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1 Introduction

Human beings rely on cooperation with others for their survival and growth. Although

some forms of cooperation and behavior are enforced by social, religious, legal, and polit-

ical institutions that have emerged throughout history, much of development, growth, and

basic day-to-day functioning relies on a society’s ability to “informally” encourage cooper-

ative behavior. This sort of informal enforcement of cooperation ranges from basic forms

of quid-pro-quo (or tit-for-tat in the game theory parlance) to more elaborate forms of so-

cial norms and culture, all of which must function without enforceable contracts or laws.1

Indeed, contracting costs are prohibitive for many day-to-day favors that people exchange,

ranging from offering advice to a colleague, a small loan to a friend, or emergency help to

an acquaintance. Such informal favor exchange and cooperative behaviors, in one sort or

another, underly much of the literature on social capital.

Although there is a large literature on social capital, there is a paucity of work that

provides careful foundations for how social structure relates to such favor exchange and co-

operative behavior. Moreover, as we show here, favor networks do not exhibit the suggested

patterns predicted by the previous literature that has considered network architecture. These

points are related to each other since some standard network measures have emerged only

loosely from the literature discussing the role of networks in fostering cooperation. In par-

ticular, the importance of social pressures on fostering cooperation has deep roots in the

sociology literature including seminal work by Simmel (1950), Coleman (1988) and more

recently by Krackhardt (1996), among others (see the literature discussion below). Stan-

dard measures of network clustering and transitivity have grown in part out of those works.

Clustering measures examine the extent to which two friends of a given agent are friends of

each other. In the data on favor exchange networks in Rural India that we examine here,

clustering is on the order of ten to thirty percent. A puzzle emerges as to why one sees that

level of clustering, and not some other higher level, and even whether clustering is really the

appropriate measure for capturing social pressures. In contrast, the new concept of “sup-

port” that emerges from our theoretical analysis measures the number of pairs of friends

that have some other friend in common. As we shall see in the data, support is several times

higher than clustering, and indeed this distinction is consistent with the theory presented

here.

To be specific, in this paper we provide a game theoretic foundation for social enforce-

ment of informal favor exchange, and also examine network patterns of favor exchange from

75 rural villages. In particular, we consider settings where simple bilateral quid-pro-quo

1In fact, the term “ostracism” (which has Greek origins based on a practice of banishments that originated
in the Athenian democracy) has come to embody the idea of individuals cutting ties with members of society
who do not perform properly.
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enforcement is insufficient to sustain favor exchange. Some bilateral interactions may be

infrequent enough that they fail to allow natural self-enforcement of cooperation or favor ex-

change. However, when such interactions are embedded in a network of interactions whose

functioning can be tied to each other, then individuals can find it in their interest to co-

operate given (credible) threats of ostracism or loss of multiple relationships for failure to

behave well in any given relationship. We provide complete characterizations of the net-

work patterns of favor exchange that are sustainable by a form of equilibrium satisfying two

robustness criteria.

The setting that we examine is such that opportunities for one agent to do a favor

for another agent arrive randomly over time. Providing a favor is costly, but the benefit

outweighs the cost, so that it is efficient for agents to provide favors over time. However,

it could be that the cost of providing a favor today is sufficiently high that it is not in an

agent’s selfish interest to provide the favor even if that means that he or she will not receive

favors from that person again. Thus, networks of relationships are needed to provide sufficient

incentives for favor exchange, and it may be that an agent risks losing several relationships by

failing to provide a favor. We characterize the network structures that correspond to robust

equilibria of favor exchanges. The criteria that we examine are twofold: first, the threats

of which relationships will be terminated in response to an agent’s failure to deliver a favor

must be credible. Credibility is captured by the game theoretic concept of “renegotiation-

proofness”.2 After an agent has failed to deliver a favor, that relationship is lost, but which

additional relationships are lost in the continuation equilibrium, must be such that there is

not another equilibrium continuation that all agents prefer to the given continuation. This

sort of renegotiation-proofness rules out unreasonable equilibria such as the “grim-trigger”

sort of equilibrium where once anyone fails to provide a single favor the whole society grinds

to a halt and nobody provides any favors in the future. At that point, it would be in the

society’s interest to return to some equilibrium where at least some favors are provided.

Renegotiation-proof equilibria can be complex, but have some nice intuitions underlying

their structure as we explain in detail in the paper. The second criterion that we impose is

a robustness condition that we call “robustness against social contagion.” It is clear that

to sustain favor exchange, an agent must expect to lose some relationships if the agent fails

to deliver a favor. Those lost relationships can in turn cause other agents to lose some of

their relationships since the incentives to provide favors change with the network structure.

This can lead to some fragility of a society, as one agent’s bad behavior can ripple through

the society. The robustness against social contagion requires that the ripple effects of some

2Although there are several definitions in the literature for infinitely repeated games, our games have
a structure such that there is a natural definition which has an inductive structure reminiscent of that of
Benoit and Krishna (1993).
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agent’s bad behavior be confined to that agent’s neighbors and not propagate throughout

the network.

The combination of renegotiation-proofness and robustness tie down a unique type of

network configuration of favor exchanges that are possible. We call those configurations

“social quilts.” A social quilt is a union of small cliques (completely connected subnetworks),

where each clique is just large enough to sustain cooperation by all of its members and where

the cliques are laced together in a tree-like pattern. One of our main theoretical results shows

that configurations of favor exchange that are sustained in robust equilibria are precisely the

social quilts. We then extend the model to allow heterogeneity in the cost and value of favors

to various individuals. Under that extension, we prove that all robust equilibrium networks

must exhibit a specific trait: each of its links must be “supported.” That is, if some agent

i is linked to an agent j, then there must be some agent k linked to both of them. This

is related to, but turns out to be quite different from, various clustering measures that are

common in the social network literature.

With the theoretical underpinnings in hand, we then examine social networks in 75

villages in southern rural India.3 These data are particularly well-suited for our study as

they provide network structure for various favor relationships, and moreover have this for

many separate villages. We are not aware of any other data set having these attributes. In

particular, in these data we have information about who borrows rice and kerosene from

whom, who borrows small sums of money from whom, who gets advice from whom, who

seeks emergency medical aid from whom, and a variety of other sorts of relationships, as

well as gps data. Using these data we can examine the networks of various forms of social

interaction including specific sorts of favor exchange. In line with the theoretical predictions,

we find that the number of favor links that have this sort of social support is in the range

of eighty percent in these villages. Moreover, the level of support is significantly higher

than what would arise if links were formed at random (even with some geographic bias to

formation), and significantly higher than levels of clustering. We analyze various aspects of

the levels of support and also find that it is significantly higher for favor relationships than

other sorts of relationships.

Our research contributes to the understanding of informal favor exchange as well as social

networks in several ways:

• We provide an analysis of repeated interactions where individual’s decisions are influ-

enced by the network pattern of behavior in the community, and this provides new

3Although we apply some of our findings to favor relationships in Indian Villages, such informal favor
exchange is clearly not limited to developing countries. For example, a recent New York Times/CBS News
poll (reported in the New York Times, December 15 2009) found that 53 percent of surveyed unemployed
workers in the U.S. had borrowed money from friends or family as a result of being unemployed.
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insights into repeated games on networks.

• Our model includes dynamic choices of both favor provision and relationship choices

and provides new insights into the co-evolution of networks and behavior, and in par-

ticular into the phenomenon of ostracism.

• Our analysis suggests a new source of inefficiency in informal risk and favor sharing,

showing why individuals may have to limit the number of relationships in which they

take part.

• A by product of our analysis is an operational definition of social capital that is more

specific and tighter than many existing definitions, and it makes tight predictions about

how relationships in a society must organized.

• We provide a new property of networks that we call “support” and show how this is

distinguished from standard clustering measures.

• We examine data that include many sorts of interactions and cover 75 different villages,

and find that the networks exhibit substantial and significant distinctions between our

measure of support and standard measures of clustering.

1.1 Related Literature

As mentioned above, there is a large literature on social capital that studies the ability of

a society to foster trust and cooperation among its members.4 Although that literature is

extensive and contains important empirical studies and many intuitive ideas, it has struggled

in providing firm theoretical foundations and the term “social capital” has at times been used

very loosely and as a result has lost some of its bite.5 Part of the contribution of our paper is

to provide an explicit modeling of how societies can enforce cooperative favor exchange and

how this is linked to the social network structure within a society. In this way, our paper

provides a very concrete definition of social capital that is embedded in three components: a

notion of equilibrium that embodies notions of ostracism and social expectations of individual

behaviors, implications of this for resulting social network structure, and individual payoffs

from the resulting behaviors.

Coleman (1988) discusses closure in social networks, emphasizing the ability of small

groups to monitor and pressure each other to behave. Here we provide a new argument

4For example, see Homans (1958), Loury (1977), Bourdieu (1986), Coleman (1988, 1990), Woolcock
(1998), Dasgupta (2000), Putnam (1993, 1995, 2000), Glaeser, Laibson, and Sacerdote (2002) Guiso,
Sapienza, and Zingales (2004), Tabellini (2009), among others.

5See Sobel (2002) for an illuminating overview and critique of the literature.
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for, and a very specific variety of, closure. Here a specific form of minimal clique structures

emerge because of a combination of renegotiation-proofness and a local robustness condition,

rather than for informational, monitoring, or pressuring reasons. Minimal sized cliques offer

both credible threats of dissolving in the face of bad behavior, and in terms of minimal

contagion for a society. Our analysis also formalizes this in terms of support and contrasts

it with clustering.

The most closely related previous literature in terms of the theoretical analysis of a re-

peated game on a network is a series of papers that study prisoners’ dilemmas in network set-

tings, including Raub and Weesie(1990), Ali and Miller (2009), Lippert and Spagnolo(2009),

and Mihm, Toth, Lang (2009).6 In particular, Raub and Weesie(1990) and Ali and Miller

(2009) show how completely connected networks shorten the travel time of information which

can quicken punishment for deviations of behavior. Although cliques also play a prominent

role in some of those papers, it is for very different reasons. In those settings, individuals do

not have information about others’ behaviors except through what they observe in terms of

their own interactions. Thus, punishments only travel through the network, and the main

hurdle to enforce individual cooperation is how long it takes for someone’s bad behavior to

come to reach their neighbors through chains of contagion. This builds on earlier work by

Greif (1989), Kandori(1992), Ellison (1994), Okuno-Fujiwara and Postlewaite(1995) among

others, who studied the ability of a society to sustain cooperation via threats of contagions

of bad behavior. Our analysis is in a very different setting, where individuals have complete

information. The quilts in our setting emerge because they do not lead to large contagions

but instead compartmentalize the damage from an individual’s defection. Moreover, the

quilts consist of minimal sized cliques because only those sorts of implicit punishments are

immune to renegotiation.

Haag and Lagunoff (2004) provide another reason favoring small cliques: heterogeneity.

In their analysis large differences in preferences can preclude cooperative behavior, and so

partitioning a group into more homogeneous subgroups can enable cooperative behavior

which might not be feasible otherwise. Although our reasoning behind cliques comes from

very different reasons, when we examine heterogeneous societies we do find assortativity in

who exchanges favors with whom. Here, the reasoning is not because of direct reciprocity

considerations, but because robustness requires balanced cliques and so agents need to have

similar valuations of favors in order for their cliques to be critical. In this way, we provide

new insights into homophily, where relationships of agents are biased towards others who

6Other studies of network structure and cooperative or various forms of risk-sharing behavior and the
relationship to social network structures include Fafchamps and Lund (2003), De Weerdt and Dercon (2006),
Bramoullé and Kranton (2007), Bloch, Genicot, and Ray (2007, 2008), and Karlan, Mobius, Rosenblat and
Szeidl (2009).
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have similar characteristics in terms of their values and arrival rates of favors.

Finally, our analysis of the data not only provides support for the support measure,

but also uncovers significant differences between different sorts of networks. Differences

between the network structure of various sorts of relationships is something that might be

expected based on the different ways in which links might form across applications (e.g.,

see Jackson (2008)) and here we add a new angle to this understanding, finding statistically

distinct patterns of support in various sorts of favor and social networks. These suggest some

interesting questions for future research.

2 A Model of Favor Exchange

2.1 Networks, Favors, and Payoffs

A finite set N = {1, . . . , n} of agents are connected in a social network described by an

undirected7 graph. Given that the set of agents or nodes N is fixed throughout the analysis,

we represent a network, generically denoted g, simply by the set of its links or edges. Let gN

be the set of all links (so the set of all subsets of N of size 2), and let G = {g | g ⊂ gN} be

the set of all possible networks. For simplicity, we write ij to represent the link {i, j}, and

so ij ∈ g indicates that i and j are linked under the network g. We write g − ij to denote

the network obtained from g by deleting a link ij. For an integer k, 0 ≤ k ≤ n(n− 1)/2, let

Gk be the set of all networks that have exactly k links, so that Gk = { g ∈ G : |g| = k}.
The neighbors of agent i are denoted

Ni(g) = {j | ij ∈ g}.

We follow a convention that rules out self-links, and so all agents in Ni(g) are distinct from

i. The degree of agent i in the network g is the number of his or her neighbors denoted by

di(g) = |Ni(g)|.
Time proceeds in discrete periods indexed by t ∈ {0, 1, . . .} and in any given period, there

is a chance that an agent will need a favor from a friend or will be called upon to grant a

favor to a friend. In particular, an agent i who is connected to an agent j (so that ij ∈ g)

anticipates a probability p > 0 that j will need a favor from i in period t and a probability

p that i will need a favor from j. It is assumed that at most one favor will be needed across

all agents in any given period, and so we require that

n(n− 1)p ≤ 1.

we allow the sum to be less than one to admit the possibility that no favor is needed in a

given period.

7This is not necessary for the analysis, and we comment later on possible extensions to directed networks.
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This is a proxy for a Poisson arrival process, where the chance that two favors are needed

precisely at the same moment is 0. By letting the time between periods be small, the chance

of more than one favor being called upon in the same period goes to 0. Thus, when applying

the model it is important to keep in mind that periods are relatively small compared to the

arrival rate of favors.

A restriction of this formulation is that p does not depend on the network structure.

More generally, the chance that i needs a favor from j will depend on many things including

how many other friends i has. We characterize the equilibrium networks for the general

case in Section 5. We begin with the current case since it more clearly provides the basic

intuitions, but the results have very intuitive analogs for the general case that are easy to

describe once we have presented the simpler case.

Doing a favor costs an agent an amount c > 0 and the value of the favor to an agent is

an amount v > c. “Favors” can embody many things including asking for advice, to borrow

some good, to borrow money, or to perform some service. The important aspect is that the

value of a favor to one agent exceeds the cost, so that it is ex ante Pareto efficient for agents

to exchange favors over time. However, we examine settings where it is impossible (or too

costly) for agents to write binding contracts to perform favors whenever called upon to do

so. This applies in many developing countries, and also in developed countries where it is

prohibitively costly and complex to write complete contracts covering the everyday sort of

favors that one might need from friends. Thus, we examine self-enforcing favor exchange.

Agents discount over time according to a factor 0 < δ < 1. Thus, if there were just two

agents who always performed favors for each other, then they would each expect a discounted

stream of utility of
p (v − c)

1− δ
.

The more interesting case from a network perspective is the one that we examine, where

c >
δp (v − c)

1− δ
.

In this case, favor exchange between two agents in isolation is not sustainable. When called

upon to perform a favor, the agent sees a cost that exceeds the future value of potential

favor exchange (in isolation) and so favor exchange cannot be sustained between two people

alone, but must be embedded in a larger context in order to be sustained. Sustaining favor

exchange between two individuals requires a high enough frequency of arrival coupled with

a high enough marginal benefit from a favor and sufficient patience. In a marriage, there are

generally sufficiently many opportunities for each spouse to help the other out with some

task or need that bilateral favor exchange can be sustained. However, in other contexts,

where such needs are rarer - such as a need to borrow cash due to an emergency, or a need

for medical advice, etc., one might need a multilateral setting to sustain favor exchange.

9



A society is described by the profile (N, p, v, c, δ).

2.2 The Game

The favor exchange game is described as follows.

• The game begins with some initial network in place, denoted g0.

• Period t begins with a network gt−1 in place.

• Agents (simultaneously)8 announce the links that they are willing to retain: Li ⊂
Ni(gt−1). The resulting network is g′t = {ij | j ∈ Li and i ∈ Lj}.

• Let kt be the number of links in g′t. With probability 2pkt need for a (single) favor

arises and with probability 1 − 2pkt there is no need for a favor in the period. If a

favor is needed, then it could apply to any link in g′t with equal likelihood and then go

either direction. If a favor is needed, then let it denote the agent called upon to do the

favor and jt the agent who needs the favor, where itjt ∈ g′t.

• Agent it chooses whether or not to perform the favor. If the favor is performed then

it incurs the cost c and agent jt enjoys the benefit v. Otherwise no cost or benefit is

incurred.

• The ending network, denoted gt, is g′t − itjt if the need for a favor arose and it was not

performed, and is g′t otherwise.

People make two sorts of choices: they can choose with whom they associate and they

can choose to do favors or not to do favors. Opportunities for favor exchange arise randomly,

as in a Poisson game, and people must choose whether to act on favors as the need arises.

Choices of which relationships to maintain, however, can be made essentially at any time.

In the model this is captured by subdividing the period into link choices and favor choices,

so that agents have a chance to adjust the network after any favor choice, as well as before

any potential favor arises.

This structure embodies several things. First, favor relationships can either be sustained

or not. Once a favor is denied, that relationship cannot be resuscitated. Thus, at any point

in time an agent’s decision is which relationships to maintain. This simplifies the analysis

in that it eliminates complicated forms of punishments where various agents withhold favors

from an agent over time, in order to punish an agent, but then eventually revert to providing

8Given the equilibrium refinements that we use, whether or not the link choices are simultaneous is
effectively irrelevant.

10



favors. There is a way in which this is an intuitive and natural behavioral assumption. It can

be motivated on various behavioral (e.g., emotional) or pro-social grounds and effectively

it acts as a sort of refinement of the set of all possible punishments that might occur, as

it requires that one of the ostracizing agents be the one who failed to get the favor. This

simplification allows us to gain a handle on sustainable network structures as the problem

is already very complex (as will become clear shortly), and it appears that much of the

intuition carries over to the more flexible case, but that is a subject for further research. As

will be clear, this approach generates quite a rich, natural, and interesting set of conclusions.

Second, we do not consider the formation of new links, but only the dissolution of links.

This embodies the idea that the formation of new relationships is a longer-term process and

that decisions to provide favors and/or ostracize an agent can be taken more quickly and

are shorter term actions. It is important to note that we cover the case where society starts

with the complete network, so we do not a priori restrict the links that might be formed,

and so our results do make predictions about which networks can be formed/sustained in a

society. The important wedge that we impose is that an agent who has lost a relationship

cannot (quickly) replace it with a newly formed one.

One other aspect of the model is important to mention. Agents do not exchange money

for favors although at least hypothetically, all favor exchange could simply be monetarized.

Of course we do not see this in reality, as when a colleague asks to borrow a book we would

not charge her or him a rental fee; but that observation does not explain why we do not

charge our friends and acquaintances for every little favor that we perform. One explanation

is a behavioral one: that monetarizing favors would fundamentally change the way in which

people perceive the relationship, and this explanation is consistent with people no longer

viewing a monetarized relationship as a long run relationship. For more discussion of this

point see Kreps (1997). The specifics of why all favors are not monetarized is outside of our

scope, and our starting point is one of simple favor exchange.

For now, we consider a complete information version of the game, in which all agents

observe all moves in the game at every node. We discuss more limited information variations

in section 7.1.

An agent i’s expected utility from being in a network g that he or she expects to exist

forever9 is

ui(g) =
di(g)p (v − c)

1− δ
If an agent i is called to do a favor to j and chooses to perform the favor and expects a

network g to be played in perpetuity thereafter, then he or she expects a utility of

−c + δui(g).

9This applies at any point within the period other than at the a time at which the agent is called to
receive or produce a favor.
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Similarly if agent i is called to receive a favor from agent j and expects to receive the

favor and then anticipates a network g to be played in perpetuity thereafter then his or her

expected discounted stream of utility is given by

v + δui(g).

For ease of expression, we assume that the discounting parameter δ enters the agents’ cal-

culations between the announcement stage and the favor stage in any given period10.

We note that although we work with favor exchange as a building block in our model,

the analysis here directly extends to supporting cooperation more generally, and the same

results apply to the play of a prisoners dilemma between agents, or other forms of trust and

cooperation games with free-rider or short-term deviation challenges.

2.3 Equilibrium

In this setting, any network of favor exchange g can be sustained in perpetuity as a pure

strategy subgame perfect equilibrium as long as

c < di(g)
δp (v − c)

1− δ

for every agent i. One way in which this is sustained is by a sort of “grim-trigger” strategy

where all relationships are sustained and favors are provided as long as no agent refuses a

favor, and once any favor is denied then all agents delete all their links and never expect to

receive any favors again in the future. Thus, if each agent has enough relationships that he

or she might lose, then favor exchange can be sustained. So, for instance, if

c < (n− 1)
δp (v − c)

1− δ

then the complete network with the most efficient favor exchange could be sustained.

10This is purely for expository ease as it slightly simplifies the expressions for the critical utility levels for
different behaviors, but does not alter the basic structure of the arguments or conclusions. Effectively, it
ensures that whenever an agent is either making a decision of which links to announce or whether to follow
through on a favor, any potential future favors that might be influenced by the decision are discounted. If
discounting happens after the favor period, then when making link choices agents would not discount one
round of future favors, but when making favor decisions they would. This simply makes sure that all future
favors are discounted in the same way. It is also convenient to begin with an announcement phase, but again
this is not essential to the conclusions.
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2.3.1 Renegotiation-Proofness

While the above conclusion offers some optimism regarding a society’s ability to efficiently

sustain favor exchange, it rests upon drastic threats that are not always credible. If for some

reason a favor was not performed and some link disappears, a society might wish to reconsider

its complete dissolution. Indeed, the idea that if some person in a society acts selfishly and

fails to provide a favor, the whole society collapses and no favors are ever exchanged again is

drastic and unrealistic. This sort of observation is not unique to this setting, but has been

an issue in repeated games for some time (e.g., see the discussion in Bernheim, Peleg and

Whinston (1987)). The basic problem is that if agents have some chance to communicate

with each other (and perhaps even if they cannot), then when beginning some phase of

equilibrium which involves low payoffs, if there is some other equilibrium continuation, in

which all agents are better off, then they have a strong incentive to change to the play that

gives them all better payoffs. Even though this sort of “renegotiation” problem with many

sorts of equilibria is well known, it is rare for researchers to do more than to acknowledge it

and forge ahead. The reason for this is that properly accounting for renegotiation becomes

quite complicated, especially in infinite settings where it is not even clear how to define

equilibrium in the face of renegotiation (e.g., see Farrell and Maskin (1989), Bernheim and

Ray (1989), and Abreu, Pearce and Stacchetti (1993)). Thus, there are few analyses of

renegotiation-proofness outside of some of the original papers working out the definitions.

Our setting has a nice structure that makes it relatively easy to provide a natural defi-

nition of renegotiation-proofness and to characterize such equilibria. Before moving to the

formal definitions, we present an example that illustrates the ideas.

Example 1 The Logic of Renegotiation-Proofness

Let there be 4 agents and consider a case such that

2
δp(v − c)

1− δ
> c >

δp(v − c)

1− δ

Here, no link is sustainable in isolation, since the value of providing a favor c is greater than

the value of the future expected stream of giving and receiving favors: pδ(v−c)
1−δ

. However, if

an agent risks losing two links by not performing a favor, then links could be sustainable

depending on the configuration of the network, since c < 2pδ(v−c)
1−δ

.

In this case, note that networks where each agent has exactly two links, for example,

g = {12, 23, 34, 41}, can be sustained as a subgame perfect equilibrium. If any agent ever

fails to perform a favor, then a link will be lost. For example, suppose that 1 fails to deliver

a favor to 2, and so the link 12 is lost. At this point, agent 1 only has one relationship

left: 14. It is now clear that agent 1 will never perform future favors for 4 and so the link
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Figure 1: A five link network that is not sustained as a renegotiation-proof equilibrium

14 is effectively useless as well. The same is true of 23. Iterating on this logic, there is no

subnetwork that could be sustained as a subgame perfect equilibrium. As such, an agent

realizes that if he or she fails to provide a favor, then that will lead to a collapse of all

favors and so the network of favor trading is sustained in equilibrium, as failing to provide

one favor induces a loss of two relationships. So, starting with such a minimal network

there is no difficulty with renegotiation, as following any deviation from the prescribed favor

exchange the equilibrium continuation is unique. So, favor exchange sustaining this network

is renegotiation-proof as an equilibrium (to be defined shortly).

The problematic subgame perfect equilibria come with k = 5 or more links. Consider the

network g′ = {12, 23, 34, 41, 13} as pictured in Figure 1. Agents 1 and 3 each have three links

and agents 2 and 4 have two links. There is a subgame perfect equilibrium sustaining this

network: if any link is ever cut, then all agents cut every link in the future. However, there is

no renegotiation-proof equilibrium sustaining this network. To see this, suppose that agent

1 is called upon to do a favor for agent 3. If agent 1 does not do the favor, then the resulting

network is g′ = {12, 23, 34, 41}. Note that g is sustainable as a subgame perfect equilibrium

as argued above (and in fact is sustainable as part of a renegotiation-proof equilibrium).

The logic is now that if g is reached, then it will be sustained rather than having agents

delete all links, since it is not credible for agents to destroy these links as they are all strictly

better off sustaining g than going to autarchy. Thus, when reaching g, in the absence of some

exogenous commitment device, the agents’ previous threat to delete all links lacks credibility.

As a result of this, agent 1 can cut the link 13 and still expect the network g to endure, and

so this is the unique best response for agent 1 and so g′ is not sustainable as an equilibrium

if we require that continuations not be Pareto dominated by another (renegotiation-proof)

equilibrium continuation.�

We define renegotiation-proof networks to be networks that are sustainable via pure

strategy subgame perfect equilibria. It is easiest to define the networks directly, in a way

that simultaneously implicitly defines renegotiation-proof equilibrium and explicitly tracks

14



the networks that are sustainable via those equilibria.

We define the set of pure strategy renegotiation-proof equilibria inductively.11 The in-

duction operates via the number of links in the starting network. In terms of notation, it

will be useful to keep track of the set of all networks that have exactly k links and can be

sustained in perpetuity as part of a pure strategy renegotiation-proof equilibrium if we start

at that network.

We let RPNk denote the set of renegotiation-proof networks with k links.

• Let RPN0 = {∅}

• Let RPNk denote the subset of Gk such that g ∈ RPNk if and only if beginning with

g0 = g implies there exists a pure strategy subgame perfect equilibrium12 such that

– on the equilibrium path g is always sustained (all favors are performed and all

links are maintained), and

– in any subgame13 starting with some network g′ ∈ Gk′ with k′ < k if g′′ is played

in perpetuity with some probability14 in the continuation then g′′ ∈ RPNk′′ for

some k′′ and there does not exist any g′′′ ⊂ g′ such that g′′′ ∈ RPNk′′′ and

ui(g
′′′) ≥ ui(g

′′) for all i with strict inequality for some i.15

The definition is inductive, since the logic of renegotiation-proofness requires that a

network sustained in some continuation not be Pareto dominated by any other continuation

that itself is renegotiation-proof. The logic is inherently self-referential, and this is what

generally provides difficulties in identifying an unambiguously “correct” definition in an

infinite setting. Here, despite our infinite horizon, we can define renegotiation-proofness

cleanly since relationships can be severed but not resuscitated and so there is a natural

induction on the number of links.

We say that a network g is renegotiation-proof or a renegotiation-proof network if there

exists some k such that g ∈ RPNk.

As a further illustration of the definition, let us return to Example 1 and characterize all

of the renegotiation-proof networks.

11Our analysis concentrates on pure strategy equilibria. As will become clear, considering mixed strategy
equilibria would not add much to the insights regarding sustainable network structures.

12That the equilibrium is in pure strategies requires that agents use pure strategies at all nodes on and
off the equilibrium path.

13This includes subgames starting at any node, not just beginning of period nodes.
14Even though agents use pure strategies, nature randomly recognizes favors, and so there can be some

randomness in a continuation path.
15Note that this condition implies that in any subgame starting with a network g′ ∈ RPNk′ , g′ is played

in the continuation.
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Example 2 Renegotiation-Proof Networks

Let there be 4 agents and consider a case as in Example 1 such that

2
δp(v − c)

1− δ
> c >

δp(v − c)

1− δ
.

Here, RPN1 = ∅ since no isolated links are sustainable.

Similarly, RPN2 = ∅ since any agent who only has one link will never perform a favor.

RPN3 = {g = {ij, jh, ih} : for some distinct h, i, j}. Thus, triads are sustainable, since

if any agent severs a link, then that will lead to a two-link network which is not sustainable,

and so becomes an empty network. Thus, not performing a favor leads to an empty network,

and so it is a best response to perform a favor, anticipating favors by other agents.

RPN4 = {g = {ij, jh, h`, `i} : for distinct h, i, j, `}. This is an obvious extension of the

logic from three-link networks.

Following the argument in Example 1 it is easy to check that there are no five-link

renegotiation-proof equilibria. Thus RPN5 = ∅.
Next, note that RPN6 = ∅ as well. To see this, note that if some agent i deletes a

link ij, then a continuation must result in a pure strategy renegotiation-proof equilibrium,

which would be either a triad, four link network (with a cycle), or the empty network. The

remaining four link network that has a cycle Pareto dominates any other continuation. Thus,

if an agent i severs a link ij, then the agent is sure that he or she will still have two links in

the continuation and so only loses one link.�

3 Characterizing Renegotiation-Proof Networks

In this section we provide a complete characterization of renegotiation-proof networks. Be-

fore providing the complete characterization, however, we provide some intuitive sufficient

conditions that give insight into the structure of renegotiation-proof networks.

Let m be the whole number defined by

m
δp(v − c)

1− δ
> c > (m− 1)

δp(v − c)

1− δ
. (1)

It is clear that there is at most one such m and that m ≥ 1.

We work with the generic case, ignoring exact equality on either side above. The param-

eter m captures how many relationships, each with a future value of δp(v−c)
1−δ

, an agent has to

risk losing in the future in order to have incentives to perform a favor today at the cost of c.

Throughout the remainder of the paper, the definitions will all be relative to m, and

so we take it to be fixed and defined by (1) and omit explicit mention of it in some of the

definitions.
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We begin with a formal statement of the proposition on subgame perfect equilibria that

motivates our analysis of renegotiation-proof equilibria.

Proposition 1 A network is sustainable in perpetuity on the equilibrium path of a subgame

perfect equilibrium of the favor exchange game if and only if each agent has either 0 links or

at least m links.

The proof of Proposition 1 is obvious and thus omitted.

Now we examine renegotiation-proof networks.

3.1 Critical Networks and Renegotiation-Proofness

Before proceeding to the complete characterization of renegotiation-proof networks, we ex-

amine a natural class of renegotiation-proof equilibria.16 These sufficient conditions provide

an intuitive look at equilibrium structure and help motivate the complete characterization.

Let

G(m) = {g | ∀i, di(g) ≥ m or di(g) = 0}

denote the set of networks in which each agent has either at least m links or 0 links. So G(m)

is the set of networks sustainable as subgame perfect equilibria. Note that any renegotiation-

proof network must be in G(m) and since any network sustained in any off-equilibrium path

continuation must also be a renegotiation-proof network it must also be contained in G(m).

Following the argument above, one way to build a sustainable network is to offer proper

incentives for sustaining favors: if an agent deletes a link in a network or fails to provide

a favor, it is sufficient that the agent expect to lose at least m links in the sequel. That is

captured by the following definition.

We say that a network g is m-critical, if

• g ∈ G(m)

• for any i and ij ∈ g, there is no subnetwork g′ ⊂ g − ij such that di(g
′) > di(g) −m

and g′ ∈ G(m).

As m ≥ 2 will generally be a given in the analysis (although we consider different levels

in some examples), we simply omit its reference and use the term “critical” in what follows.

An easy way to build a critical network is to have each agent have exactly m links.

However, we remark that criticality does not require all agents to have exactly m links. It

only requires that any possible continuation equilibrium after some agent fails to provide a

favor be such that the agent lose at least m links. To see how this can allow agents to have

16Additional classes of renegotiation-proof equilibria are discussed in the supplementary appendix.
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Figure 2: A critical network for m = 3, but where agent 1 has 4 links.

more than m links, consider Figure 2, which pictures such a critical network for a case with

m = 3 where agent 1 has four links.

There is no proper nonempty subnetwork in which all agents who still have links, have at

least 3 links each. Thus, if agent 1 (or any other agent) severs any link, the entire network

would have to collapse since any proper subnetwork that is nonempty will have some agent

with fewer than 3 links, and thus that agent will not have incentives to provide favors.

Therefore, if agent 1 fails to provide a favor on some link, then agent 1 would lose all four

links.

Critical networks provide an important and nonempty class of networks that are renegotiation-

proof. In the sense of Proposition 2, they are a foundational class of networks.

Proposition 2 Any nonempty network g ∈ G(m) contains a nonempty critical network,

and any critical network is renegotiation-proof.

The last part of Proposition 2 follows from Theorem 1, but we mention the idea behind

how this can be proven directly. In order to prove this, we need to show that there exists

a pure strategy renegotiation-proof equilibrium such that for any i and ij ∈ g, if i is called

to grant a favor to j and refuses the favor, i must lose at least m links in any continuation

network g′. Renegotiation-proofness requires that the continuation g′ be a subnetwork g′ ⊂
g − ij and be sustainable as a pure strategy renegotiation-proof equilibrium and so it must

be in G(m). By the definition of criticality, it then follows that any such g′ ∈ G(m) be such

that di(g
′) ≤ di(g)−m (and there always exists at least one such g′ since the empty network

is in G(m)), and so provides the necessary incentives.

To see that criticality is not necessary for renegotiation-proofness, consider the network

in Figure 3: let m = 2 and g = {12, 23, 13, 14, 15, 45, 26, 27, 67} is a tree union of three triads.

This is not critical since if 1 cuts the link 12, then all agents in the sub-network still have at

least 2 links. Nonetheless, we shall see that it is renegotiation-proof below.
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Figure 3: A non-critical network, but still renegotiation-proof.

3.2 A Complete Characterization of Renegotiation-Proof Networks:

Transitively Critical Networks

We now turn to the complete characterization of renegotiation-proof networks.

Let D(g) denote the profile of degrees associated with a network g:

D(g) ≡ (d1(g), . . . , dn(g)).

Write D(g) > D(g′) if D(g) ≥ D(g′) and D(g) 6= D(g′).

We define transitively critical networks as follows.

Given a whole number m satisfying (1), let TCk(m) ⊂ Gk denote the set of transitively

critical networks with k links.

• Let TC0(m) = {∅}.

• Inductively on k, TCk(m) ⊂ Gk is such that g ∈ TCk(m) if and only if for any i and

ij ∈ g, there exists g′ ⊆ g − ij such that g′ ∈ TCk′(m), di(g
′) ≤ di(g) −m, and there

is no g′′ ∈ TCk′′(m) such that g′′ ⊂ g − ij and D(g′′) > D(g′).

Even though this is also an inductive definition (not surprisingly, given that renegotiation-

proof equilibria are so defined), it does not involve any incentive descriptions and is effectively

an algorithm that can identify equilibria directly from m. In fact, we use the equivalence

set forth by Theorem 1 to build a computer program that calculates renegotiation-proof

networks. In the supplementary appendix we present a table with the number of non-

isomorphic transitively critical networks for small values of n and m, along with renderings

of some of these networks.

Theorem 1 A network is renegotiation-proof if and only if it is transitively critical.

Although one might expect the proof to be straightforward given that both definitions are

inductive, there are some subtleties and challenges in proving Theorem 1. The main one is
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that there are many strategy profiles that may hypothetically sustain a collection of networks

in a subgame perfect manner, in a way such that the collection satisfies the self-consistency

property demanded by renegotiation-proofness. The issue then is that to show that some

network is not renegotiation-proof we must be sure that none among the large number of

the different strategy profiles that could sustain it, actually work. Moreover, showing that

some network is renegotiation-proof involves first showing that some other networks are not

in the set. The way in which we tackle this difficulty is by arguing that we can avoid the

vast set of potential equilibria that could be used to sustain networks and can focus on a

nicely behaved set of strategy profiles. The details appear in the appendix.

4 Robustness

We now turn to our criterion of robustness. The idea is that a network is robust if it relies

only on local “damage” due to a failure to provide a favor, rather than more global sorts of

damage. That is, failure to provide a favor will require some lost links and there is a question

of how far that loss of links propagates. We begin with a simple observation.

Observation 1 If (1) holds for m ≥ 2, g is a renegotiation-proof network, and ij ∈ g, then

g − ij is not a renegotiation proof network.

The observation follows since otherwise the continuation from i or j failing to do each

other a favor would only result in the loss of one link, and so they would not do each other

favors and g would not be sustainable.

The important implication of the observation is that beginning from a network that is

renegotiation-proof, if a link is deleted then the network will necessarily further degrade in

terms of what is sustainable. There may be different ways in which things could degrade.

Here is where the idea of robustness comes into play. Robustness against social contagion

seeks to minimize the extent to which the loss of links propagates beyond the original devi-

ator(s) in the network.

Example 3 Robustness

Suppose that (1) holds for m = 2, and there are n = 9 agents. Figure 4 lists two

renegotiation-proof networks: one is a single cycle containing all agents, {12, 23, 34, 45, . . . , 91};
the other one is a tree union of four triads, {12, 23, 13, 34, 45, 35, 46, 47, 74, 58, 59, 89}.

Note that if any link is deleted from the first network, then it completely collapses. If

any link is deleted from the second network, only two other links are deleted and they are

limited to a local neighborhood of the original link that is deleted.�

The second network in Example 3 is more “robust” than the first one in the sense that

the damage by the deletion of a link is more “local” in a sense that we now discuss.

20



Figure 4: Two renegotiation-proof networks when m = 2 and n = 9: a non robust one and

a robust one.

4.1 Robustness Against Social Contagion

We say that a network g is robust against social contagion if it is renegotiation-proof and

sustained as part of a pure strategy subgame perfect equilibrium with g0 = g such that in

any subgame continuation from any renegotiation proof g′ ⊂ g, and for any i and ij ∈ g′, if

i does not perform the favor for j when called upon, then the continuation leads to g′′ such

that if h` /∈ g′′ then h ∈ Ni(g
′) ∪ {i} and ` ∈ Ni(g

′) ∪ {i}.
Robustness requires that a network be sustainable as part of an equilibrium such that

in any continuation starting from some renegotiation proof (sub-)network, if some link is

deleted then the only other links that are deleted in response must only involve the agent

deleting the link and his or her neighbors. In a well-defined sense this localizes the damage

to society.17

We now characterize the networks that are robust against social contagion, or robust for

short.

4.1.1 Social Quilts

The networks that are robust against social contagion have a particular structure to them

that is described as follows.

An m-clique is a complete network with m + 1 nodes so that every node has exactly m

links. m-cliques are an important class of critical networks.18

17An alternative approach would be to explicitly allow nodes or links to fail with given probabilities,
and then to look for networks that are still sustainable as equilibria in the face of such failures. If failure
probabilities are high enough, then that will result in the definitions that we examine. However, for lower
failure rates, other equilibria would also be sustainable. As the contagion effects of such probabilities become
intractible quickly in a network setting, we work with the definitions as presented here, but it could be
interesting to investigate other approaches.

18Note that a clique g with m + 2 nodes (each having m + 1 links) is not renegotiation-proof. To see this,
suppose the contrary and have some i delete a link ij. In order for this not to be a valid deviation, it must
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Figure 5: A union of m-cliques that is not an m-quilt.

We can build robust renegotiation proof networks by putting cliques together as long as

we do not end up generating any cycles involving more than m+1 nodes when we construct

the network out of more than one clique. Thus, a social quilt is a “tree union” of networks.19

We say that a network g is an m-quilt if g is a union of m-cliques20 and there is no cycle

in the network involving more than m + 1 nodes.

Figure 3 shows a 2-quilt. The following example shows a non-tree union of cliques that

is not a social quilt and is not robust against social contagion.

Example 4 A union of m-cliques that is not an m-quilt and is not robust.

Let m = 2 and consider the network g = {12, 23, 13, 14, 15, 45, 26, 27, 67, 46, 68, 84} as in

Figure 5. It is a union of four linked 2-cliques (triads) and any two of these cliques intersect in

at most one node. However, it is not a 2-quilt since there is a simple cycle C = {12, 26, 64, 41}
involving 4 nodes which is more than m + 1. The presence of this cycle makes it not robust

against social contagion: g′ = {12, 26, 64, 41} is a subnetwork of g and is a critical network

and so is renegotiation-proof, however g′ is not robust since any deleted links leads to its total

collapse and so more than local contagion. It then follows from the definition of robustness,

be that i loses all links in the continuation, so that the continuation is such that there are at most m + 1
agents in the network and each has just m links. This is Pareto dominated by a network g′ with all m + 2
agents such that all agents have m links except for possibly one agent. There is such a network that is a
subset of g − ij (which is such that all but i and j have m + 1 links and i and j each have m links). It also
follows that g′ is critical and thus renegotiation-proof. Thus, we have a contradiction.

19A union of several networks g1, ..., gK is a tree union if the networks can be ordered in a way g1, ..., gK

such that successive unions

U1 = g1, . . . , Uk = Uk−1 ∪ gk, . . . , UK =
⋃

k=1...K

gk

are such that each additional network has at most one node in common with the preceding union: |N(Uk−1)∩
N(gk)| ≤ 1.

20That is, for any ij ∈ g there exists a subnetwork g′ ⊂ g with ij ∈ g′ and such that g′ is an m-clique.
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which requires that any subnetwork that could be reached and sustained in a continuation

be robust itself.�

Here are some useful properties of m-quilts, where m > 1:

• There are no bridges.

• The removal of a link does not change the distance between any two nodes except the

two losing the link, and that distance increases just by 1.

• The removal of any link increases the diameter by at most 1, so there are no “long-

distance” links.

Theorem 2 A network is robust against social contagion if and only if it is a social quilt.

Given our previous discussion of critical networks, it is a simple extension to see that

social quilts are renegotiation-proof, and the critical cliques limit contagion to be local in

nature. The subtle and difficult part of the proof of Theorem 2 is in showing that only social

quilts are robust. For example, why is a complete network not robust? This requires an

involved argument, which draws upon both the renegotiation-proofness and the local aspect

of punishments. Roughly, the intuition is as follows. First, any robust network must contain

some cliques, as an agent who cheats must lose some number of links, which must all be local.

In terms of continuation equilibria, any smallest sustainable subnetwork of a given network

must be a clique. This follows since any deviation must lead to the loss of all its links since

it is the smallest, and by locality the agents must all be neighbors. Moreover, it must be of

minimal size by renegotiation-proofness as otherwise the society could renegotiate to keep a

minimal sized clique which would contradict this being the smallest sustainable subnetwork.

The proof then works by using some graph theoretic reasoning to show that any network

that is not a social quilt has some subnetwork that is a critical network, and hence a smallest

sustainable subnetwork, but is not a clique. Thus, if a network is not a social quilt, there is

some way in which it could be broken down so that the eventual contagion in a last stage of

destruction would necessarily be non-local.

4.2 The Relative Number of Robust Networks Compared to Sub-

game Perfect Equilibria

We now present some results that contrast the set of subgame perfect networks with the set

of robust networks. Whereas almost all networks are subgame perfect equilibria, a fraction
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going to 0 of networks are robust. Thus, robustness is a very discriminating refinement of

the set of equilibrium networks providing pointed predictions.21

Proposition 3 Fix m and let n grow.

• The fraction of networks that are sustainable as subgame perfect equilibria goes to 1.

• The fraction of social quilts (and thus robust networks) goes to 0.

5 Asymmetric Payoffs

Before we examine data concerning favor exchange settings, we extend the model to allow for

asymmetries in payoffs. Given the heterogeneity in characteristics of agents in the societies

we examine, it is clear that they may face different costs and benefits from favor exchange,

and so this extension is needed to provide predictions to take to the data.

In particular, suppose that the probabilities of favors, and their values and costs are

specific to relationships. Moreover, let the probability that i needs a favor from j depend on

the degree of agent i, di(g). Suppose that doing a favor for an agent j costs an agent i an

amount cji > 0 and the value of the favor to an agent i from an agent j is an amount vij.

Let pij(di(g)) denote the probability that i needs a favor from j. Moreover, this also allows

us to discuss directed networks, as pij = 0 and pji > 0 suggest that only j needs favors from

i and i never needs favors from j.

Agents discount over time according to a factor 0 < δi < 1. Agents’ expected utilities

are similarly as that in the symmetric case. An agent i’s expected future utility from being

in a network g where all favors are provided in perpetuity is

ui(g) = δi

∑
j∈Ni(g) pij(di(g))vij − pji(dj(g))cji

1− δi

.

Thus, if agent i currently provides a favor to agent j with ij ∈ g, i’s current expected

discounted utility stream is −cji + ui(g), whereas if agent i is called to receive a favor from

agent j it is vij + ui(g).

Let us consider settings such that

cji > δi
pij(di)vij − pji(dj)cji

1− δi

. (2)

for each ij and di > 0 and dj > 0. Thus, no relationship is sustainable on its own.

21See the Supplementary Appendix for some calculations concerning the number of renegotiation-proof
networks (including non-robust ones).
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Figure 6: The contrast between support (left) and a standard clustering or transitivity

measure (right).

Our definitions of renegotiation-proof networks and robustness are exactly as previously

stated.

A link ij ∈ g is supported if there exists agent k different from i and j such that ik ∈ g

and jk ∈ g.

So a link is supported if it is part of a triad. Support is a necessary condition for

robustness in the general heterogeneous case where bilateral relationships are not sustainable

by themselves.

Theorem 3 If (2) holds and a network g is robust against social contagion, then all links

in g are supported.

Support is an important prediction since it differs from standard clustering measures, as

illustrated in Figure 6. For example, it is possible that a standard measure of clustering22 of

a network is close to 0 while support is close to or even equal to 1.23 In fact, as we shall see

below, the support measure in the observed networks is quite high while standard clustering

measures are much lower.

5.1 A Special Heterogeneous Case

An interesting case that generalizes the homogeneous case and yet is not as fully general as

the heterogeneous case examined above is one where agents may have idiosyncratic values

22See Jackson (2008) for various definitions of clustering and transitivity.
23For example, consider an agent i who has many friends: Ni(g) = (j1, k1, j2, k2, . . . , jM , kM ) such that

jm and km are linked to each other for each m but such that there are no other relationships between the
friends. The support measure here is 1 since every link is part of a triad. Yet, the clustering for i is very
small: M

M(M−1)/2 , which simplifies to 2
M−1 and goes to 0 as M grows.
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and costs to favors vi and ci, and discount factors δi, but where these values are not depen-

dent upon to whom agents are linked and also where the favor probabilities are not agent

dependent. In that case, each agent is characterized by his or her own mi such that24

mi
δip(vi − ci)

1− δi

> c > (mi − 1)
δip(vi − ci)

1− δi

. (3)

For this case, our previous results have analogs. The definition of social quilts is slightly

more complicated, but intuitively related to the previous definition. We provide a full char-

acterization in the supplementary appendix.

6 Support vs. Clustering in Favor Networks in Rural

India

Along with the degree distribution, and the distribution of distances between nodes, the

clustering coefficient is one of the standard network statistics most often reported in net-

work analysis. As mentioned in the introduction, it has often been thought that clustering

coefficients reflect the ability of social groups to address social dilemmas.

Our analysis has suggested a different and new measure, support, as being the necessary

condition for a society to enforce cooperation, at least in the robust manner that we have

defined here. This is a distinct measure, and a close scrutiny reveals that clustering and

support are conceptually very different. Clustering is a property of the neighborhood of an

agent while support is an edge property. While networks with very high levels of clustering

will necessarily display a high fraction of supported links the converse is not true. For

example, the social quilt on the right hand side of Figure 4 has a support measure of 1 (all

of its links are supported) and yet only has an overall clustering of 1/2 (as only half of the

pairs of links ij and ik lead to a completed triad -for instance only 1/3 of node 3’s pairs

of neighbors are linked to each other). More generally, in any society in which agents tend

to have multiple disjoint sub-neighborhoods (different cliques of friends), for instance their

colleagues at work, the geographic neighbors at home, their hobby friends, etc., the fraction

of supported links would be close to 1, while the overall clustering could be very low.

Given that the theory predicts support to be high, but does not predict the same for

clustering, we investigate whether this is true empirically. In particular, we now analyze a

large data set of a variety of networks that include various forms of favor exchange. We find

that support is quite high and significantly higher than the clustering coefficient.

As mentioned in the introduction we have data that are particularly well-suited for our

study: they document network structures for a variety of different sorts of relationships,

24Again, we rule out indifference.
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including various sorts of favor exchange, and moreover have this for many separate villages.

We are not aware of any other data set having these attributes.

6.1 Description of the Data

The data are from 75 rural villages in Karnataka, an area of southern India within a few hours

from Bangalore. The average population per village is 926.48. The survey was designed as

part of a study of the deployment of a micro-finance program (see Banerjee et al. (2010)).

Only half of the households were surveyed, which could bias our support measures (down-

wards) as we discuss below. Households were selected by a stratified random sample in order

to control for selection biases; with households stratified by religion (Hindu, Muslim, Chris-

tian) and also by geographic sub-locations based on a full census of the villages that was

conducted just prior to and in conjunction with the survey.

Each surveyed individual was asked to name the people that he or she has various sorts

of relationships with. The relationships that were queried in the survey are listed in Table

1.25

There are several potential sources of measurement error in these data. First, not all

people were surveyed and so there are missing nodes and links in the data set.26 Without

any particular selection of which nodes are missing (given the random selection of house-

holds), the missing data would bias the measure of support downwards, since support looks

at observed links ij and then asks whether i and j have a common neighbor. If that neigh-

bor is missing from the data, then support can be underestimated. Second, there are the

usual measurement issues with survey data: people may forget to mention some of their

connections, people get fatigued by interviews, and the survey did not allow individuals to

name more than five or eight other people depending on the categories (although the cap

was reached in a negligible number of cases).27

Out of the 12 survey questions described in 1 the caps were only ever reached in those

questions with codenames Visit-come, Borrow-money, Lend-money and Relatives. The caps

were 8, 5, 5 and 8 respectively, and they were reached in less than 0.6 in 10000, 2 in 10000,

25In the borrowing and lending relationships, fifty Rupees are roughly a dollar and the per capita income
in the areas surveyed is currently on the order of three dollars per day or less, although a precise income
census is not available.

26Nodes in the networks that we construct from the surveys are individuals who were surveyed. Surveyed
individuals could name non-surveyed individuals as friends, relatives, etc., but we omit such links unless
both individuals were surveyed. Thus, the networks we work with are sub-networks of the true networks.

27Note that the questions were worded in ways to avoid basic perception issues that are associated with
questions such as “who are your friends?” Based on wording that is more explicit about particular interactions
(borrowing rice, asking for medical advice, etc.) the relationships are more concrete.
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Relationships in Survey

Codename Question in Survey

Friends Name the 5 non-relatives whom you speak to the most.

Visit-go In your free time, whose house do you visit?

Visit-come Who visits your house in his or her free time?

Borrow-kerorice If you need to borrow kerosene or rice, to whom would you go?

Lend-kerorice
Who would come to you if he or she needed to borrow

kerosene or rice?

Borrow-money
If you suddenly needed to borrow Rs. 50 for a day, whom

would you ask?

Lend-money
Whom do you trust enough that if he or she needed to borrow

Rs. 50 for a day you would lend it the him or her?

Advice-come Who comes to you for advice?

Advice-go
If you had to make a difficult personal decision, whom would

you ask for advice?

Medical-help
If you had a medical emergency and were alone at home,

whom would you ask for help in getting to a hospital?

Relatives
Name any close relatives, aside those in this household,

who also live in this village. Plus people in the same household.

Temple-company Whom do you go to temple with?

Table 1: The Contents of the Survey

0.5 in 10000 and 2 in 10000 of the total number of surveys28.

We provide some analysis of measurement error in the supplementary appendix. Thus,

in building networks, we say that agent i borrows money from agent j if and only if either

agent i reports borrowing money from j or agent j reports lending money to agent i, and

we do the same with respect to lend-money, borrow-kerorice and lend-kerorice, visit-come

and visit-go and advice-come and advice-go relationships. Note that these are all directed

relationships. In the case of friends, medical-help, relatives and temple-company we define

that agent i has a relationship of the type in question with agent j if and only if at least

one of them acknowledge so. One can also work with other variations on these definitions,

and in the supplementary appendix we report on some of these variations, which do not

28The Supplementary Appendix shows the cumulative distribution of the number of reported relations for
each relationship type.
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All =



Relatives

Temple-company

Hedonic =

{
Visit-go & Visit-come

Friends

Favors =


Physical Favors =

{
Borrow-money & Lend-money

Borrow-kerorice & Lend-kerorice

Intangible Favors =

{
Advice-come & Advice-go

Medical-help

Table 2: Network Definitions Note:

In relationship a&b, i and j are related if and only if they are related in a and in b.

significantly alter the conclusions.29 The supplementary appendix contains a variety of

statistical measures of these networks.

6.2 Measuring Support and Clustering

The data include a variety of types of relationships. The way in which we categorize rela-

tionships is captured in Table 2.

In our definitions of these relationships, although we call certain relationships “hedonic,”

it could be that those relationships involve various sorts of interactions, including things

like favor exchange or risk-sharing, and so forth. Indeed, as we shall see, although we find

more support in various “favor” relations, there is still a high level of support among the

“hedonic” relationships.

In order to capture the possible combinations of various relationships, we enrich our

measures of support and clustering. In particular, we can ask whether relationships of one

type are supported through relationships of another type, and analogously for clustering,

whether a pair of neighbors of a given node in a network of one type have a relationship of

a second type.

To this end, we define the support of a network g′ relative to another network g as S(g′, g),

S(g′, g) =

∑
ij∈g′ 1{∃k,ik∈g,kj∈g}∑

ij∈g′ 1

which is the proportion of links in g′ whose nodes have common neighbors in g. Similarly we

can define the clustering of a given network g′ relative to some other network g, Clus(g′, g),

29In particular, we re-analyze all of the data where we exclude “relative” links, among other things.
Whether or not relatives are included does not significantly change the results.
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as

Clus(g′, g) =

∑
ij∈g′,ik∈g′ 1{jk∈g}∑

ij∈g′,ik∈g′ 1

Note that g = g′ is allowed and this reduces these two measures to self-support, and to

the standard clustering coefficient respectively. We refer to g′ as the base network and g as

the context network.

The reason for considering variations on the support measure is that it is quite possible

that exchange of one type of favor is supported via relationships involving exchange of some

other sort of favor or some other valuable interaction. The corresponding variations on the

standard clustering coefficients are supplied in order to have appropriate benchmarks.

6.3 Support in the Data

Among the relationships described in Table 1, we identified those that can be accurately

described as favor relationships. In what follows we focus on the average support and clus-

tering measures setting g′ = Favors and g = All where Favors and All are defined as in

Table 2.

We provide a similar analysis for all sorts of combinations of relationships in the Supple-

mentary Appendix.

Figure 7 shows the inverse cumulative distribution function of support in the favor net-

works in our sample of 75 villages along with the plots of the fraction of links supported by

exactly k other links in the marginal village.

The support measure is generally well above fifty percent, and ranges from more than 50%

to over 80% depending on the village. We note that this measurement is likely to be biased

downwards by the measurement error of missing nodes, as we detail in the supplementary

appendix. Moreover, when we look at certain kinds of favor relationships, the support

measure exceeds 85% on average across the villages (again, see the supplementary appendix).

Our theory suggests that in robust favor exchange networks, that any relationship that is

not self-sustaining on a bilateral level requires support. In the data we see support that is less

than 100 percent. Of course, this could be due to some relationships having frequent enough

interaction to be self-sustaining. It could also be due to various forms of measurement error,

such as missing nodes and also potentially missing links even within the observed networks.

We discuss the measurement error possibility in more detail in the Supporting Appendix.

Given that the data does not include information allowing us to determine which relation-

ships are bilaterally self-sustaining, we need to look at other things to determine whether

support is simply incidental or reflects the enforcement of cooperative behavior as in our

theory. One way to do this is to examine pairs of nodes i and j and then examine the extent

to which they have a friend in common, and to see whether this happens more frequently
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Figure 7: The inverse cumulative distribution function of support levels in the villages: The

horizontal axis is the fraction of villages having support no more than the amount listed on

the vertical axis. The upper-most curve is the inverse CDF of the fraction of supported favor

relationships in the All network. The five curves below list the breakdown of the fraction

for the marginal village by various levels of support: “by k” indicates the fraction of links in

that village that are supported by exactly k other nodes (so that i and j have k friends in

common), and so the five lines below sum to the curve above.
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when i and j are exchanging favors compared to situations where they are not. Formally,

we do so by extending the definition of support from linked pairs of agents to arbitrary pairs

of agents.

We define the support of a collection of pairs of agents P ⊂ N ×N relative to a network

g, denoted S(P , g), by

S(P , g) =

∑
{i,j}∈P 1{∃k,ik∈g,kj∈g}∑

{i,j}∈P 1
.

So, the support measures we considered previously were those where P was the set of pairs

of agents who exchanged favors with each other. This more general measure allows us to

also measure support for the situation where P is the set of agents who do not exchange

favors. Thus, we can see whether support is something correlated with favor exchange.

Figure 8 shows the inverse cumulative distribution function of support in the favor net-

works in our sample of 75 villages along with the plots of the support of the pairs of agents

that do not share a link in the favors network in the marginal village. The difference is

statistically significant beyond the 99.9 percent level for all villages (based on a one-sided

t-test).30

6.4 Comparing Support to Clustering

As mentioned before, our measure of support provides a new network characteristic. We

now compare it to the clustering coefficient in the villages.

We calculate the clustering in each village and compare it to the corresponding support

measure. In both cases we work with the base of favor relationships and the context of all

relationships. Similar comparisons and conclusions hold for other variations of comparisons

as shown in the Supplementary Appendix.

Figure 9 shows that support levels are not only higher than clustering, but by an order

of magnitude.

There are various ways in which we can see that support is significantly higher than

clustering in these villages. The comparison of having it be higher in 75/75 villages has a

p-value that is effectively 0. We can also see that the average ratio of support over clustering

30Such a test assumes independence between the support of pairs of agents that exchange favors and pairs
of agents that do not exchange favors, which is violated as some such pairs of pairs overlap, but fraction of
overlapping pairs goes to 0 in n. The largest standard error for the estimated difference of support levels
across the 75 villages computed under this independence assumption is 0.084. The analysis relies only on
the agents that were surveyed in each of the 75 villages. The sizes of the surveyed populations range from
95 to 395. The village with the smallest number of linked pairs of agents has 115 linked pairs and 4350 pairs
that do not exchange favors. The village with the highest number of linked pairs has 843, and 76972 pairs
that are not linked.
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Figure 8: The inverse cumulative distribution function of support levels of present and absent

favor links in the villages. The horizontal axis is the fraction of villages having support no

more than the amount listed on the vertical axis. The upper curve reports the fraction of

favor relationships that are supported in the All network. The lower curve is the the fraction

of pairs of agents who do not have a favor relationship who are supported in the All network.
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Figure 9: The inverse cumulative distribution function of support and clustering levels in

the villages: The horizontal axis is the fraction of villages having support/clustering no

more than the amount listed on the vertical axis. The upper-most curve is support and the

lower-most is the clustering coefficient of the marginal village.

across the villages is 2.94 with a standard error of 0.38 and this has a p-value of effectively

0 of being significantly higher than 1.

We can also see how the two compare for various types of relationships, as seen in Table

3.

G Favors Physical Favors Intangible Favors Hedonic Relationships All

Clus(G, All) 0.234 0.257 0.249 0.236 0.222

S(G, All) 0.717 0.72 0.733 0.661 0.696

Table 3: Clustering and Support Measures for various types of relationships. In every case

the All network serves as context.

Thus, we see that support significantly exceeds clustering. This suggests that support

should be a useful measure of network cohesion more generally, one that is complementary

to clustering, and especially useful in situations where social pressures may be needed to

provide incentives.

Moreover, the comparison of support over clustering could also be a useful statistic in

more general social network analysis. If the ratio is close to 1, then effectively a typical agent
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would just have one group of friends, while a higher ratio would suggest that a typical agent

has several disjoint groups of friends.

6.5 Comparing Support in Different Sorts of Relationships

The data also allow us to compare the support measures of favor networks with those of

hedonic networks (HR).

We can test whether there are statistically significant differences in support among net-

works of different types. To do this, we compare the values of any given support measure

village by village. If there were no difference in support between relationships of the types

being compared, then in any given village each one would have a 50% chance to be larger

than the other. Thus, under the null hypothesis that there is no difference in support, the

number of villages where one has a higher support than the other should have a binomial

distribution.

When we examine the data we see significant differences between the support of different

types of relationships. For example, in 72 out 75 villages, the support of intangible favors

S(IFavors, All) is higher than that of social relationships S(Hedonic, All) (both relative to

the all network). Of course the probability of a binomial random variable realizing a one in

72 out of 75 trials is effectively 0.

Table 4 shows the comparison of support measures of various relationships (based on

the context of All relationships). The entry in the table is how many times out of 75, the

support measure in the row is higher than that in the column. The Supporting Appendix

has comparisons for other contexts with similar patterns.

Network g′ Favors Physical Favors Intangible Favors Hedonic All

Favors – 30∗∗ 24∗∗∗ 72∗∗∗ 60∗∗∗

Physical Favors 45∗∗ – 38 69∗∗∗ 56∗∗∗

Intangible Favors 51∗∗∗ 37 – 72∗∗∗ 57∗∗∗

Hedonic 3∗∗∗ 6∗∗∗ 3∗∗∗ – 6∗∗∗

All 15∗∗∗ 19∗∗∗ 18∗∗∗ 69∗∗∗ –

*** significant difference at 1% level ** significant difference at 5% level

Table 4: Comparison of Support Measures. sp

Entry i, j is the number of villages for which S(g′
i, All) > S(g′

j, All)
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6.6 How Observed Support Compares to that Expected in a Ran-

dom Network

We close with a look at whether observed support is statistically significant, even when one

corrects for geography.

This answers whether support patterns are something that arose simply because of ge-

ography, or whether the patterns really reflect social structure. For example, underlying

social processes are likely to be influenced by geography as costs of interacting will often

decrease with proximity. It is plausible that the likelihood of relationships increases with

the physical proximity of the agents.31 And, since physical proximity has some transitive

features, relationships that are geographically correlated may display completed triads and

therefore high support levels. To address this, we estimate exponential random graph models

(“ergms”) using the observed networks. In particular, we estimate ergms with the likelihood

of a link being present depend on (i) whether the link is supported, (ii) the observed density

of the network, and (iii) the physical distance of the agents involved (measured using the

GPS coordinates of their respective households)32 As should be expected, in every network

(i.e., every village) the coefficient associated to physical distance was negative and signifi-

cant at well less than the 1% level. Nonetheless, the coefficients on support are still large

and statistically significant.33 Figure 10 shows the support coefficient estimates with 99%

confidence bars when analyzing g′ = Favors with g = All as a context. The Supplemen-

tary Appendix contains the full set of ergm estimates for many other base-context pairs.

31This could be for two reasons, both having links emerge because of proximity, and having people likely
to be linked locate close to each other.

32The exponential random graph model that we estimate is:

log(Pr(G = g)) = β0 + β1

∑
i<j

gij + β2

∑
i<j

gijs(g,g′)ij + β3

∑
i<j

d(i, j)gij

where, G is a random variable taking values in the space of all possible graphs on N nodes, g is a particular
network, s(g) is the associated indication of whether the link ij is supported or not (which may be calculated
relative to a related “all network” g′), and d(i, j) denotes the physical distance between i and j as measured by
the GPS coordinates of their households, and normalized by the mean distance between surveyed households
in the village. Given that such a model has g on both sides of the equation and in a non-linear manner,
estimating such models is complicated along several dimensions. The standard method uses an MCMC
(Markov chain Monte Carlo) method due to Snjiders (2002).

33To make sense of the size of the coefficient on support being roughly 2, from the ergm specification some
simple algebra shows that

log[Pr(gij = 1|g−ij)/ Pr(gij = 0|g−ij)) = β1 + β2s(g,g′)ij + β3d(i, j),

so that having a link be supported roughly increases by 2 or more the log odds ratio that the link will be
present in the network.

36



Figure 10: The coefficients associated to the support terms in exponential random graph

models of the “favors” networks in the 75 villages. The value of a link’s support binary

variable is 1 if and only if the link is supported in the All network.

The ergm estimates suggest that the observed support levels are not merely an artifact of

geographic proximity. More specifically support of a link in the All network is a significant

predictor (in the statistical sense) of the presence of that link in the favors network, when

controlling for density and for geographic proximity of the agents involved.

7 Conclusion

Our analysis of favor exchange provides various insights. We have shown that renegotiation

results in specific critical structures and that robustness involves social quilts and more

generally in supported links. Support provides a new local characteristic of networks and

insight into closure and an operationalization of a sort of social capital which emphasizes

social structure.

Our empirical analysis finds high levels of support in favor networks in rural Indian

villages. We also find that support levels are much higher than clustering, and that support

for favor networks is higher than that of more “hedonic” networks.
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7.1 Information and Robustness

In closing, we discuss some issues regarding the information observed by the agents in the

society.

We have deliberately looked at a complete information setting for two reasons. First,

in many applications, including the Indian villages we look at empirically, word of mouth

communication travels much faster than actions and so if someone behaves badly other

people hear about it quickly. Gossip serves a strong purpose. Second, much of the previous

literature has focused on the information as the driver of network structure in providing

incentives and so our analysis is completely complementary.

Nonetheless, there is an important observation that comes out. Our analysis ends up

yielding social quilts which end up having strong informational robustness properties in

addition to the properties that we have investigated. In particular, agents only need to

know what the agents whom they are linked to directly are doing, and for all of those agents

they also have common friends - so they are both directly, and indirectly connected at a

short distance through an independent channel to all of the agents whose behavior they

have to be aware of in order to best respond. Thus, even with very limited communication,

the robust social networks that we have uncovered can be sustained. Our analysis ends up

yielding networks that might otherwise be justified for their informational properties from a

completely different perspective.
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Bramoullé Y., and R. Kranton (2007) “Risk-sharing networks,” Journal of Economic

Behavior and Organization, 64(3-4), 275 - 94

Coleman, J.S. (1988): “Social Capital in the Creation of Human Capital,” American

Journal of Sociology 94 (Supplement: Organizations and Institutions: Sociological and

Economic Approaches to the Analysis of Social Structure), S95 - S120.

Coleman, J.S. (1990) Foundations of Social Theory, Cambridge Mass.: Harvard Uni-

versity Press.

Dasgupta, P. (2000) Social capital : a multifaceted perspective, World Bank, Wash-

ington D.C.

De Weerdt J. and S. Dercon (2006) “Risk-sharing networks and insurance against

illness,” Journal of Development Economics, 81(2), 337 - 356.

Ellison G. (1994) “Cooperation in the prisoner’s dilemma with anonymous random

matching”, The Review of Economic Studies, 61, 567 - 588.

Fafchamps M., and S. Lund (2003) “Risk-sharing networks in rural Philippines”, Jour-

nal of Development Economics, 71: 261 - 87

Farrell, J., and E. Maskin (1989) “Renegotiation in repeated games,” Games and

Economic Behavior, 1(4), 327 - 360.

Glaeser, E. L., D. Laibson, and B. Sacerdote (2002) “An Economic Approach to Social

Capital,” Economic Journal, 112(483), 437 - 458.

Grief A. (1989) “Reputation and coalitions in medieval trade: evidence on the Maghribi

traders”, The Journal of Economic History,

39



Guiso, L., P. Sapienza, and L. Zingales (2004) “The Role of Social Capital in Financial

Development,” American Economic Review, 94, 526556.

Haag, M. and R. Lagunoff (2006) “Social Norms, Local Interaction, and Neighborhood

Planning,” International Economic Review,

Homans, C.G. (1958): “Social Behavior as Exchange”, American Journal of Sociology

62:597606.

Jackson M.O. (2008) Social and Economic Networks, Princeton, NJ: Princeton Univ.

Press

Jackson M.O., Wolinsky A. (1996) “A strategic model of social and economic net-

works,” J. Econ. Theory, 71(1), 44 - 74.

Kandori, M. (1992) “Social Norms and Community Enforcement,” Review of Economic

Studies, 59, 63 - 80.

Karlan D., M. Mobius, T. Rosenblat and A. Szeidl (2009) “Trust and Social Collateral,”

Quarterly Journal of Economics, 124(3), 1307 - 1361.

Krackhardt, D. (1996) “Social networks and the liability of newness for managers,” J.

Organ. Behavior, 3, 159 - 173.

Kreps, D.M. (1997) “Intrinsic Motivation and Extrinsic Incentives,” American Eco-

nomic Review: Papers and Proccedings, 87:2, 359 - 364.

Lippert, S. and G. Spagnolo (2009) “Networks of Relations and Word-of-Mouth Com-

munication,” SSE/EFI Working Paper in Economics and Finance No 570.

Loury, G (1977) “A Dynamic Theory of Racial Income Differences,” Chapter 8 of

Women, Minorities, and Employment Discrimination, Ed. P.A. Wallace and A. Le

Mund. Lexington, Mass.: Lexington Books.

Mihm, M., R. Toth and C. Lang “What Goes Around Comes Around: A Theory of

Indirect Reciprocity in Networks,” CAE Working Paper 09-07

Okuno-Fujiwara M. and A. Postlewaite (1995) “Social norms and random matching

games”,and Economic Behavior, 9(1), 79-109.

Putnam, R. (1993) “The prosperous community: social capital and public life,” Amer-

ican Prospect, 13, 42, 35.

40



Putnam, R. D. (1995): “Bowling Alone: America’s Declining Social Capital,” Journal

of Democracy, 6(1), 65 - 78.

Putnam, R. (2000) Bowling Alone: The Collapse and Revival of American Commu-

nity”, (Simon and Schuster).

Raub, W. and J. Weesie (1990) “Reputation and Efficiency in Social Interactions: An

Example of Network Effects,” American Journal of Sociology, 96:3, 626-654.

Simmel, G. (1950) The Sociology of George Simmel, Trans: K. Wolf., Glencoe: Free

Press.

Sobel, J. (2002) “Can We Trust Social Capital?” Journal of Economic Literature, 40,

139-154.

Tabellini, G. (2009) “Culture and Institutions: Economic Development in the Regions

of Europe,”Journal of the European Economic Association, 6, 255 - 294.

Woolcock, M. (1998) “Social Capital and Economic Development: Toward a Theoret-

ical Synthesis and Policy Framework,” Theory and Society, 27(2), 151-208.

Appendix: Proofs of Results

Proof of Proposition 2: Let g′ be a smallest nonempty network (in the sense of set

inclusion) that is a subset of g and lies in G(m). Such a network exists (possibly g itself)

and is thus critical by definition. The second statement is easily verified by construction,

but also follows as a corollary to Theorem 1 which is proven below.

Proof of Theorem 1:

We first show that if g ∈ RPNk then g ∈ TCk. Given a network g ∈ RPNk, by the

definition it follows that g is sustainable on the equilibrium path. So for any i and ij ∈ g,

if i is called upon to do a favor for j and does not, then at least one possible continuation34

must lead to a network g′ ⊆ g − ij such that g′ ∈ RPNk′ = TCk′ , di(g
′) ≤ di(g) −m, and

there is no g′′ ⊂ g − ij such that g′′ ∈ RPNk′′ and D(g′′) > D(g′). If this were not the

case, then if i did not perform the favor, he or she would save the cost c and lose at most

m − 1 links in any continuation. Thus, i would benefit from deviating and not performing

the favor since by the definition of m, (1) holds and so the cost of the favor outweighs the

34Even though agents use pure strategies, nature picks which favors are asked in the future, so there are
potentially many continuations from any given node.

41



loss in future payoffs from losing no more than m− 1 links, which contradicts the fact that

g is sustained as an equilibrium. Thus, for every i and ij, there exists g′ ⊂ g − ij such that

g′ ∈ TCk′ for some k′, di(g
′) ≤ di(g) −m, and there is no g′′ ∈ TCk′′ such that g′′ ⊂ g − ij

and D(g′′) > D(g′). Therefore g ∈ TCk.

Next, we show that if g ∈ TCk then g ∈ RPNk. We do this by induction on the number

of links in a network. In order to establish the result, we also need to be careful about what

happens starting at subgames that are off the equilibrium path. As such, we work with a

stronger induction hypothesis, with the induction indexed by k.

The induction hypothesis is that starting from any node and any g0 ∈ Gk, there exists a

pure strategy subgame perfect equilibrium continuation such that

• (i) there is a unique network g1 ∈ RPNk1 for some k1 ≤ k that is reached in the

continuation, with g1 = g0 if g0 ∈ TCk,

• (ii) on the equilibrium continuation path a favor is performed if and only if it corre-

sponds to a link in g1, and

• (iii) in any subgame starting with some network g′ ∈ Gk′ with k′ ≤ k if g′′ is played

in perpetuity with some probability in the continuation then g′′ ∈ RPNk′′ for some k′′

and there does not exist any g′′′ ⊂ g′ such that g′′′ ∈ RPNk′′′ and ui(g
′′′) ≥ ui(g

′′) for

all i with strict inequality for some i.

As a first step in the induction note that it follows directly from the definitions that

RPN0 = {∅} = TC0. Note also that starting from g0 = ∅ there is a unique subgame perfect

equilibrium continuation (no favors can be supplied and no links can be maintained) and so

it follows directly that conditions (i)-(iii) are satisfied. So, let us presume that the induction

hypothesis holds for all k′ < k. We show that the same is true for k.

Begin with the case such that g0 = g ∈ TCk. On the equilibrium path, have all agents

maintain all links (so Li(gt) = Ni(gt) whenever gt = g0 = g) and perform all favors. The

off the equilibrium path strategies are described as follows. If an agent i is called upon

to provide a favor for an agent j such that ij ∈ g and does not do the favor, then the

continuation is as follows. Given that g ∈ TCk, by the definition of transitive criticality,

there exists g′ ⊆ g − ij such that g′ ∈ TCk′ = RPNk′ , di(g
′) ≤ di(g) − m and there is no

g′′ ∈ TCk′′ = RPEk′′for any k′′ such that g′′ ⊂ g − ij and D(g′′) > D(g′). Denote this

network by g(i, j) = g′. Following i’s failure to provide a favor to j, have the continuation

be such that L`(g − ij) = Nk(g(i, j)) for all `. This results in the network g(i, j) ∈ RPNk′

following the link announcement phase, and so from then on there is a pure strategy subgame

perfect equilibrium sustaining g(i, j) and satisfying (i) - (iii) by the induction step, and so

have agents play the strategies corresponding to such an equilibrium in that continuation.

42



At all other nodes off the equilibrium path for which strategies are not already specified

we are necessarily at a network with fewer links, and so pick a pure strategy equilibrium

continuation that satisfies (i) - (iii), which is possible by the induction hypothesis.

This satisfies (i)-(iii) by construction. To check that this a subgame perfect equilibrium,

by the specification of the strategies above, we only need to check that no agent wants to

deviate from the equilibrium path, and also that following some i’s failure to provide a favor

to j, no agent ` wants to deviate from L`(g− ij) = N`(g(i, j)). We only need to check these

sorts of deviations since all other continuations were specified to be pure strategy subgame

perfect equilibrium continuations. By construction, an agent i who is called upon to do a

favor for an agent j who deviates will end up losing at least m links, and so by (1) this

cannot be an improving deviation. Next, consider, some agent `’s incentive to deviate from

L` = N`(g0) if g0 is still in play, or else from L`(g − ij) = N`(g(i, j)) following some i’s

failure to provide a favor to j. By not deviating the agent gets the payoff from g0 or g(i, j)

in perpetuity. By deviating, the agent ` will end up with a continuation starting from a

network g′′ ⊂ g0 or g′′ ⊂ g(i, j), respectively, where the agent has not gained any links and

may have lost some links. Since each link has a positive future expected value, this cannot

be an improving deviation.

Next, let us show that from any node in the continuation from some initial g0 /∈ TCk there

exists a pure strategy subgame perfect equilibrium continuation satisfying (i)-(iii). There are

two types of nodes to consider. One is a node at which some agent i is called upon to provide

a favor for an agent j such that ij ∈ g0, and another is a node where agents announce the

links they wish to sustain.

First, consider starting at g0 and a node where agents announce the links that they wish

to sustain. Find some g′ that has the maximal k′ < k of links such that g′ ∈ RPNk′ and

g′ ⊂ g0. For each ` set L′
` = N`(g

′) and then from g′ play a continuation satisfying (i) - (iii)

(by the induction step). If any agent deviates, to L such that L′
` ⊂ L, then play the same

continuation as this will not affect the network formed. Otherwise, the continuation will

lead to some g′′ with strictly fewer links for ` and the continuation will necessarily result in

a lower expected continuation payoff. This establishes the claim for this sort of node.

Next, let us consider a node at which some agent i is called upon to provide a favor for

an agent j such that ij ∈ g0. There are two cases that can follow: one where i performs the

favor and so the resulting network is then g0. In that case, we have just shown that there

is a pure strategy subgame perfect equilibrium continuation satisfying (i) to (iii). Let g′ be

the network sustained on the equilibrium path in one of these that has the most links for i.

If i does not perform the favor, then g − ij ∈ Gk−1 is reached. By the induction hypothesis

again there is a pure strategy subgame perfect equilibrium continuations satisfying (i)-(iii),

and let g′′ be a network sustained by one of these that has the most links for i. Now, based
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on those two continuations, have i choose a pure strategy best response. The claim follows.

Proof of Theorem 2:

We first prove that m-quilts, or tree unions of m-cliques,35 are robust against social

contagion. The proof proceeds by induction on the size k of the tree union.

When k = 1, it is a single m-clique, and so it is renegotiation proof since it is critical.

Note that also that the only subnetwork of a clique that is in G(m) is the empty network.

Thus, it follows that any equilibrium continuation in (any) equilibrium supporting the clique

is the empty network. Thus, a clique is robust against social contagion. Suppose it is true

for all k′ < k. We show that a tree union of k m-cliques is robust against social contagion.

To do this, we show that tree unions of m-cliques and some nonempty strict subnetworks

of m-cliques cannot be renegotiation-proof. This is enough to establish that tree unions

of m-cliques are robust against social contagion, since it shows that link deletions can be

punished by deleting all links in the particular m-clique which the deleted link belonged to

and that will not be Pareto dominated by any continuation renegotiation-proof equilibrium.

Begin with a tree union of k m-cliques, g1, . . . gk.

Let g0 =

( ⋃
h=1...m0−1

gh

)
∪

( ⋃
h=m0...k

g0
h

)
, with m0 ≤ k, g0

h ⊂ gh, g0
h 6= gh ∀h ≥ m0 where

at least one g0
h in the union is nonempty. So this is the tree union of m-cliques and some

nonempty strict subnetworks of m-cliques. Suppose to the contrary that it is renegotiation-

proof.

Note that
⋃

h=m0...k

g0
h is a tree union of networks, and it must therefore have some leafs.

Pick one such leaf and denote it g0
h∗ . Since g0

h∗ is a strict subset of the m-clique gh∗ and a

leaf of the subtree, there is some agent i0 who has a positive number of links, less than m,

in the subtree. Suppose this agent were to fail to provide a favor on a link i0j0 in g0
h∗ . Since

by assumption g0 ∈ RPN , agent i0 would have to lose at least m links if he or she failed

to provide a favor on any link i0j0 in the subtree. Since the agent does not have enough

links to lose in the subtree, he or she would have to lose links in
⋃

h=1...m0−1

gh. Denote the

continuation by g1 which must be renegotiation-proof. Note that g1 cannot be a strict subset

of
⋃

h=1...m0−1

gh, since by the inductive hypothesis
⋃

h=1...m0

gh ∈ RPN . Therefore g1 must have

some links from
⋃

h=m0...k

g0
h. In particular g1 =

( ⋃
h=1...m1−1

gh

)
∪

( ⋃
h=m1...k

g1
h

)
, where g1

h ⊂ gh,

g1
h 6= gh ∀h ≥ m1 and m1 < m0. This last inequality results from the fact that i0 lost links

in
⋃

h=1...m0

gh. Again, any agent who has fewer than m links in
⋃

h=m1...k

g1
h must have links

in
⋃

h=1...m1−1

gh. We the derive a subnetwork g2 from g1 analogously to the way we derived

35It is straightforward to verify that a union of m-cliques is an m-quilt (has no simple cycles of more than
m + 1 nodes) if and only if it is a tree union of m-cliques.
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g1 from g0. Proceeding in this fashion we produce a finite sequence of renegotiation proof

networks g0, g1, ..., g`, with mx < mx−1 at each iteration and there is always at least one link

in
⋃

h=mx...k

gx
h. Continue until m` = 0. Using the same argument with which we found i0,

it can be seen that we would find some node with less than m links in total, contradicting

g` ∈ RPN .

We now prove that robustness against social contagion implies that a network must be

a social quilt. Suppose that g is robust against social contagion. If there is an m-clique,

gc ⊂ g, that has at most one node i connected with nodes outside of the clique then g− gc is

also robust against social contagion. This follows since if any agent j 6= i who is in gc does

not perform a favor, then in order for g to have been sustainable j must expect to lose all of

his or her links in the continuation (as the continuation must be in G(m) to be sustainable

and j will have fewer than m links). Then since all agents other than i in gc will have fewer

than m links in the continuation, they must all lose all links in order for the continuation

to be sustainable. Thus, the clique must disappear in the continuation, but by robustness

against social contagion no other links can be deleted. So, eliminate gc and continue with

the network g − gc. If repeating this process leads to an empty network, then g must have

been a social quilt. Suppose instead, that this elimination process leads to some nonempty g′

(and note that g′ is robust by the definition of robustness) such that g′ contains no m-clique

where at most one agent has links outside of the clique.

By the above process, any remaining m-cliques that are subnetworks of g′ must satisfy

the condition that the clique has at least two agents who have links outside of the clique. So,

identify some remaining m-clique that is a subnetwork of g′ and delete a link between a pair

of agents, say i and j, who have links outside of the clique. The remaining network is still

in G(m) since i and j necessarily had more than m links in g′. Note also that this removal

of the link ij does not change the fact that each other clique in g′ has two agents with links

outside of the clique (as if either of those agents is i or j then they still maintain m− 1 links

each in the original clique). Repeat this process once for each clique in the original network

such that at least two agents have links outside of the clique until there are no m-cliques left

in the resulting network, and let this nonempty resulting network be g′′ ∈ G(m).

Thus, a direct extension (literally word for word) of the proof of Proposition 2 implies

that there is a subnetwork of g′′ that is “minimally” critical36 and nonempty. Let that

network be g′′′. It follows from our derivation of g′′ that g′′′ cannot be a clique. However,

since g′′′ is minimally critical, then by robustness and the renegotiation-proofness of g, there

is an equilibrium where in any subgame starting from g′′′, it is sustained. However, starting

from g′′′ if any link is deleted then all links must be deleted in any equilibrium continuation

36A critical network is called minimally critical if any deletion of a link leads the collapse of the whole
network, that is if any subnetwork of the original network that lies in G(m) is the empty network.
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by the definition of minimal criticality. This contradicts the robustness of g, since g′′′ is not

a clique and hence there is some link ij and some k who is not linked to both i and j who

loses a link as a result of the deletion of the link ij.

Proof of Proposition 3: First, we analyze the fraction of subgame perfect equilibria.

Denote by SPEn the set of subgame perfect networks on n nodes. A network is a subgame

perfect network if and only if no node in the network has at least 1 and no more than m− 1

links. We set a very loose upper bound on the number of networks in which at least one

node has at least 1 and no more than m− 1 links by first picking any node and its links and

then allowing the remaining n− 1 nodes to link among themselves however they want, and

then multiplying by n to allow for any starting node. A lower bound on the cardinality of

SPEn is 2
n(n−1)

2 minus this bound. Therefore: |SPEn| ≥ 2
n(n−1)

2 −n
m−1∑
k=1

(
n− 1

k

)
2

(n−1)(n−2)
2 ≥

2
n(n−1)

2 − (m− 1)n

(
n− 1

m− 1

)
2

(n−1)(n−2)
2 ,

where the inequality on the right holds for any m such that n − 1 > 2(m − 1). This

implies that

|SPEn|
|Gn| ≥ 1− (m−1)n(n−1

m−1)2
(n−1)(n−2)

2

2
n(n−1)

2

= 1− (m−1)n(n−1
m−1)2

(n−1)(n−2)
2

n−1P
k=0

(n−1
k )2

(n−1)(n−2)
2

= 1− (m−1)n(n−1
m−1)

n−1P
k=0

(n−1
k )

= 1− (m−1)2( n
m−1)

n−1P
k=0

(n−1
k )

→ 1 as n goes to infinity

Next, we find an upper bound on the fraction of social quilts that goes to 0 as n grows.

There are two possible sets of degrees that an agent can have in a network: A = {km < n|k
is a nonnegative integer} and B = {k < n|k is an integer} − A. In a social quilt g, every

agent i has a degree di(g) ∈ A. We show that the number of networks such that all agents

have degrees in A is a fraction of no more than 1
2

n−1
of all possible networks.

To do this we catalog networks g by first forming a network among the agents 1 to n−1,

and then considering links between those agents and agent n. We show that regardless of

the starting network g0, there is at most one configuration of links for agent n (out of 2n−1

possible) that will allow all agents to have degrees in A. The result then follows directly.

Beginning with the network g0 among agents 1 to n− 1, if di(g0) ∈ A then it must be that

there is no link between i and n in g. In contrast, if di(g0) /∈ A then in order for di(g) to be

in A it would have to be that i and n are linked in g. Thus, if there is some configuration

of links between n and the other agents that results in the correct configuration of degrees,
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there is at most one such configuration out of the 2n−1 possible configurations.

Proof of Theorem 3: Suppose to the contrary that g is robust against social contagion

and ij is not supported. Consider h /∈ {i, j} and delete a link of h (and there is at least

one such h who has a link, as the single link ij is not sustainable independently as part of a

subgame perfect equilibrium). This leads to a continuation g′ that is robust against social

contagion and such that ij ∈ g′, as otherwise by robustness both i and j would have to

be neighbors of h which would contradict the fact that ij is not supported. Iterate on this

argument. Eventually, we reach the empty network which is a contradiction since ij cannot

be deleted as the result of deletion of a link of just a neighbor of one of the two nodes (by

the definition of robustness against social contagion).

47


	Introduction
	Related Literature

	A Model of Favor Exchange
	Networks, Favors, and Payoffs
	The Game
	Equilibrium
	Renegotiation-Proofness


	Characterizing Renegotiation-Proof Networks
	Critical Networks and Renegotiation-Proofness
	A Complete Characterization of Renegotiation-Proof Networks: Transitively Critical Networks

	Robustness
	Robustness Against Social Contagion
	Social Quilts

	The Relative Number of Robust Networks Compared to Subgame Perfect Equilibria

	Asymmetric Payoffs
	A Special Heterogeneous Case

	Support vs. Clustering in Favor Networks in Rural India
	Description of the Data
	Measuring Support and Clustering
	Support in the Data
	Comparing Support to Clustering
	Comparing Support in Different Sorts of Relationships
	How Observed Support Compares to that Expected in a Random Network

	Conclusion
	Information and Robustness

	References

