rotar {1994).

described in greater detail in motivating Definition 2 in the
next section.

LemMma 1. Suppose that 4 is a certainty-equivalent struc-
ture, then for all g, he G,

(i) g~CE(g)

(i) CEisinto R.
(i) over R, = = =,
(iv) X is a weak order.
Proof. (1) Using properties (2) and (3) of a certainty-

equivalent structure

g =z CE{g) i CE(g)=CE[CE(g)]=CE(g),

which is possible iff g ~ CE{ g).

(it) Itis an immediate consequence of property (2} that
CE is onto R.

(iii)
and (3),

Suppose x,yeR, then by properties (1), (2),

xXzZy if x=CE(x)zCE(y)=y.

(iv) That 2 is a weak order is an immediate conse-
quence of properties (1) and (3) and the fact that > is a
total order. |

It should be pointed out that empirically realizing the
concept of a certainty equivalent so that property (3) holds
in somewhat problematic. There 15 ample evidence by now
that judged certainty equivalents do not, in general, agree
with choice-determined ones and that mixing choices with
judged certainty equivalents leads to apparent violations of
both transitivity and consequence monotonicity of gambles
{Bostic, Herrnstein, & Luce, 1990; Mellers, Weiss, &
Birnbaum, 1992; Tversky, Slovic, & Kahneman, 1990). In
general, experience suggests that less difficulty arises,
although at considerable experimental cost, when one uses
choice-determined CEs involving some sort of interleaved,
up-down procedure. A typical one, called PEST, is
described in Cho, Luce, and von Winterfeldt (1994). A more
efficient method is used in Tversky and Kahneman (1992),
but it has not be calibrated against PEST or judged cex-
tainty equivalents.

3. MONOTONIC JOINT RECEIPT OPERATION

Although the following mathematical results do not
depend upon the exact interpretation of G, certain proper-
ties to be assumed are motivated primarily by the following
interpretation: G encompases all pure sums of money, all
finite gambles that we may wish to include, and the entities
that are inductively defined from these sums of money and
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gambles using a binary operation of joint receipt f{initely
many times. With that in mind, we introduce the fourth
major property.

DermviTiON 2. Suppose ¥ =< (G, =, CE) is a certainty-
equivalent structure and @ is a closed binary operation on
G. Then {¥%,@®) is a joint-receipt, certainty-equivalent
{abbreviated, JRCE) structure if

(4) The restriction of @ to R is weakly commutative
and monotonic® in .

Note that although @ is assumed to be weakly com-
mutative over R it is not assumed to be weakly associative.
Indeed, none of the above rules for relating it to utility per-
mit it to be associative, except in special cases.

[t is implicit that each gamble in G is based upon an inde-
pendent realization of the chance experiment underlying it.
In particular, g @ h means that two different experiments
are run, one for g and the other for h. After the proof of
Theorem 1 a detailed example illustrates why dependence
among the gambles is problematic.

The first theoretical question considered is the conditions
under which the operation @ is monotonic over the entire
set of gambles. This allows us to deduce Eq. (4) over G from
its holding over R. In particular, that permits one to derive
Eq. (5) from Eq. (1). It should be pointed out that the {a
priori) normative reasons for supposing @ is monotonic are
just as compelling as those for assuming the transitivity of
2 or consequence monotonicity of gambles. To my
knowledge, its empirical validity has yet to be tested.

THEOREM 1.
Then

Suppose that {%, @ is a JRCE structure.

{1) @ is monotonic with respect to = iff

CE(g@h)~ CE(g) ® CE(h). (7)
{(ii} Suppose @ is monoionic. Then x @y ~ (>, <)x+¥,

forall x, yeR, iff

CE(g@®h)=(>, <) CE(g)+ CE(#)

forall g heG. (8)
(iii) Suppose that U.R—> R is defined and order pre-
serving over B, and Eq.{(4) holds for (R, =, ®>. Define U
on all of G by
Ulg) := ULCE(g)]. (9)
Then @ is monotonic iff Eq. (4), with U of Eq. (9), holds over
%G with strictly increasing F.

* As usual weakly commutative means x @ y ~ y@ x, where ~ is the

indifference relation of 2, and monotonic means x 2= y ifx@z Z yDz
for all x, y, ze R.

480/39/1-6

Proof. (1)
tonicity of @,

By Lemma I(i) and the assumed mono-

CE(g @)~ g Dh~CE(g)® CE(h),

and by Lemma 1(iv) Eq. (7) follows.

Conversely, suppose that Eq. (7) holds and monotonicity
is violated, ie, for some g g heG, g >g, and
g ®h < g@®h By property (3), CE(g')> CE(g) and by
Eq. (7),

CE(g')@CE(h) =CE(g' @) < CE(g ®h)
= CE(g) ® CE(h).

By property (4), & is monotonic over R, so
CE(g')=CE(g) which, by Lemma 1(iii), implies that
CE(g') < CE(g), a contradiction.

(ii) Equation (8) is an immediate consequence of
Eq. (7) and Lemma 1(iii).

(iii} Using Eqgs. {(4), {7), and {9) we have

Ulgh)=U[CE(gDh)]
= UL CE(g) © CE(h)]
= FLULCE(g)], ULCE(h)}]]
=FLU(g), U(n)],

which is Eq. (4) for gambles. The converse is trivial. |

Assuming Thaler’s hedonic rule for money, Eq. (1), then
by Theorem 1(iii) the monotonicity of & yields 1ts
generalization Equation (5) for gambles.

P. C. Fishburn has pointed out® that the monotonicity
of @ is almost surely inconsistent with some gambles
being based on a common underlying experiment. To
demonstrate the difficulty, consider an event ¥ that is sub-
jectivity as likely to occur as not; ie., for all x, veR,
(x, E, ¥y}~ {y, E, x). For some particular x and y, let
g=(x, E, y)and h=(y, E, x), and so g ~ k. Assuming the
gambling operation is idempotent, ie., for all xel,
x~(x, E, x), @ is commutative and monotonic, and the
same experiment determines £ in both g and A, we prove
that

x® y~CE(g) & CE(g) (10}

By idempotence, commutativity, and the commonness of E,

XDy~xDy, Ex@y)~(x®By, E yDx)
=(xE @y, Exi=g@h

* Personal communication, August 20, 1993,
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[t should be noted that this argument presumes that no dis-
tinction is made between the equivalent formulations,
(x®y, E, y@x) and (x, E, )P (y, E, x), of the same
fact, namely, that x @ y is received if E occurs and y @ x if
E fails to occur. This intermediate result, together with
Lemma 1(i) and the monotonicity of @ viclds

X®y~g@h~g®g~CE(g)PCE(g),

from which Lemma 1(1v) implies Eq. (10).
Now, consider x = $1000 and y = $0, then for me,

CE( g) < $450, $1000 @ $0 > $450 P $450,

but using Lemma 1(iii) and property (4},
$1000 @ $0 > $450 @ $450 > CE(g) @ CE(g),

contrary to Eq. (10).

4. AN EMPIRICAL RESULT AND
SOME IMPLICATIONS ABOUT CES AND &

Another rule relating utility {/ to joint receipt @, one that
does not involve anything concerning x + y and which is
stated for gambles rather than just certain amounts, was
arrived at by Luce and Fishburn (1991). For gains and
losses separately, it was derived from certain assumptions
about how @ disiributes® over gambles in the coniext of
binary RSDU. The extension to mixed gains and losses was
purely an extrapolation subject to the requirement that
@ remain monotonic. The form they arrived at and
axiomatized is

A(+) Ulg)+B(+) Uh)+C(+) Ug) Uh),

g>0, h>0

A(+) Ug)+B(-) Uh),  gz0, h=0
V@M =$ () Ulg) +B(+) Uh),  g=<0, hx0
A(—) Ulg)+ B(—) U(k)— C(—) Ulg) Ulh),

g<0, h<0,

(11)

where A(-) >0, B(-) >0, and () = 0. Note that @ is com-
mutative if and only if 4(-}= B(.). The special case of pure
additivity (i, A(-)=B(-}=1 and C(-)=0) was invoked
by Luce and Fishburn (1991) in arriving at a version of
RSDU and by Luce (1992b) in developing a theory of cer-
tainty equivalents. {See Note Added in Proof at the end of
the article.)

© A closely related property was called “segregation” in Cho et al. (1994).

Some consequences of this RSDU of CEs have been
studied empirically in Cho er al {1994). Among other
things, their, albeit limited, data suggest that CE over @ is
subadditive for gains and superadditive for losses. It is less
clear what holds for mixed gains and losses, although
additivity is a possibility. Assuming this to be correct, then
stated formally the three cases are:

< g>0, >0
CE(gdh) < = »CE(g)+CE(h), <gxz0zh (12)
> g <0, h<0,

Similarly, we can define U over @ as being subadditive,
additive, and superadditive on an interval I< R, provided
that for all x, ye 1,

<
Ux@y)< =
-

U(x) + U(y). (13)

Note that if U/ is concave” on I, then it is subadditive over
+; and if it is convex, then it is superadditive over +.

THEOREM 2. Suppose that {4, @ > is a monotonic JRCE
structure. Suppose that for gains CE is subadditive over @.
Then, for gains,

(1) U is concave implies U is subadditive over @®;

(11} U is superadditive or additive over @ implies U is

superadditive over +.

Suppose that for losses CE is superadditive over @. Then, for
losses

(1if)
(iv) U is subadditive or additive over @ implies U is sub-
additive over +.

Proof. (i)

U convex implies U that superadditive over @;

Ulgoh)=U[CE(g) @ CE(h)]
< U[CE(g)+ CE(h}]
< U[CE(g)] + U[CE(A)]
=Ulg)+ Uh)

(by Eq. (7)}
{by Eq. (12})
{by U is concave)

{by Lemma 1(i}).
{11) Let x=CE(g)>0and y=CE{k) >0, then

U(x + y) = U[CE(g) + CE(h}]
> ULCE(g@h)]

{definitions)
(by Eq. (12))

" Uis coneave over Liffforall x, yeJand 0 <o < I, Ufoax + {1 —a) y]>
al/(x)+ (1 —a) U( y); convex just means the reversed inequality.
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= U[CE(g) @ CE(h)] (by Eq. (7))
=2 U[CE(g)] + ULCE(h)]  (by Eq.(13))
=Ulx)+ U(y) (definitions).

Since by definition of JRCE, R< G, this proves that for
gains U 1s superadditive over +.
The proofs of (iii} and (iv) are analogous. ||

Note that for gains, both Thaler’s rule, Eq. (1), and the
Luce-Fishburn rule, Eq.{1l) with A(-)=B8(-}=1 imply
that U is superadditive or additive over @. Thus, if Cho et
al’s (1994) empirical finding is correct, Theorem 2(ii)
means that U must be superadditive over +. Prevailing
wisdom, including Thaler’s (1985) empirical findings,
suggest that, on the contrary, U/ apparently is concave for
gains and so it is subadditive over +. The present argument
thus implies, then, that at least one of the following
statements must be in error for gains:

U/ 1s concave over +.
U is superadditive or additive over @.
CE 1s subadditive over @.

@ is monotonic.

Probably the evidence is weakest for U/ being superadditive
or additive over @, and so both the hedonic rule, Eq. (1),
and the Luce-Fishburn rule, Eq. (11), with A(-)=B(-)=1
are suspect.

For losses, the situation is slightly more complex. Thaler’s
rule continues to imply that I/ is superadditive or additive
over @ for losses, and, by the data of Cho et al. (1994), CE
for losses is also superadditive over @. Because the direc-
tions of the inequalities do not work together, no conclusion
follows. In contrast, the Luce-Fishburn rule, Eq. (11), with
A(-)=B(-)=1 says that U over & is subadditive for losses
and so by Theorem 2(iv) U must be subadditive over + for
losses. Again, this s counter to the prevailing belief that the
utility function 1s convex and so it 1s superadditive over +
for losses. Thus, Eq. (11) is most suspect. The implications
of this are significant; either the binary RSDU model is
wrong or the segregation assumption (x, E,0)@ y~
(x® y, E, 0® y), for gains and losses separately, is wrong
because together these assumptions imply Eq. (11} for gains
and losses.

The possibility must be entertained that perhaps we are
dealing with different kinds of subjects, some of whom are
concave—convex, others of whom are convex—concave,
and still others satisfy the other two possibilities. Then
depending on the mix of subjects we happen to have in an
experiment, the data yield average evidence favoring one or
the other. Such a possibility of individual difference is raised
again in Section 6. Attempts probably should be made to

partition the data into these four possiblities prior to
analysis.

The von Winterfeldt suggestion, Eq.(2), fares much
better. Its natural analog for gambies is

Ulg@h)=aU[CE(g) + CE(h)]

+{1—o)[ U{g)+ U] {14)

Observe that U is subadditive (additive) (superadditive)
over @ iff it is subadditive (additive) (superadditive} over
-+. Thus, the function is not in conflict with Theorem 2.

5. LOTTERIES AND THE MONOTONICITY
OF CONVOLUTION

We now specialize to the situation in which the gambles
in G are actually lotteries, i.e., distributions of random
variables with suitable closure properties, and our aim is to
show that Eq. (6) is closely related to the monotonicity of
both @ and the convolution operator *.

THEGREM 3. Suppose that {%, ®) is a JRCE structure
of lotteries such that convolution * is a closed operation®.
Then

(1}  * is monotonic with respect to = Iff

CE(g+h)=CE(g) + CE(h). (15)

Assume, further, that U. G— R is order preserving, = is
monotonic, and Eq. (1) holds over R. Then

(1) @ is monotonic iff Eq. (6} holds.

Proof. (1) Suppose that * is monotonic. By Lem-
ma 1(i), g ~ CE(g), so

CE(gwxh)~ gwh~CE{g)=CE(h).

However, over B » is +, so CE(g)*CE(h)=CE(g)+
CE(#) and so by Lemma [{iii) Eq. (15) follows.
Now, suppose Eq. (15) holds and g’ = g, then
g'»h~CE(g' «h)=CE(g') + CE{h) = CE(g)+ CE(})
= CE(gxh) ~ gxh
and conversely, thus proving that = is monotonic.

(i1} Suppose that @ is monotonic, then

Ulgh)=U[CE(g®h)]
(Lemma 1(i})

% As usual, closed means that if g, ke G, then g+ e G.
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= U[CE(g}®CE(h)] (Eq.(7))
=max{ U[CE(g) + CE(h)], U[ CE(g}] + UL CE(#)]}
(Eq. (1))
=max{ U[CE{g=+h}], U[CE(g)]+ U[CE(h)]1}
(Eq. (15))
=max[ U{g+h), Ulg}+ Ulh)],
{monotonicity of *, Lemma 1(i))
which 1s Eq. (6).
Conversely, suppose Eq. (6) and g’ == g¢. Then using the
monotonicity of * as well as that of +,
Ulg' @h)=max[ U(g'«h), U(g"}+ U(h)]
2z max[ Ulgxh), Ulg)+ U(h)]
=U(g®h).
Moreover, > goes into >. Because U is order presevering,
this proves that @ is monotonic. |

Fishburn suggested® that it might be more natural to
define convolution in terms of @ than +. Let us speak of
that as JR-convolution, which is defined formally as

gOMD=Y Y [ax) ) x@y~z].

Assuming that © and @ are both monotonic, then using the
fact that for x,ye R, x © ¥y ~x @ y, and Lemma 1(i},

g©h~CE(g)© CE(g)~CE(g)
@CE(h)~CE(g@h) ~g@h,

whence g © A~ g@A. So it is not a new operation in the
monotonic case.

6. GAMBLERS ARE NOT MONOTONIC IN
CONVOLUTION

In a JRCE of lotteries, suppose that = is monotonic.
Define g(n) = g(n — 1)+xg and g(1) = g. If g >> 0, then by the
monotonicity of * we see that for all 1, g(n) > 0.

Let E(g) denote the expected value of a lottery g. If for
some decision maker, whom I refer to as a gambler, there is
a g such that both

g>0 and E(g)<0, (16)

? Personal communication, August 20, 1993.

then I venture to gues that there is some n for which
g(n}=<0. The reason is that E[ g(r)]=nE(g) <0 grows
increasingly negative with n, whereas its standard deviation
grows only as \/H SD(g). It is difficult to imagine that these
convolved gambles will not sooner or later prove to be less
preferred than 0, But this violates the monotonicity of *.

It should be noted that the concept of a gambler given in
Eq. (16) depends in many ways on the social context—
casino, experiment, insurance purchases. Any one who buys
insurance is a gambler according to Eq. (16).

Note unrelated to these remarks is the fact that, by
Theorem 3, CE is a homomorphic map of (G, =, ) onto
{R, =, + > and so, by Hélder’s theorem, the convolution
structure is necessarily Archimedean. So, even worse than
the example given, it means that for any h, however
desirable, there must be an » such that g(n)} > A. This is
totally implausible.

Vladimir I. Rotar pointed out to me'? that the line of
argument here is closely related to results that Rotar
and Sholomitsky (1994) have obtained concerning
monotonicity of convolution.

The above remarks make clear that there is empirical
interest in studying the monotonicity of @ and *. For the
latter, it seems essential to deal separately with people who
are gamblers in the context of the experiment, in the sense
of Eq. (16), from those who are not.

7. FORMS FOR U(x @ y) DERIVED FROM
A HOMOGENEITY CONDITION

In this section we consider a scaling property that seems
fairly plausible and that can be used to get forms for
U(x@ y) that are still different from those of Thaler,
Eq. (5), von Winterfeldt, Eq. (2), or Luce and Fishburn,
Eq. (11). The general idea is to ask what happens when x
and y are simultaneously rescaled by a factor k. One 1dea is
that x @ y is in some sense rescaled by a factor that depends
on k. We capture this idea as follows.

DeFmaaTioN 3. Suppose that (%, &) os a JRCE struc-
ture. (%, @ > is said to be CE-homogeneous if and only if
there 1s a strictly increasing function ¢: R, — R such that
forall x, ye RandallkeR*,

kx@ky ~¢ik) CE(x@ p). (17)
It is not difficult to see that if I/ is a power function, then
both Thaler’s rule, Eq. (1), and von Winterfeldt’s, Eq. (2),
both satisfy CE-homogeneity with ¢(k)=4%. The Luce-
Fishburn rule, Eq. (11) does not satisfy it even in the special
case U is a power function unless C{-)=0.

19 Personal communications, October 5 and 8, 1993.
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We pursue the consequences of CE-homogeneity within a
class of structures that have a distinguished singular point
{Luce, 1992a), which in this inferpretation can be thought
of as the status quo, but that are quite regular on either
side of the status quo. There are three lemmas leading up
to Theorem 4, which describes the resulting structures,
which include Thaler and von Winterfeldt’s forms as special
cases.

LeEmMa 2. Suppose that {4, @) is a JRCE structure
that is CE-homogeneous and 0 @0~ 0. Then, there exists
positive constants «, f§, and p such that forke R, and xe R,

x>0,
x <

ax”®,

Py (18)

Hk)=k?, x@-)(]m{

Proof. Because @ is monotonic on R, there exists a
strictly increasing function 3: R — R such that for all xe R,
x @ 0~ 3(x). By the hypothesis, 0@ 0 ~ ¢ and so, by Lem-
ma 1(u1), (0} =0. Set y=01in Eq. {17}, then by condition 2
of Definition I,

9(hex) ~ fex @0 ~ (k) CE(x @ 0) ~ (k) CE[8(x)]
= (k) I(x).

By Lemma 1{iii),
Hhx) = d(k) $(x).

Then, setting k = 1 yields ¢(1) = 1. Next, setting x = 1 shows
that ¢{k) =3(k)/3(1), thus vielding the functional equation
over B,

S(kx) = (k) Hx)f3(1),

whose strictly increasing solutions for x > 0 are well known
to be power functions of the form shown in Eq. (18), with
a=4d(1)>3(0)=0. For the ncgative domain, one sets
x=—1 and proceeds I an analogous fashion. The
exponents in the two domains are forced to be equal
because of their common relation to ¢. ||

Given these special power function forms and following
the convention that x# has its usual meaning when x>0
and —(—x)? when x <0, then consider the defined opera-
tion @,

X®y=x'"@y (19)
LeMMA 3. Suppose that the hypotheses of Lemma 2

obtain, and define ® by Eq.(19). Then for all k>0 and all
xelR,

(i) kx@ky~kix®@ yk

(ii)
(1ii)
Progf. (i) and (ii) are casily verified by using Eqs. (18)

and (19). (iii) is an immediate consequence of the definition
of @ in terms of @. J

x@0=0ax, x=0; or fx, x<0.

® is monotonic if and only if @ is monotonic.

In developing a theory of scale types, Narens (1981a;
1981b) first introduced the following concepts, and Luce
{19924) generatized them to structures with singular points
{see below). The concepts and many of the results are
summarized in Chapter 20 of Luce, Krantz, Suppes, and
Tversky (1990).

A structure is N-point unique if it has the property that
whenever an automorphism of the structure has N distinct
fixed points,'’ then it is the identity map. A structure is
finitely unigue if it is N-point unique for some finite N.

A point of the structure is singufar if it is a fixed point of
all autormorphisms. Clearly, an N-point unique structure
with a non-trivial automorphism has at most N singular
points.

An automorphism is a translation if its only fixed points
are the singular ones.

A structure is said to be (translation) M-point
homogeneous between singular points if given any two
ordered sequences of A distinct points lying in an interval
between adjacent singular points, then there is a (trans-
lation) automorphism that takes the one sequence onto the
other.

LEMMA 4. Suppose the hypotheses of Lemma 2 obtain
and thar ® s monotonic. Let # ={ G, =, CE, @ >, where
® is defined in Eq. (19), and suppose that # [~ is finitely
unique. Then # [~ is 1-point unique, 0 is its unique singular
point, and the seructure [s translation V-point flomogeneous on
each side of 0.

Proof. Because CE is onto and Eq. (7) follows from the
monotonicity of @, it is easy to see that s#/~ is isomorphic
(=) to (R, 2, ®)>. For each k>0, define the map
a{x)=kx. We show that «, is an automorphism.
Obviously it is order preserving and by Lemma 3(1),

w{(x@ )=k CE(x® y) =kx®@ky =a,{x) @ a(¥).

As is easily verified, a ; =o;'. So {o:keR, } is a group
of translations under function composition.

Next we show that this is actually the entire group of
automorphisms. Suppose that f is an automorphism.
For some x>0, select k so that a,(x)= f(x). Define x(n)
inductively by x{1}=x and x{n)=x(n—1)®x. By the

" An autormorphism of a structure is any isomorphism of the structure
onto itself. For present purposes we do not distinguish automorphisms that
differ only within eguivalence classes of ~. I o is an autemorphism, xis 2
fixed point of o HT a{x) ~ x.
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monetonicity of ® (Lemma 3(iii)), x(n)>x(n-—1), so
these are countably many distinct points. But observe, by
induction [ x(n)] ~ a.[ x(n)], whence by the finite unique-
ness of #/~, f=ay.

Clearly 0 is a fixed point of every automorphism and,
except for k=1, the unique one. Thus, the automorphisms
are the translations, and it is well known that if the trans-
lations from a group, they are l-point unique (see, for
example, Luce et al., 1990, p. 118).

Finally, for any x and y with xy >0, define F= y/x
and we see that the structure is translation 1-point
homogeneous on either side of 0. |

THEOREM 4. Suppose that {4, @) is a monotonic JRCE
structure with the following properties:

(1) ¥ is CE-homogeneous.

(2) 0&@0~0.

(3) #/~={(R, =, ®> is finitely unigue (@ is defined
by Eq. (19)).

(4) % is solvable in the sense that for each g e G, there
exists g' e G such that
g@g ~0.

Let a, f, and p be defined as in Lemma 2. Then, there exist a
function U: G— R, characierized by three constants o> 0,
U >0, and U(— 1<, and two functions [ B> R,
i=1, 2, such that

(1) U is order preserving.

Uc1) xe,
U(—1)—x),

x=0
x < 0.

i) Ui = { (20)
(1i1) The fy are strictly increasing and the fi{x)/x are
strictly decreasing.

(iv) Following the convention for the meaning of x* when
x <0,

Uly”) ALUx?)Uy*)] ¥ >0,
_JatU(x?), y=0, x =0,

U(x®y)_ ,B"U(x"’), y=0’ x<0’ (21)
Uly?) L Ux#)/U(p*)], vy <O

Proof. By Lemmas 3 and 4, the structure #/~ =
(R, 2, ® > meets the conditions of the corollary to
Theorem 5 of Luce (1992a) and so there exists an order-
preserving function U, positive constants C;, and functions
fi. i=1,2, such that

Uy} ALUx)/U(p}], »>0,

C, Ulx), =0, xz0,
O oo xeo,

Uy} LLUG)/Uy), vy <O

Using the definition of Eq.(19), x®@y=x"® y”, in
Eq. (22) thus yields Eq. {21) except for the determination of
the constants C;, which is done below.

The same corollary also says that the translations of #/ ~
map into multiplication by positive constants, one for gains
and a power of it for losses. Thus, there exists a function
YR, x{+, —} — R such that for all k>0 and ali x,

Ulkx) = Ul o (x)] = ¥lk, sgn x) Uix).

Thus, by the usual argument, U must be a power function
with, say, exponent g{ + ) for x > 0 and o — } for x <0, thus
yielding Eq. (20) but with different exponents for gains and
losses. Substituting this form into Eq.{17) and using
Eq. (18} forces o(+)=0(—) =0

To determine the constants C, observe that from Eq. {22)
and Lemma 3(ii) we have for x > 0,

Ux®0)= Ulax)=C, Ulx).

Substituting Eq. (20) for U vields C, =«°. A simular argu-
ment for x <0 yields C, =47 ||

The formulation of Theorem 4 suffers from the defect that
the property that #/~ is finitely unique 1s stated in terms
of the defined quantity ® rather than the primitive of the
system, @. | do not know of a convenient way to formulate
finite uniqueness of #/~ in terms of %.

Of course, no difficulty is encountered when ¢(k)=4k in
Eq.(17), in which case p=1 in Egs. (19} and {21) and so
® =@ nEq. (19). The special case f1(z) = f3{z) =1 + zis the
one that Luce and Fishburn (1991) actually use in arriving at
the RSDU representation. Although they did not assume U'to
be a power function in that derivation, in subsequent applica-
tions of the theory that assumption has also been made.

The form for @ given by Eq. (21) encompasses Thaler’s
hedonic rule and von Winterfeldt’s averaging one, provided
that U{—1)= — U{1). The argument rests on the observa-
tion that for such a power function form for U, both

B U”"(x) 7
U+ )=V (14 G ) -

Ulx)
U+ U3 =00 (14 553
hold, and so both rules can be put in the form of Eq. (21).
Equation (21) does not encompass the Luce-Fishburn rule,
Eq. {11).

I am unaware of any results of data that bear on the
suitability of other realizations of Eq. (21) for describing
joint receipt. Because it rests heavily on the accuracy of the
assumption of CE-homogeneity, Eq.(17), the property
clearly needs testing.



JOINT RECEIPT AND CERTAINTY EQUIVALENTS 81

8. CONCLUSIONS

The major conclusion that I draw from the above results
is that the concept of a JRCE structure of gambles exhibits
a fair number of interesting properties, especially when @ is
monotonic in preferences. 1 have not attempted here to
relate this structure seriously to the event—outcome struc-
ture normally studied in utility theories for gambles. For the
additive utility rule and less so for the rule of Eq. (11) some
results are known vis-a-vis rank- and sign-dependent utility
{Luce, 1991, 1992b; Luce & Fishurn, 1991). But clearly,
much more needs to be done in order to understand fully
how each type of structure constraints the other.

At this point there seem to be many options, and I believe
that we need serious experimental studies to guide our
future developments. We must examine the various proper-
ties of @, *, and CE that have arisen in Theorems 1-4 with
an eye to narrowing down the possibilities.

Note Added in Proof. Luce and Fishburn {1991) argued, on the
grounds of monotonicity of @, that C{.) had to be >0 in Eq. (11), and
they assumed A(.) = B(.)=1 and {.) =0 in deriving the rank-dependent
form for the utility of gains and losses separately. Subsequently Luce and
Fishburn (Luce, R. D, & Fishburn, P. C. (submitted). A note on deriving
rank-dependent utility using additive joint receipts) recognized that, with
{7 suitably bounded, (-} <0 also satisfies monotonicity, in which case {/
is subadditive for gains and superadditive for losses. This change alters
significantly the conclusions drawn about Eg. (11} in Section 4. They also
show that exactly the same rank-dependent model derives from A(-) =
B(.)=1 with no restriction on C(-) beyond being non-positive. This
generalization is significant because it means that the plausible property
that x@ y = x + y does not force U(x)=cx, ¢ > 0.
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