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Motivation

• Misinformation is everywhere and often spread by certain individuals, groups, or

news outlets.

• Examples:

– During the 2004 presidential elections a large fraction of independent voters

came to question Senator Kerry’s Vietnam war record as a result of Swift

Boat Ads.

– A large fraction of the population in the Middle East believes that 9/11 was

a US conspiracy (including 28% of US Muslims)

– As of 2007, 41% of the US population still believes that Saddam Hussein was

directly involved in 9/11
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Question

• How does information spread in a society consisting of individuals

communicating and sharing information?

• How does misinformation spread and affect beliefs?

• What types of societies and communication structures are “robust” to

misinformation?
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Approach and Model: Bayesian versus Non-Bayesian

• Model society as a social network of communicating agents.

• “Learning”: forming correct beliefs about the underlying state

• Since we focus on spread of misinformation, we adopt a non-Bayesian

framework, where some agents are able to “influence” the views of others.

• Why not Bayesian learning?

• With Bayesian learning, the influence on the views of an agent will depend on his

belief about whether the person communicating with him is trying to influence

him or not

– Both complicated and limiting the extent of misinformation

– Non-Bayesian learning similar to “worst-case”
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Approach and Model: Bayesian versus Non-Bayesian

• With Bayesian learning, a finite number of influential agents would have no

impact on asymptotic beliefs

– Acemoglu, Dahleh, Lobel and Ozdaglar (08):

∗ Model of Bayesian learning over an arbitrary social network

∗ Main result: with unbounded beliefs (i.e., unbounded likelihood ratios)

and weak regularity conditions on the structure of the network, asymptotic

learning

∗ Additional result: asymptotic learning will not be disrupted by a finite

number of agents with misinformation, even if the purposefully try to

manipulate learning
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Approach and Model: Interaction Structure

• Focus on non-Bayesian or rule-of-thumb learning

• Distinguish between two kinds of agents:

– Regular

– Forceful: opinionated individuals, news sources, community leaders, political

parties...

• Random matching according to an arbitrary communication matrix P , capturing

social connections and informational links.

• pij : probability that agent i observes j.

– If j is a regular agent, then meeting ≈ exchange of information—i and j

exchange information and agree with some probability, in which case they

take an average of their beliefs.

– If j is a forceful agent, then meeting ≈ i being influenced by j (e.g., listening

to the news)—with some probability i adopts j’s belief (with ε weight on his

own belief.

6



Approach and Model: Method of Analysis

• Transform the evolution of beliefs into transitions of a non-homogeneous Markov

chain.

• Convergence analysis using a Lyapunov function argument

• Decompose the mean transition matrix of the Markov chain into the sum of a

doubly stochastic matrix and an influence matrix (reflecting the influence of

forceful agents).

• Develop bounds on the stochastic behavior of left eigenvectors as a function of

the doubly stochastic and the influence matrices

– Using perturbation theory for Markov chains (Schweitzer 68), spectral graph

theory (Cheeger 70), and min cut-max flow theorem (Ford-Fulkerson 56)
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Approach and Model: Results I

• Notion of Learning: (almost sure) convergence to consensus with 1/n weight

on the initial beliefs of each agent

– Capturing aggregation of decentralized information across agents

• In the absence of forceful agents, in a society with n agents, beliefs converge to

1/n-weighted average almost surely.

• Result 1: With forceful agents, beliefs still converge to consensus almost surely,

but this consensus value is a random variable.

• Question: How far is this random consensus from the 1/n-weighted average?

• Assumption: nonzero (small) probability that even forceful agents obtain

information from (or be influenced by) others.
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Approach and Model: Results II

• Result 2: General bounds on the gap between the mean consensus and the

1/n-weighted average as a function of:

– Size of society (as n gets large holding number of forceful agents constant,

consensus arbitrarily close to 1/n-weighted average in some topologies)

– Number and connections of forceful agents (as the probability that others

observe forceful agents diminishes, consensus closer to 1/n-weighted

average).

– Network topology (in particular, whether the induced Markov chain is

slow-mixing or fast-mixing).

• Result 3: Exact characterization of the difference between the mean consensus

and the 1/n-weighted average as a function of:

– Mean passage times of the induced Markov chain

– “Relative minimum cuts” between regular and forceful agents: minimum

number of edges between subsets of nodes that include the regular and

forceful agents in the network
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Related Literature

• Most closely related non-Bayesian learning models:

– DeGroot (74), DeMarzo, Vayanos, Zwiebel (03), Golub and Jackson

(07), (08)

– Beliefs updated using simple averaging rules

– Conditions on the network structure that lead to asymptotic learning

• We have an alternative model of spread of misinformation, which turns out to be

more tractable to characterize and quantify the impact of influential agents on

the asymptotic belief distributions
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Model: Agents and Beliefs

• Finite society consisting of a set N = {1, . . . , n} of agents.

• Each agent i endowed with initial belief xi(0).

• With a law of large numbers reasoning, we are interested in whether “social

beliefs” or “consensus” across agents will reflect

µ =
1

n

n∑
i=1

xi(0).

• Interpretation: an extreme xi(0) will have little “influence” in µ.

• But it may have a large influence when beliefs converge to some other random

variable (or fail to converge).

• Forceful agents: those with extreme xi(0)’s having potential influence on

others’ beliefs.
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Model: Communication and Information Exchange

• Time is continuous. Each agent is recognized according to iid Poisson processes.

• Let k = 1, 2, 3, ... index dates of communication.

• xi(k): belief of agent i after kth communication.

• Conditional on being recognized, agent i observes agent j with probability pij .

• Conditional on i observing agent j:

– With probability βij , the two agents agree and exchange information

xi(k + 1) = xj(k + 1) = (xi(k) + xj(k))/2.

– With probability γij , disagreement and no exchange of information.

– With probability αij , i is influenced by j

xi(k + 1) = εxi(k) + (1− ε)xj(k)

for some ε > 0 small. Agent j’s belief remains unchanged.

• We say that j is a forceful agent if αij > 0 for some i.
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Model: Notation

• Let x(k) = (x1(k), . . . , xn(k)) denote the vector of agent beliefs at time k.

• The agent beliefs updated according to

x(k + 1) = W (k)x(k),

where W (k) is a random matrix given by

W (k) =





Aij ≡ I − (ei−ej)(ei−ej)′

2
with probability pijβij/n,

Jij ≡ I − (1− ε) ei(ei − ej)
′ with probability pijαij/n,

I with probability pijγij/n.

• The matrix W (k) is a (row) stochastic matrix for all k (i.e.,
∑n

j=1[W (k)]ij = 1

for all i, k), and is independent and identically distributed over all k.

• We introduce the transition matrices

Φ(k, s) = W (k)W (k − 1) · · ·W (s + 1)W (s) for all k and s with k ≥ s,

• The belief update rule can be written as

xi(k + 1) =

n∑
j=1

[Φ(k, s)]ij xj(s) for all k ≥ s, and all i.
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Model: Assumptions

Assumption (Communication Probabilities)

(a) For all i, the probabilities pii are equal to 0.

(b) For all i, the probabilities pij are nonnegative for all j and they sum to 1 over j,

pij ≥ 0 for all i, j,

n∑
j=1

pij = 1 for all i.

• Natural assumption

• The communication matrix P = [pij ]i,j∈N

Mean connectivity graph: (N , E), where E is the set of edges induced by the

positive communication probabilities pij , i.e.,

E = {(i, j) | pij > 0}.

Assumption (Connectivity) The graph (N , E) is connected, i.e., for all i, j ∈ N ,

there exists a directed path connecting i to j with edges in the set E .

• This assumption ensures that information (or misinformation) does not get

trapped in a subnetwork.
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Model: Assumptions (continued)

Assumption (Interaction Probabilities) For all (i, j) ∈ E , the sum of the averaging

probability βij and the influence probability αij is positive, i.e.,

βij + αij > 0 for all (i, j) ∈ E .

• Positive probability that even forceful agents eventually exchange information.

• For example, they obtain their own information from the other agents in the

society.

– Otherwise, not a “connected network”
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Preliminary Result

Theorem: Let Communication Probabilities, Connectivity, and Interaction

Probabilities assumptions hold and suppose that there are no forceful agents, i.e.,

αij = 0 for all (i, j) ∈ E . Then, the beliefs {xi(k)}, i ∈ N converge to a consensus

belief of 1
n

∑n
i=1 xi(0), i.e.,

lim
k→∞

xi(k) =
1

n

n∑
i=1

xi(0) for all i with probability one.

• Well-known result as a benchmark for comparison
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Main Theorems (I): Convergence to Consensus

Theorem: Let Communication Probabilities, Connectivity, and Interaction

Probabilities assumptions hold. Then, the beliefs {xi(k)}, i ∈ N converge to a

consensus belief, i.e., there exists a scalar random variable x̄ such that

lim
k→∞

xi(k) = x̄ for all i with probability one.

• Convergence to consensus guaranteed.

• But with forceful agents, consensus belief is a random variable.

• Rate of convergence can be written as a function of the number of agents and

the spectral properties of the underlying mean connectivity graph.

– Due to lack of doubly stochasticity (i.e., both row and column stochasticity)

of the evolution matrix W (k), convergence rate can be slow.
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Proof Sketch

• With positive probability (uniformly bounded away from 0), there exists a scalar

η > 0 such that

[Φ(s + n2d− 1, s)]ij ≥ ηn2d, for all i, j, and s ≥ 0,

where d is the maximum shortest path length over any (i, j) in the mean

connectivity graph.

• Let {x(k)} denote the belief sequence.

• Define the Lyapunov function V (k) = M(k)−m(k), where

M(k) = max
i∈N

xi(k), m(k) = min
i∈N

xi(k).

• Show V (k) strictly decreases with positive probability for all k.
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Characterization of Social Influence

• We are interested in providing an upper bound on

E

[
x̄− 1

n

n∑
i=1

xi(0)

]
,

where x̄ is the stochastic consensus belief.

• Consider the mean interaction matrix

W̃ = E[W (k)] for all k ≥ 0.

• Under our assumptions, W̃ can be viewed as the transition matrix of an

irreducible aperiodic Markov chain (cf. connectivity assumption and positive

diagonal assumption, implying self-loops)

• Implications:

– There exists a probability vector π such that limk→∞ W̃ k = eπ′ (e is the

vector of all ones).

– E[x̄] is given by a convex combination of the initial agent values xi(0) with

weights given by π, i.e.,

E[x̄] =

n∑
i=1

πixi(0) = π′x(0).

19



Main Theorems (II): Bounds on Limiting Belief Distributions

• Bounds on how far asymptotic beliefs are from 1
n

∑n
i=1 xi(0).

• Bounds depend on two things: total influence and the parameter δ related to

the mixing time of the graph

Theorem:

(a) Let π denote the unique stationary distribution of W̃ . Then,

∥∥∥π − 1

n
e
∥∥∥
∞
≤ 1

n

∑
i,j pijαij

n

(1− δ)−
∑

i,j pijαij

n

,

where δ > 0 is a constant given by

δ = (1− nξd)
1
d , ξ = min

(i,j)∈E

{
pij

n

(1− γij)

2

}
,

d is the maximum shortest path length in the mean connectivity graph (N , E).

(b) We have

∣∣∣E[x̄]− 1

n

n∑
i=1

xi(0)
∣∣∣ ≤ 1

n

∑
i,j pijαij

n

(1− δ)−
∑

i,j pijαij

n

‖x(0)‖∞.
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Proof Sketch

• Relies on a fundamental result from perturbation theory of Markov Chains

• Consider an irreducible aperiodic Markov Chain (MC) with transition probability

matrix T and stationary distribution π

• The fundamental matrix of the MC is given by Z = (I − T − T∞)−1, where

T∞ = eπ′. It is straightforward to show that

Z =

∞∑

k=0

(T k − T∞).

• Let Y = Z − T∞ be the deviation matrix of the MC.

Theorem [Schweitzer 68] Let D be an n× n perturbation matrix such that∑n
j=1[D]ij = 0 for all i. Assume that the perturbed MC with transition matrix

T̂ = T + D is irreducible and aperiodic.

Then, the perturbed MC has a unique stationary distribution π̂, and the matrix

I −DY is nonsingular. Moreover, the change in the stationary distributions,

d = π̂ − π, is given by

d = πDY (I −DY )−1, or equivalently d = π̂DY.
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Proof Sketch

• In view of the belief update rule, we can write W̃ as

W̃ =
1

n

∑
i,j

pij

[
βijAij + αijJij + γijI

]

=
1

n

∑
i,j

pij

[
(1− γij)Aij + γijI

]
+

1

n

∑
i,j

pijαij

[
Jij −Aij

]≡ T + D

• We obtain a bound on

‖DY ‖∞ = ‖
∞∑

k=0

D(T k − T∞)‖∞ ≤
∞∑

k=0

‖DT k‖∞,

where the equality follows since T∞ = 1
n
ee′, and therefore DT∞ = 0.

• For any z with ‖z‖∞ = 1, ‖DT kz‖∞ can be upper bounded by

‖DT kz‖∞ ≤ 1

n

∑
i,j

pijαijV (k), with V (k) = max
l

(T kz)l −min
l

(T kz)l.

• V (k) decreases geometrically at a rate δ.

• The result follows by combining this with

‖d‖∞ ≤ ‖y‖∞ ‖DY ‖∞
1− ‖DY ‖∞ .
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Main Theorems (III): Bounds on Limiting Belief

Distributions

Theorem: Let π denote the unique stationary distribution of W̃ . Then,

∥∥∥π − 1

n
e
∥∥∥

2
≤ 1

n

∑
i,j pijαij

n

(1− λ2)−
∑

i,j pijαij

n

,

where λ2 is the second largest eigenvalue of the matrix T (recall T = W̃ −D).

• λ2 is the second largest eigenvalue of the doubly stochastic part of the mean

interaction matrix.

• λ2 related to mixing time of a Markov Chain (i.e., an asymptotic measure of

the convergence of the state distribution to the uniform stationary distribution)

– (1− λ2): spectral gap

– When the spectral gap is large, we say that the Markov Chain induced by the

matrix T is fast-mixing
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Implications and Intuition

Influence in Connected Societies: If
∑

i pij

n
is small for each forceful j,

E[x̄] ≈ 1

n

n∑
i=1

xi(0).

• If the probability with which forceful agents are observed is small, then this

information will not spread fast.

Influence and Social Network Structure: All else equal, the gap between E[x̄] and
1
n

∑n
i=1 xi(0) is smaller when the Markov chain induced by T is fast-mixing.

• Intuition: With a fast-mixing T , forceful agents will themselves be influenced by

others (since βij + αij > 0 for all i, j) and misinformation will not spread in the

network.
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Spectral Gap and Network Properties

Capture network properties in terms of the conductance of a graph

• Given an n × n symmetric transition proba-

bility matrix T , associate an undirected graph

G = (N , E) with N = {1, . . . , n}, and edge

weights Tij .

• The conductance ρ(T ) of the graph is given by

ρ(T ) = min
S⊂N
|S|≤n

2

∑
i∈S

∑
j∈Sc Tij

|S| ,

i.e., “normalized min-cut of the graph”

• For a complete (fully connected) graph,

ρ(T ) ≈ n2 × 1/n

n
= O(1)

S

Sc

SSc

Theorem (Cheeger’s inequality): The spectral gap, 1− λ2(T ), satisfies

ρ(T )2

2
≤ 1− λ2(T ) ≤ 2ρ(T )
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Influence in Large Societies

• Consider complete graphs and expanders

– Informally, graphs in which any “small” subset of vertices has a relatively

“large” neighborhood.

– Random graphs under the preferential connectivity model are expanders

Mihail, Papadimitriou, Saberi (03).

• Define an agent j to be locally forceful if
∑n

i=1 pijαij = O(1)

• Assume that there are M = O(1) locally forceful agents.

• For n large,

E[x̄] ≈ 1

n

n∑
i=1

xi(0).

– In a large connected society, misinformation of locally forceful agents will not

spread.

– Intuition: The more connected the network, the less the effect of locally

forceful agents
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Location of Forceful Agents I

Example: Consider the barbell graph (two complete graphs connected with a line),

and one agent influencing two agents in the same cluster

• Related to homophily in societies Golub and Jackson (08)

• Intuitively, influence in this graph should be limited (since each cluster is

well-connected)

• However, the conductance of the barbell graph is

ρ(T ) ≈ 1

n
= O

( 1

n

)
,

implying a small spectral gap and therefore large value of the bound.

• Suggests considering cuts associated with the forceful and regular agents
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Location of Forceful Agents II

• Bounds so far characterize the variation of the stationary distribution in terms of

total influence of forceful agents,
∑

i,j pijαij , and the second largest eigenvalue

of matrix T

• Bounds do not depend on the location of the forceful agents

Example: Consider 6 agents connected with undirected graph induced by T and two

different misinformation scenarios:

• forceful agent over a bottleneck and forceful agent inside a cluster

The stationary distribution for each case is given by

πa =
1

6
(1.25, 1.25, 1.25, 0.75, 0.75, 0.75)′, πb =

1

6
(0.82, 1.18, 1, 1, 1, 1)′.
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Main Theorems (IV): Exact Characterization of Stationary

Distribution

Theorem: Let π denote the unique stationary distribution of W̃ . Then,

πk − 1

n
=

∑
i,j

pijαij

2n2
((1− 2ε)πi + πj)

(
mik −mjk

)
for all k,

where mij is the mean first passage time from state i to state j of a Markov chain

(Xt, t = 0, 1, 2, . . .) with transition matrix T , i.e.,

mij = E[Tj | X0 = i],

where Ti = min{t ≥ 0 | Xt = i}.
• Proof relies on using Schweitzer’s exact perturbation result and relating the

mean first passage times to the fundamental matrix of the Markov chain

• Implies that the sensitivity of each agent to influence links depend on the relative

distance of that agent to the forceful and the forced agent

– Explains the insensitivity of the agents in the right cluster in the previous

example, part (b)
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Main Theorems (V): Bounds in terms of Relative Min-Cut

Theorem: Let π denote the unique stationary distribution of W̃ . Then
∥∥∥∥π − 1

n
e

∥∥∥∥
∞
≤

∑

{i,j}∈A

|pijαij − pjiαji|
2cij

,

where cij is the minimum i− j cut on the graph induced by matrix T , i.e.,

cij = min
S⊂N

i∈S,j /∈S

{∑

k∈S

∑

l∈Sc

wkl

}
.

• Return to Barbell Graph: The minimum i− j cut of the barbell graph is

cij ≈ n2 × 1

n
= O(n),

implying misinformation of locally forceful agents in both clusters will not spread.
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Proof Outline

• For all k, we have the relation
∣∣∣∣πk − 1

n

∣∣∣∣ ≤
∑

{i,j}∈A

|pijαij − pjiαji|
2n2

|mik −mjk|

≤
∑

{i,j}∈A

|pijαij − pjiαji|
2n2

max{mij , mji},

where the second inequality follows from mik ≤ mij + mjk & mjk ≤ mji + mik.

• Use Max flow-Min cut Theorem (from linear network optimization theory) to

relate the mean passage time mij to cuts between i and j.

– Max flow-min cut theorem states that the maximum amount of flow between

any two nodes is equal to the capacity of the minimum cut, i.e., is dictated

by its bottleneck
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Conclusions

• Framework for the analysis of spread of misinformation in a society represented

by a general social network.

• Under a minimal set of assumptions, misinformation does not prevent

convergence to consensus.

• However, consensus can be on an undesirable set of beliefs, reflecting those of

forceful agents (possibly spreading misinformation).

• Bounds on the effect of misinformation and influence of forceful agents.

• Under various benchmark assumptions, this influence is limited.

• Future Work:

– Bounds on other moments of the belief distribution.

– What happens when the society is not connected?

– Worst-case analysis: robustness against adversarial behavior.
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