It is easy to axiomatize a ranked-additive representation of consequence pairs \((x, y)\) in binary gambles \((x,C;y)\) of gains with \(C\) held fixed, and independently a separable one of \((x,C;e)\), where \(e\) denotes the status quo. Assuming these axiomatizations and the behavioral property of event commutativity, a new representation, called "rational rank-dependent utility", is derived. We report three behavioral conditions that force this representation to reduce to the standard rank-dependent expected utility one for gains. They are co-monotonic consistency, ranked bisymmetry, and segregation, the latter requiring the addition of an operation of joint receipt.