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Abstract

We explore the manner in which the structure of a social network constrains the

level of inequality that can be sustained among its members, based on the following

considerations: (i) any distribution of value must be stable with respect to coalitional

deviations, and (ii) the network structure itself determines the coalitions that may form.

We show that if players can jointly deviate only if they form a clique in the network, then

the degree of inequality that can be sustained depends on the cardinality of the maximum

independent set. For bipartite networks, the size of the maximum independent set fully

characterizes the degree of inequality that can be sustained. This result extends partially

to general networks and to the case in which a group of players can deviate jointly if they

are all sufficiently close to each other in the network.
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1 Introduction

In 494 BCE, the plebs of the Roman Republic, seeking relief from judicial harassment,

indebtedness and poverty, left Rome en masse and threatened to settle permanently outside

its walls, as a result extracting major concessions from the Roman patricians (Livy, 1960).

Plantation owners in Hawaii a century ago expressly hired workers who spoke different native

languages to ensure that communication among them would be limited, thus discouraging labor

action (Takaki, 1983). U.S. employer efforts in the 1930s to build firm loyalty by sponsoring

social activities led to stronger bonds between workers that they could use to mobilize their

collective power and form effective unions (Estlund, 2003). And the extraordinary longevity

of the Ottoman Empire (1300-1918) and its remarkable integration and taxation of diverse

ethnic and religious communities was based on a network structure that “made peripheral

elites dependent on the center, communicating only with the center rather than with one

another” (Barkey, 2008).

A recurrent theme in these examples is the central role of coalitional deviations in determin-

ing the distribution of income, with the structure of social relations being a central determinant

of the coalitions that form. This motivates us to explore formally the manner in which the

structure of a social network constrains the level of inequality that can be sustained among

its members. We develop a model of inequality on networks based on the following consider-

ations: (i) any distribution of value must be stable with respect to coalitional deviations, and

(ii) the set of feasible coalitions is itself constrained by the requirement that only groups of

players that are mutually connected can jointly deviate. That is, we allow for deviations only

by groups of individuals who form a clique in the network. A payoff distribution is said to be

stable if there is no clique that can profitably deviate. The main research question is then the

following: What is the relationship between the structure of the network and the maximum

level of stable inequality?

To compare payoff distributions in terms of their level of inequality, we adopt the standard

criterion of Lorenz dominance and define a value distribution to be extremal if it is stable

with respect to clique deviations and does not Lorenz dominate any other stable distribution.

Since Lorenz dominance provides only a partial ordering of value distributions, the extremal

distribution for any given network may not be unique, and extremal distributions for different

networks may be incomparable.

Our main contribution is to establish a connection between extremal inequality on a network

and a natural measure of the sparseness of a network, the size of its maximum independent

set.1 This connection is especially strong in the case of bipartite networks, which have unique

1An independent set in a network is a set of vertices such that no pair of vertices in the set are connected

to each other. An independent set is maximum if there is no independent set of greater size.
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extremal distributions and can be completely ordered; we show that bipartite networks with

larger maximum independent sets can sustain greater levels of extremal inequality. For general

networks with arbitrary clique sizes, a weaker result holds: for any two networks, extremal

inequality cannot be greater in the one with the smaller maximum independent set.

Our framework can be extended to include the case in which players can jointly deviate

if they are all within distance k of each other (the case of clique deviations corresponds to

k = 1). We explore the manner in which extremal inequality changes as k is varied. Although

inequality (weakly) declines as k increases, it can do so at different rates in different networks.

As a result, the ranking of networks by the extent of extremal inequality is not invariant in k.

A number of recent papers have explored the determinants of inequality in equilibrium

networks (see Section 2 for details). In these papers, an agent’s central position confers the

ability to gain larger shares of the surplus, the intuition being that essential intermediaries can

extract rents through their control of flows between players that are not otherwise connected

(e.g., Goyal and Vega-Redondo, 2007; Hojman and Szeidl, 2008).2 These “middleman” models

are implicitly based on the idea that competition reduces inequality, and monopoly increases

it.

While this intuition is undoubtedly correct in many settings, our model stresses another

dimension that influences inequality: the ability of players to form viable coalitions. Intu-

itively, if the network is dense, inequality will be hard to sustain as disadvantaged players can

communicate and coordinate on joint actions. Conversely, if the network is sparse, peripheral

players can more readily be exploited. Hence, while in the so-called “middleman” models,

a player can secure a large share of the surplus if he is well connected, under our approach

this is the case if the other players are isolated. We show by example that our model gives

rise to different predictions in a number of cases, underlining the importance of considering

alternative approaches to the relationship between income distribution and social structure.

2 Related literature

The idea that network structure influences the allocation of value was initially proposed

in a seminal paper by Myerson (1977), who assumed that a coalition of individuals could

generate value if and only if they were all connected to each other along some path that did

not involve anyone outside the coalition. Myerson’s work motivated a significant literature

on communication games (see Slikker and van den Nouweland, 2001, for a survey) and more

generally on games on combinatorial structures (Bilbao, 2000); see e.g. Demange (2004) for

2Another important difference with our work is that these papers employ an exogenously given profile of

payoff functions that determines for each network the allocation of value between players.
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an important application to economic questions.

Our approach differs in two important respects from this line of work. First, while the aim

of much of the literature cited above is to give a characterization of different solution concepts,

to investigate their relation with each other, and to provide conditions for the existence of

solutions in general classes of games, our focus is on the maximum degree of inequality that can

be sustained in a restricted set of games where existence of stable distributions is guaranteed.

Second, our setting naturally leads us to consider coalitional deviations that do not generate

a combinatorial structure. For example, two feasible coalitions may overlap in our setting,

without there being a feasible coalition (other than the complete network) that contains both,

in contrast with the settings considered by Myerson (1977) and Demange (2004), for example.

This means that there is no natural order in which the value can be allocated to the cliques;

see Bilbao (2000) for a discussion.

Finally, Bloch, Genicot, and Ray (2008) study the stability of insurance networks for differ-

ent levels of communication. As in the current paper, information transmission across network

links (over limited distances) plays a crucial role in this work, and the sparseness of the network

is an important determinant of the viability of various allocations. However, while Bloch et al.

study the stability of insurance norms in different networks, we focus on sustainable levels

of inequality. Furthermore, the notion of sparseness differs: while sparseness in our setting is

determined by the size of independent sets, in the context of Bloch et al. sparseness is captured

by the minimal length of cycles among triples of agents.

3 Distributions on networks

3.1 Networks

Players are located on a network. A network is a pair (N, g), where N = {1, . . . , n} is a

set of vertices and g is an n × n matrix, with gij = 1 denoting that there is a link or edge

between two vertices i and j, and gij = 0 meaning that there is no link between i and j. A link

between i and j is denoted by {i, j}. We focus on undirected networks, so gij = gji. Moreover,

we set gii = 0 for all i. In the following, we fix the vertex set N and denote a network by

the matrix g. If gij = 1, that is, if there is a link between i and j, we say that i and j are

neighbors or, alternatively, that they are adjacent in g. A clique is a set of pairwise adjacent

vertices. Hence, an edge is a clique, and so is a triangle, where a triangle is a set {i, j, k}
of three distinct vertices that are all connected. It will be convenient to view a single vertex

as a (singleton) clique. An important subclass of networks is the set of bipartite networks.

A network is bipartite if the vertices can be partitioned into two classes, and there are no

links within each class. Bipartite networks thus provide a natural model of trading relations
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between buyers and sellers. Also, bipartite networks are of interest because they contain the

class of minimally connected networks (trees), which often form the stable outcomes of strategic

network formation models.

An independent set in a network is a set of vertices that are pairwise nonadjacent. A set

of vertices forms a maximum independent set in g if it is an independent set and there is no

independent set in g of a strictly greater size. Note that while a network may have multiple

(maximum) independent sets, the size of a maximum independent set is unique.

3.2 Value generation

Consider a set of players N = {1, . . . , n}, and a network g with vertex set N , so that each

player is associated with a vertex. Following Jackson and Wolinsky (1996), we assume that

the value generated by a group of players S is given by v(g|S), where g|S is the subgraph of g

induced by S, i.e., the network obtained by removing the players not in S; for simplicity, we

write v(g) for v(g|N). As a normalization, assume that the value of the empty network gE is

v(gE) = 0, where the empty network is the network without any vertices or edges.

We assume that the value function is anonymous, in the sense that the value generated by

a group of players only depends on the number of players in the group and the way in which

they are connected, but not on their identities. That is, if S and S ′ are subsets of players, then

for any bijection π from S to S ′, it holds that

v(g|S) = v(gπ|S′),

where gπ is the network that has the same architecture as g, but with the players in S relabeled

according to π, i.e., gπi,j = 1 if and only if gπ−1(i),π−1(j) = 1. This anonymity assumption allows

us to abstract from the effects of productivity differences across players in order to isolate the

role of network structure in determining inequality. The assumption implies in particular that

any two cliques Ck, C
′
k each having k players generate the same value, as they share the same

network architecture:

v(g|Ck
) = v(g|C′k).

A special case of an anonymous value function is one in which the value generated by a group

of players S depends only on their number, that is, v(g|S) equals f(|S|) for any S ⊆ N , where

f is some arbitrary function on the natural numbers.

3.3 Stability

The surplus generated by the group must be divided among its members subject to the

constraint that no clique can deviate profitably. Formally, an allocation is any vector x =
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(x1, . . . , xn) ∈ RN . An allocation x is stable on g if no clique can gain by deviating: for each

clique C in g, ∑
i∈C

xi ≥ v(g|C). (3.1)

That is, for an allocation to be stable, the members of each clique have to get at least as much

collectively under the allocation as they would if they were to deviate collectively and form

their own network.

A second natural constraint is that players cannot divide more than they produce:∑
i∈N

xi = v(g). (3.2)

An allocation x is feasible if (3.2) is satisfied.

The definition of the set of feasible and stable allocations is reminiscent of the definition of

the core in transferable-utility games (TU-games) for the special case that the value generated

by a coalition does not depend on the way the players in the coalition are connected. The

difference is that while inequality (3.1) needs to hold for all coalitions for x to be in the core,

we only require the inequality to hold for subsets of players that are sufficiently close in the

network. It follows that if we have two networks, g and g′, and g is a connected subgraph

of g′ with the same number of players, then the set of feasible and stable allocations for g′ is

contained in the set of feasible and stable allocations for g (when the value function does not

depend on the network architecture). In particular, the set of feasible and stable allocations for

an arbitrary network is a superset of the set of feasible and stable allocations for the complete

network, which coincides with the core of an appropriately defined TU-game, as illustrated in

Example 4.1 below.

3.4 Lorenz dominance

We wish to compare allocations in terms of the inequality they generate. Corresponding to

any allocation x is a distribution x̄ = (x̄1, . . . , x̄n). The distribution x̄ is simply a permutation

of the elements of x that places them in (weakly) increasing order: x̄1 ≤ x̄2 ≤ · · · ≤ x̄n. We

say that a distribution x̄ is feasible and stable on a network g if there exists a corresponding

allocation that is feasible and stable on g.

To compare distributions in terms of the level of inequality, we consider the widely-used

criterion of Lorenz dominance. Consider two distributions x̄ = (x̄1, . . . , x̄n), ȳ = (ȳ1, . . . , ȳn) ∈
Rn

+ such that ∑
i∈N

x̄i =
∑
i∈N

ȳi.

6



(9,0,0) (0,9,0)

(0,0,9)

Pg

(a)
(9,0,0) (0,9,0)

(0,0,9)
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Figure 4.1: (a) The set of feasible and stable allocations, denoted Pg, for the triangle; (b) The

set of feasible and stable allocations, denoted Pg, for the line.

Then, we say that x̄ Lorenz dominates ȳ if, for each m = 1, . . . , n,

m∑
i=1

x̄i ≥
m∑
i=1

ȳi,

with strict inequality for some m. If x̄ Lorenz dominates ȳ, we say that x̄ is a more equal

distribution than ȳ. If x̄ does not Lorenz dominate ȳ and ȳ does not Lorenz dominate x̄,

we say that x̄ and ȳ are incomparable. We call a stable distribution x̄ on g which is feasible

extremal if there is no distribution ȳ that is stable and feasible such that x̄ Lorenz dominates

ȳ. Since the Lorenz dominance criterion only provides a partial order on the set of feasible and

stable distributions, there may be multiple extremal distributions for a given network. We say

that a network g has a unique extremal distribution if the set of extremal distributions on g is

a singleton.

4 Examples

The examples in this section illustrate the concepts of stability and inequality, and show

that the model can give different predictions relative to other models of inequality on networks.

Throughout this section, we focus on the special case in which the value generated by a group

of players does not depend on the manner in which they are connected, but only on the number

of players in the group. That is, there exists some function f such that v(g|S) = f(|S|) for

any group of players S and any network g. Examples for the more general case can readily be

constructed.

The first example illustrates how the structure of a network can affect the set of feasible

and stable allocations.

Example 4.1 Consider two connected networks with three players, the triangle (illustrated

in the upper-left corner of Figure 4.1(a)) and the line (illustrated in the upper-left corner of
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Figure 4.2: (a) The network h of Example 4.2. (b) The network h′ of Example 4.2. The

numbers represent one of the allocations consistent with the unique extremal distribution in

each case.

Figure 4.1(b)), with player 2 as the center or hub. Assume that the value generated by a group

of players of size m is f(m) = n2. In both cases, the set of feasible and stable allocations is a

subset of the simplex defined by x1 + x2 + x3 = f(n) = 9. For the triangle, the set of extreme

points consists of all permutations of (1, 3, 5). For the line, the extreme points of the set of

feasible and stable allocations are the allocations (1, 3, 5), (5, 3, 1), (1, 5, 3), (3, 5, 1) and (1, 7, 1)

when player 2 is the center of the line. Hence, the set of feasible and stable allocations for

the line is a superset of the set of feasible and stable allocations for the triangle; see panels

(a) and (b) in Figure 4.1. Intuitively, there are fewer feasible coalitions in the line than in the

triangle: the peripheral players (viz., player 1 and 3) in the line cannot jointly deviate, while

each pair of players forms a feasible coalition in the triangle. That means that in the triangle,

player 1 and 3 need to receive at least f(2) = 4 (as does any other pair of players), while in

the line, they only need to get f(1) + f(1) = 2. For both networks, there is a unique extremal

distribution, given by x̄ = (1, 1, 7) for the line, and x̄′ = (1, 3, 5) for the triangle. It is easily

verified that the latter Lorenz dominates the former. /

In Example 4.1, what properties of network g allow it to support a more unequal distribution

than g′? One possibility is the fact that the distribution of the number of neighbors that each

player has in g is itself more unequal than that in g′, i.e., an unequal distribution of value can

be explained by inequality in the degree distribution. The following example shows that this is

not the case.

Example 4.2 Suppose f(1) = 1, f(2) = 3, and f(10) = 20. Consider the networks h and h′ in

Figure 4.2(a) and (b), respectively. In both cases, the value generated by the network is equal

to 20. The stability conditions require that each individual be assigned at least f(1) = 1, and

each pair of neighbors be assigned at least f(2) = 3. Both networks have a unique extremal

distribution, given by

x̄ = (1, 1, 1, 1, 1, 2, 2, 2, 2, 7), and x̄′ = (1, 1, 1, 1, 1, 1, 2, 2, 2, 8).
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Figure 4.3: The network of Example 4.3. The player with the greatest degree and betweenness

gets the lowest payoff in any extremal allocation.

Hence, x̄ Lorenz dominates x̄′. This is the opposite of what one would predict based on

inequality in the degree distributions of h and h′, which are given by:

d̄ = (1, 1, 1, 1, 1, 2, 2, 3, 3, 3), and d̄′ = (1, 1, 1, 2, 2, 2, 2, 2, 2, 3).

Clearly d̄′ Lorenz dominates d̄, even though x̄ Lorenz dominates x̄′. /

Like a player’s degree, his betweenness is often taken as a measure of a player’s prominence

and as a determinant of a player’s payoffs. The betweenness of a player i in a network is the

number of shortest paths between v and w player i belongs to over the total number of all

shortest paths between v and w, averaged over all v and w (see, for example, Jackson, 2008).

However, inequality in betweenness fares no better in explaining extremal inequality, as the

next example demonstrates.

Example 4.3 Suppose f(1) = 1, f(2) = 3, and f(7) = 12. Consider the network in Figure 4.3.

It can be verified that the network has a unique extremal distribution, given by

x̄ = (1, 1, 1, 1, 2, 2, 4).

This distribution is consistent with different allocations to the players, but in any such al-

location, each player represented by an open circle (◦) in Figure 4.3 is assigned f(1) = 1.

This includes the player with the highest degree. This player also has the highest betweenness

(0.43), more than double than that of his neighbors, both of whom receive higher payoffs. /

Taken together Examples 4.2 and 4.3 demonstrate that a focus on inequality in the degree

or betweenness in attempting to understand the extent of inequality in social networks is

misleading in two respects. First, networks with more equal degree or betweenness distributions

may be capable of sustaining greater inequality than those with more unequal distributions.

And second, by either measure, well-connected players can do substantially worse than less

well-connected players in a given network.3 This suggests that these measures, which are

3It can be shown by example that another important centrality measure, closeness, also fails to predict high

payoffs, where the closeness of a player in the network is the average length of the shortest paths to other

players (Jackson, 2008).
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motivated by what we called “middleman” models in Section 1, fail to capture inequality

caused by the differential ability of players to form deviating coalition, which lies at the heart

of our model.

In the following section, we show that rather than the degree or betweenness distribution,

it is the size of the largest independent sets that determines the degree of inequality that can

be sustained.

5 Extremal inequality

5.1 Bipartite networks

In this section, we first show that any bipartite network has a unique extremal distribution

when some conditions on the value functions are satisfied. We then investigate how the unique

extremal distribution changes for bipartite networks when the network structure is varied. We

make the following assumptions on the value function v: For any network g on player set N ,

A1: v(g|C2) ≥ 2v(g|C1);

A2: 2v(g) ≥ n v(g|C2),

where n = |N | is the number of players, C2 is a clique of size 2 in g (i.e., a pair of neighbors),

and C1 is a clique of size 1 (i.e., a single player).4 By our anonymity assumption, the value of

a clique of a given size does not depend on the identity of the players or on the wider network

structure, so that A1 and A2 do not depend on which cliques C1 and C2 are being considered.

If A1 is not satisfied, no allocation exists that is both feasible and stable for a nonempty

network. If A2 is not satisfied, an allocation that is stable and feasible potentially exists, but

our results below will not hold for all bipartite networks. As only cliques of sizes 1 and 2

can deviate in a bipartite network, the egalitarian distribution, which gives an equal amount

v(g)/n to each player, is stable under these assumptions.

We first ask whether the extremal distribution is unique for this class of networks. Let A

be a maximum independent set in g, and let ` ∈ N \ A be an arbitrary player not belonging

to A. Define the allocation x∗ by

x∗i =


v(g|C1) if i ∈ A,

v(g|C2)− v(g|C1) if i ∈ N \ (A ∪ {`}),
v(g)− |A|v(g|C1)−

(n− |A| − 1)(v(g|C2)− v(g|C1)) if i = `.

(5.1)

4In the special case that the value generated by a group only depends on the size of the group, A1 reduces

to f(2) ≥ 2f(1), and A2 becomes 2f(n) ≥ nf(2).
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By Assumptions A1 and A2, x∗` ≥ x∗i for any i ∈ N . The corresponding distribution is denoted

by x̄∗.

The following result characterizes the extremal distribution (and establishes its uniqueness)

for the case of bipartite networks.

Theorem 5.1 Suppose assumptions A1 and A2 are satisfied. If g is a bipartite network, then

x̄∗ is its unique extremal distribution.

As a corollary of Theorem 5.1, we find that bipartite networks can be ranked in terms of

extremal inequality by the size of their maximum independent sets whenever they generate the

same total value.5 Hence, even though the Lorenz dominance relation is not a complete order,

we obtain a complete order on the set of bipartite networks.

Corollary 5.2 Suppose assumptions A1 and A2 are satisfied. Consider any two bipartite

networks g, g′ with vertex set N such that v(g) = v(g′). Let A and A′ be any maximum

independent sets in g and g′, and let x̄ and x̄′ be their unique extremal distributions. Then,

x̄ = x̄′ if and only if |A| = |A′|. If |A| 6= |A′|, then x̄ Lorenz dominates x̄′ if and only if

|A| < |A′|.

Important for our results is that the size of a deviating coalition is at most 2 in a bipartite

network. When we impose limits on the size of the deviating coalitions, the results extend to

general networks. The next section shows that the size of the maximum independent set is

still an important determinant of extremal inequality in general networks when coalitions of

arbitrary size are allowed.

5.2 General networks

Our results on extremal inequality do not easily extend to general networks. There are two

issues to consider: the uniqueness of the extremal distribution for a given network, and the

ordering of networks with respect to their extremal distributions.

First, it can be shown by example that two networks with the same cardinality of their

maximum independent sets can be unambiguously ranked with respect to their extremal dis-

tributions. Also, two networks that differ in the cardinality of their maximum independent set

may have extremal distributions that cannot be ranked with respect to their extremal distri-

butions.6 Indeed, a companion paper (Iyengar, Kets, and Sethi, 2010) shows that the extreme

points of the set of feasible and stable allocations for more general networks involves not only

5Note that Lorenz dominance is only defined for distributions x̄, x̄∗ such that the total value is equal, i.e.,∑
i x̄i =

∑
i x̄
′
i.

6See the earlier version of this paper (Kets et al., 2009).
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the independent sets, but also network structures that consist of both edges and triangles. As

any extremal distribution—and indeed any distribution at which an inequality measure such

as the Gini index is maximized—must be consistent with an allocation at an extreme point

of the set of feasible and stable allocations, these results suggest that features of a network

other than the cardinality of maximum independent sets will be important for characterizing

extremal inequality in general.7

However, it is possible to obtain a somewhat weaker result. To state this, we focus on the

special case where the value generated by a group of players does not depend on the way they

are connected, i.e., there exists a function f such that v(gS) = f(|S|) for every subset S of

players.8 We make the following assumption on the value function f :

An For all k, ` = 0, . . . , n− 1 such that k > `,

f(k + 1)− f(k) ≥ f(`+ 1)− f(`).

This is a strengthening of Assumptions A1 and A2 to ensure that a feasible and stable allo-

cation always exists.

The following result provides a partial characterization of extremal inequality in general

networks.

Theorem 5.3 Suppose f satisfies An, and consider two networks g and g′. Let A and A′

denote maximum independent sets in g and g′, respectively. If |A| < |A′|, then there exists an

extremal distribution x̄′ for g′ such that no extremal distribution x̄ in g is Lorenz dominated

by x̄′.

Note that Theorem 5.3 does not require extremal distributions to be unique. It also leaves

open the possibility that the extremal distributions for two different networks are incomparable,

or that extremal inequality does not change when the cardinality of the maximum independent

set changes. We cannot rule out these possibilities because there may be multiple extremal

distributions for a given network and, moreover, even if all extremal distributions are unique,

the set of feasible and stable allocations may change with network structure in a nontrivial and

unexpected manner (cf. Kalai et al., 1978). What Theorem 5.3 does rule out is that extremal

inequality in a network with a smaller maximum independent set is greater than in a network

with a larger one.

7The reason that inequality is maximized at the extreme points of the (convex) set of feasible and stable

allocation is that inequality measures are (generally) convex functions.
8It is possible to generalize Theorem 5.3 to the case where the value function depends on network structure.

However, additional conditions are needed to ensure that a feasible and stable allocation exists for an arbitrary

network, and it is well known that such conditions can be very restrictive (Kaneko and Wooders, 1982).
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We now turn to a natural application of Theorem 5.3, allowing players to coordinate a

deviation over larger distances.

5.3 Broader coalitions

To this point we have assumed that players can coordinate on a deviation only if they form

a clique. We now consider the possibility of deviations by coalitions of players that are all

within some distance k of each other in the network.

Given a network, define a k-coalition to be a set of players that are all within distance k of

each other. As in the previous section, assume that the value that a k-coalition C can obtain

on its own is f(|C|), i.e., it does not depend on how the players are connected. We say that

an allocation x is k-stable on g if, for each k-coalition C in g,∑
i∈C

xi ≥ f(|C|).

Hence, no k-coalition can profitably deviate from a k-stable allocation. Stability, as defined in

Section 3, corresponds to k-stability for k = 1. A k-stable distribution x̄ on g which is feasible

is called k-extremal if there is no distribution ȳ that is k-stable and feasible such that x̄ Lorenz

dominates ȳ.

An immediate observation is that the degree of inequality that can be sustained in a network

weakly decreases when we increase k:

Observation 5.4 For any network g and k, k′ such that k′ > k, if x̄′, x̄ are extremal distribu-

tions in g for k and k′, respectively, then either x̄′ = x̄, or x̄′ Lorenz dominates x̄, or x̄ and x̄′

cannot be compared with respect to Lorenz dominance.

Intuitively, a group of players that forms a k-coalition in a network g is a k′-coalition in g

for k′ > k, so that increasing k limits the degree of inequality that can be sustained. But while

the degree of inequality that can be sustained in a network weakly decreases for any network

if k increases, this decrease occurs at very different rates for different networks. The following

example illustrates this.

Example 5.5 Consider the star network gstar and the line network gline depicted in Fig-

ure 5.1(a) and (c), respectively, and suppose f(m) = m2 for m = 0, 1, . . . n. Corollary 5.2

shows that the unique extremal distribution x̄1line for the line Lorenz dominates the unique

extremal distribution x̄1star for the star.

However, when k = 2, the situation is reversed. In the case of the star, all players can now

form deviating coalitions, while for the line, the two players at the end of the star can still not

coordinate a joint deviation. This has implications for the degree of inequality that can be
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(a) (b)

Figure 5.1: (a) The star network gstar of Example 5.5. (b) The network gline of Example 5.5.

sustained. Also for k = 2, the extremal distributions for the line and star are unique; however,

the unique extremal distribution x̄2star for the star now Lorenz dominates the unique extremal

distribution for the line x̄2star. /

6 Conclusions

We have studied how the degree of inequality that can be sustained on a network depends

on its structure. The starting point of our analysis is the intuitive idea that players can jointly

deviate only if they are sufficiently close to each other in terms of network distance. The key

network property that determines inequality in our analysis is the cardinality of the maximum

independent set.

Returning to the examples with which we began, the size of the maximum independent

set provides a framework for understanding distributional conflicts on these networks. Factory

employment, a common language and company-sponsored social events among workers have

the opposite effect, reducing the cardinality of the maximum independent set and with it, the

firm’s feasible claims on the surplus of the network.

There are numerous avenues for further research. An immediate extension is to allow for

deviations by larger cliques. The analysis of stable inequality in general networks by Iyengar,

Kets, and Sethi (2010) suggests that a characterization of extremal inequality in terms of

intuitive network properties is not possible for arbitrary clique sizes. However, it might be

worth exploring this question for particular subclasses of networks. In a similar vein, it would

be worth exploring how the result change under alternative assumptions on the coalitions that

can form.

Finally, we have taken the social network as given. In our motivating examples the network

that allows individuals to coordinate on possible deviations is typically formed for nonstrate-

gic reasons, independent of the value-generating process. However, a recurrent theme in the

network literature is that individuals typically create links to improve their position vis-à-vis

others (e.g., Goyal and Vega-Redondo, 2007), which can lead to inefficiencies (Jackson, 2008).

It would therefore be interesting to study the endogenous formation of networks in the current
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setting. We leave to future research these and other unresolved issues concerning the subtle

and interesting relationship between inequality and network structure.

Appendix A Proofs

A.1 Proof of Theorem 5.1

We first derive some preliminary results. Lemma A.1 shows that the set of vertices of any

network can be partitioned into a maximum independent set and a set of vertices that are

connected to at least one vertex in the maximum independent set.

Lemma A.1 Consider a network g with at least two vertices, and let A be a maximum inde-

pendent set in g. Define

B := {j ∈ N | ∃i ∈ A such that gij = 1}

to be the set of vertices that have at least one neighbor in A. Then the sets A and B form a

partition of the vertex set N .

Proof. First we show that A ∩ B = ∅. Suppose that there is a vertex i ∈ A ∩ B. As i ∈ A
and since A is an independent set, there is no j ∈ A such that gij = 1. However, we also have

i ∈ B. By the definition of B, there exists m ∈ A such that gim = 1, a contradiction.

We now establish that N = A ∪ B. Suppose there exists i ∈ N that does not belong to

A∪B. Then, by the definition of B, there exists no j ∈ A such that gij = 1. But then A∪{i}
is an independent set, contradicting that A is a maximum independent set. �

Lemma A.2 is a technical result on bipartite networks, which allows us to derive Corol-

lary A.3, which will be an important ingredient of our characterization.

Before we can derive these results, we need some more definitions. The endpoints of an

edge e = {i, j} are the vertices i and j. A vertex is incident to an edge if it is one of the

endpoints of that edge. A vertex without any neighbors is called an isolated vertex. An edge

cover of a network with no isolated vertices is a set of edges L such that every vertex of the

network is incident to some edge of L. A minimum edge cover of a network without isolated

vertices is an edge cover of the network such that there is no edge cover with strictly smaller

cardinality, see Figure A.1. Note that while a network can have multiple (minimum) edge

covers, the cardinality of a minimum edge cover is well defined. A subgraph of a network (N, g)

is a network (N ′, g′) such that

(i) the vertex set of (N ′g′) is a subset of that of (N, g), that is, N ′ ⊆ N ;
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(a) (b)

Figure A.1: Two bipartite networks; in each network, a minimum edge cover is indicated with

bold lines, and vertices belonging to one of the maximum independent sets are marked by

white circles (◦). Note that while the minimum edge cover and the maximum independent set

are unique in the network in (a), there are two maximum independent sets and two minimum

edge covers for the network in (b).

(ii) the edge set of (N ′, g′) is a subset of (N, g), that is, g′ij = 1 implies gij = 1 for all vertices

i and j.

An induced subgraph is a subgraph obtained by deleting a set of vertices. A component of a

network (N, g) is a maximal connected subgraph, that is, a subgraph (N ′g′) that is connected

and is not contained in another connected subgraph of (N, g). Given a network (N, g), the

subgraph induced by the set non-isolated vertices is referred to as the core subgraph of (N, g).9

Finally, a star is a tree consisting of one vertex adjacent to all other vertices. We refer to this

vertex as the center of the star.

Lemma A.2 Let (M,h) be a bipartite network, and let (M ′, h′) be an induced subgraph of

(M,h). For any maximum independent set A of the core subgraph (N, g) of (M ′, h′), there

exists a minimum edge cover L = {{i1, j1}, . . . , {im, jm}} of (N, g) such that

{i1, . . . , im} = A, {j1, . . . , jm} = N \ A,

and there exists no j`, jk, j` 6= jk such that i` = ik.

Proof. First note that every induced subgraph of a bipartite network is again a bipartite

network (that is, the class of bipartite networks is hereditary). Therefore, we can prove the

statement in the lemma by proving that for any bipartite network (N, g) and any maximum

independent set A of the core subgraph of (N, g), there exists a minimum edge cover L =

{{i1, j1}, . . . , {im, jm}} of the core subgraph with the desired properties (cf. West, 2001, Remark

5.3.20). Without loss of generality, we can restrict attention to a bipartite network (N, g)

without isolated vertices. As before, we fix the vertex set N and denote the network (N, g) by

g.

9Of course, if a network does not have isolated vertices, the core subgraph is just the network itself.
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Let A be a maximum independent set in g. We will construct a minimum edge cover

L = {{i1, j1}, . . . , {im, jm}} with the desired properties. First note that for any minimum edge

cover L′ of g, for any vertex i belonging to A, there exists an edge e in L′ such that i is an

endpoint of e, as otherwise L′ would not cover all vertices. Moreover, as A is an independent

set, there is no edge in L′ with two vertices from A as its endpoints. Hence, without loss of

generality, we can take L = {{i1, j1}, . . . , {im, jm}}, with

{i1, . . . , im} ⊇ A.

By the Kőnig-Rado edge covering theorem (e.g. Schrijver, 2003, p. 317), the cardinality of a

maximum independent set is equal to the cardinality of a minimum edge cover, so that

{i1, . . . , im} = A.

Since {i1, . . . , im} = A, for the vertices of N \ A to be covered by L, we need

{j1, . . . , jm} ⊇ N \ A.

As A is an independent set, we have

{j1, . . . , jm} = N \ A.

Finally, suppose that there exist distinct j`, jk such that i` = ik =: i. First note that for

any minimum edge cover Λ the following holds. If both endpoints of an edge e belong to edges

in Λ other than e, then e 6∈ Λ, because otherwise Λ \ {e} would also be an edge cover of the

network, contradicting that Λ is a minimum edge cover. Hence, each component formed by

edges of L has at most one vertex with more than one neighbor and is a star. By assumption,

j` and jk belong to the same component in L; the center of this component is i. Since each

vertex in A is associated with at least one edge in L, this means that |L| > |A|, which cannot

hold by the Kőnig-Rado edge covering theorem. �

Lemma A.2 shows that for each maximum independent set of a bipartite network, there

exists a minimum edge cover such that each vertex i in the network not belonging to the

maximum independent set is matched to a vertex j in the maximum independent set to which

it is connected in the network, and there is no other vertex i′ that is matched to j. Note that

vertices not belonging to the maximum independent set will typically be connected to multiple

vertices in the maximum independent set, see e.g. the network in Figure A.1(a).

Corollary A.3 states that for bipartite networks, there exists an injective mapping from

vertices not belonging to a maximum independent set to the vertices in the maximum inde-

pendent set, in such a way that the vertices that are matched in this way are neighbors in the

network.
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Corollary A.3 Let (M,h) be a bipartite network, and let (M ′, h′) be an induced subgraph of

(M,h). For any maximum independent set A of (M ′, h′), there exists an injective mapping π

from M ′ \ A to A such that h′iπ(i) = 1 for all i ∈M ′ \ A.

Proof. Denote the set of isolated vertices in (M ′, h′) by B. By Lemma A.2, there exists a

minimum edge cover L = {{i1, j1}, . . . , {im, jm}} for the core subgraph (N, g) of (M ′, h′) such

that

{i1, . . . , im} = A \B, {j1, . . . , jm} = M ′ \ (A ∪B),

and there exists no jm, jk, jm 6= jk such that im = ik. Moreover, B ⊆ A. Hence, the mapping

π : {j1, . . . , jm} → {i1, . . . , im} ∪B defined by

π(jt) = it

for t = 1, . . . ,m satisfies the desired properties. �

Finally, Lemma A.4 establishes that the allocation x∗ (Eq. 5.1) is feasible and stable for a

bipartite network.

Lemma A.4 Suppose assumptions A1 and A2 are satisfied. Consider a bipartite network g

with at least two vertices. Let A be a maximum independent set in g, and let ` be an arbitrary

player in N \ A. Then, the allocation x∗ is feasible and stable.

Proof. The allocation x∗ is feasible by definition: Condition (i) is satisfied by construction:∑
i∈N

x∗i = v(g).

To show that the allocation x is stable, we need to establish the following:

(i) For each i ∈ N , it holds that xi ≥ v(g|C1).

(ii) For each pair i, j ∈ N such that gij = 1, it holds that xi + xj ≥ v(g|C2).

Condition (i) is satisfied, since v(g|C1) ≤ v(g|C2) − v(g|C1) ≤ x` for any cliques C1, C2 in g of

size 1 and 2, respectively, where the first inequality follows from A1, and the second from A2.

To see that (ii) holds, note that by A1 and Lemma A.1, each pair of neighbors i, j ∈ N \ {`}
gets at least v(g|C2) − v(g|C1) + v(g|C1) = v(g|C2). It then follows from A2 that each pair of

neighbors k,m receives at least v(g|C2). �

We are now ready to prove Theorem 5.1. Consider a bipartite network (N, g). As before,

we fix N and denote the network by g. When there is one player, i.e., n = 1, it is easy to see
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that the set of feasible and stable allocations is the singleton {x∗}, so that trivially x̄∗ is the

unique extremal distribution.

Hence, consider the case n ≥ 2. Let A be a maximum independent set of N , and for each

t, define

Yt :=
t∑
i=1

x̄∗i

to be the sum of the t smallest assignments under x̄∗, and note that

Y ∗t =


t v(g|C1) if t ≤ |A|;
|A| v(g|C1) + (t− |A|) (v(g|C2)− v(g|C1)) if |A| < t ≤ n− 1;

v(g) if t = n;

(A.1)

where C1 and C2 are arbitrary cliques in g of size 1 and 2, respectively. By Lemma A.4, x∗

is stable and feasible. It remains to show that for any distribution ȳ on g that is stable and

feasible, either ȳ = x̄∗ or ȳ Lorenz dominates x̄∗. Suppose not. Then there exists t such that

Y ∗t > Yt,

where we have defined Yt :=
∑t

i=1 ȳi to be the sum of the t smallest assignments under ȳ. Let

Qt be any subset of vertices of cardinality t such that∑
i∈Qt

yi = Yt,

and let At ⊆ Qt be a maximum independent set in the subgraph induced by Qt. Clearly,

|At| ≤ |A|.
By Lemma A.1, the set Qt can be partitioned into At and the set Bt of vertices that have

at least one neighbor in At. By Corollary A.3, there is an injective mapping π from Bt to At

such that for each i ∈ Bt, {i, π(i)} is an edge in the subgraph induced by Qt. Define

Ut := {i ∈ At | i = π(j) for some j ∈ Bt}

to be the set of players in At that are matched with a player in Bt by the mapping π.

In a bipartite network, only singleton coalitions or coalitions consisting of pairs of neighbors

can form. Hence, by stability of ȳ, each individual player needs to be assigned at least v(g|C1)

under ȳ. By A1, it holds that 2v(g|C1) ≤ v(g|C2). Hence, under a stable allocation, two

neighboring players cannot both be assigned v(g|C1), except when 2v(g|C1) = v(g|C2). In the

latter case, giving each player other than ` his “autarky value” v(g|C1), and the remainder

v(g)− (n− 1)v(g|C1) to ` clearly gives the extremal distribution, and this distribution equals

x̄∗.
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So suppose 2v(g|C1) > v(g|C2). Combining our earlier results gives

Yt =
∑
i∈Qt

yi

=
∑
i∈Bt

(yi + yπ(i)) +
∑

i∈At\Ut

yi

≥
∑
i∈Bt

v(g|C2) +
∑

i∈At\Ut

v(g|C1)

=
(
t− |At|

)
v(g|C2) +

(
|At| − (t− |At|)

)
v(g|C1)

= t (v(g|C2)− v(g|C1)) + |At|
(
2v(g|C1)− v(g|C2)

)
≥ t (v(g|C2)− v(g|C1)) + |A|

(
2v(g|C1)− v(g|C2)

)
, (A.2)

where C1 and C2 are arbitrary cliques in g of size 1 and 2, respectively, as before. The last

inequality follows from |At| ≤ |A| and 2v(g|C1)− v(g|C2) < 0, which holds by assumption.

We need to consider three cases. First, if t ≤ |A|, then Y ∗t = t v(g|C1). Since by stability,

yi ≥ v(g|C1) for all i ∈ N , it follows that Y ∗t ≤ Yt. Second, suppose |A| < t ≤ n − 1. Then it

follows from (A.1) and (A.2) that

Y ∗t = t (v(g|C2)− v(g|C1)) + |A| (2v(g|C1)− v(g|C2)) ≤ Yt.

Finally, if t = n, then Y ∗t = Yt = v(g). Hence, for all t, Y ∗t ≤ Yt, a contradiction. �

A.2 Proof of Theorem 5.3

We first construct an allocation that is feasible and stable in g′ and gives f(1) to all players

in A′. Define the allocation y′ by

y′i =

{
f(1) if i ∈ A′,
f(n)−|A′|f(1))

n−|A′| otherwise.

This allocation satisfies the requirement that y′i = f(1) for all i ∈ A′. Note that by Assumption

An, y′i ≥ f(1) for all i.

It can easily be checked that y′ is feasible. We now show that it is stable in g′. Let C ⊆ N

be a clique in g′, and note that either C ∩A′ = ∅ or |C ∩A′| = 1. Feasibility ensures that the

allocation is stable when |C| = n, so suppose |C| = 1, 2, . . . , n− 1. Then,∑
i∈C

y′i ≥ f(1) +
(c− 1)(f(n)− af(1)))

n− a
,

where c := |C| and a := |A′|. It is therefore sufficient to show that

(c− 1)[f(n)− af(1))] ≥ (n− a)
(
f(c)− f(1))

)
. (A.3)
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This is clearly satisfied with equality when the clique size is c = 1. If the condition is satisfied for

c = n−1, it then follows from Assumption An that the inequality holds for all c = 1, . . . , n−1.

It remains to show that the condition holds for c = n−1. If n = 2, then this follows immediately

from the fact that the condition holds for c = 1. So suppose n > 2. If c = n− 1, then it is not

hard to see that the size of the maximum independent set must be a = 2. Substituting these

values into (A.3) and using that n > 2 gives the condition

f(n)− 2f(1) ≥ f(n− 1)− f(1).

Rearranging terms gives

f(n)− f(n− 1) ≥ f(1).

But this holds by Assumption An and the normalization f(0) = 0. It follows that the allocation

y′ is stable. Denote the corresponding distribution by ȳ′.

Suppose z̄′ is an extremal distribution for g′. Then, since z̄′ is stable, z̄′i ≥ f(1) for all i. If

z̄′i > f(1) for all i, ȳ′ is also extremal. Otherwise, z̄′ = f(1) for all i = 1, . . . , |A′|. In that case,

there exists an extremal distribution x̄′ in g′ such that x̄′i = f(1) for i = 1, . . . , |A′|.
For any extremal distribution x̄ in g, x̄i ≥ f(1) for i = 1, . . . , n. Since A is a maximum

independent set in g, any set S ⊆ N with |S| > |A| must contain at least two adjacent vertices.

Hence, we cannot have x̄i = f(1) for some i > |A|, so that either x̄ is more equal than x̄′, or x̄

and x̄′ are incomparable. �
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