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Color as a signaling system

In nature, 
color is 
thought to 
signal 
across 
species  ....

Autumn colors may signal insects a message from trees.
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Signaling Systems and 
Convention ...

Skyrms (2004). The Stag Hunt and The Evolution of Social Structure.

Maynard-Smith & Harper (2003). Animal Signals.

Lewis (1969). Convention: A Philosophical Study.

... are formalized in Evolutionary Game Theory and extensively 
studied and used successfully in many areas of human study.



David K. Lewis
(1969)



John Maynard-Smith (1982)



Brian Skyrms

(2004)

(1996)



Several Evolutionary Game Theory 
Nobel Prizes:

T. C. Schelling & R. J. Aumann (2005)

D. Kahneman (2002)

W. Vickrey & J. Mirrlees (1996)

J. Nash, J.C. Harsanyi & R. Selten (1994)

H. Simon (1979)
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Color as a signaling system
Displaying 
and 
perceiving 
color play 
important
roles in 
mate 
choice in 
many 
species.
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Color naming as a 
signaling system

Human color naming is an example 
of a signaling system, with a color 
name signaling a color.



The Mainstream Theory

Berlin & Kay (1969)
Heider-Rosch (1971, 1972)
Boynton & colleagues:

Boynton & Olson (1987, 1990)
Boynton, MacLaury, & Uchikawa (1989) 
Boynton, Fargo, Olson, & Smallman (1989)
Uchikawa & Boynton (1987) 

World Color Survey (WCS, 1991, 1997, 2000)
Kay, Regier, Cook & colleagues (2005-2007)



WCS Color Stimulus 

The World Color Survey:
Color categories from 110 unwritten languages from pre-

industrialized societies.

Regier, T., Kay, P. & Cook, R. S. (2005). Focal colors are universal after all. Proceedings of the National Academy 
of Science, 102, 8386–8391.
Cook, R. S., Paul K. & Regier, T. (2005) The World Color Survey database: History and 
 use.  In Cohen, Henri and Claire Lefebvre (eds.)  Handbook of Categorisation in the Cognitive Sciences, (p. 
223-242). Amsterdam and London: Elsevier. 





Basic Color Terms name all the colors:

English (11 words)

Blue
Purple

Pink
yellow

Brown

Green
Orange

White

Black

Gray

Red

Courtesy of Lindsey & Brown (2006). PNAS, 102.



n=4

n=3

n=5

n=6

T. Regier et al, PNAS 104, 2007

Different numbers of Color Terms:





Individual differences in human color 
categorization have not been emphasized.

Berlin & Kay (1969)
Heider-Rosch (1971, 1972)
Boynton & colleagues:

Boynton & Olson (1987, 1990)
Boynton, MacLaury, & Uchikawa (1989) 
Boynton, Fargo, Olson, & Smallman (1989)
Uchikawa & Boynton (1987) 

World Color Survey (WCS, 1991, 1997, 2000)
Kay, Regier, Cook & colleagues (2005-2007)



Horizons of Vision Research at CSULB - March 7, 2008 

Emphasis of  optimal partitioning of  
the perceptual space

 The mainstream view has recently begun to 
shift the empirical discussion from color salience 
based explanations to an emphasis on optimal 
partitioning of color space.

Regier, T., Kay, P., & Khetarpal, N. (2007). Color naming reflects optimal
partitions of color space. Proceedings of the National Academy of
Sciences, 104.



How do simulation studies 
further inform us about human 
color categorization research?



Simulated category learning in 
populations of artifical agents:

Steels & Belpaeme (2005). Coordinating perceptually grounded categories: A 
case study for colour. Behavioral and Brain Sciences, 28.

Belpaeme & Bleys (2005). Explaining universal color categories
through a constrained acquisition process.  Adaptive Behavior, 13.

Griffin (2006). The basic colour categories are optimal for classification.  Journal of the 
Royal Society: Interface, 3.

Dowman (2007).  Explaining color term typology with an evolutionary model.  Cognitive 
Science, 31.

Puglisi, Baronchelli & Loreto (2007). Cultural route to the emergence 

of linguistic categories.  http://arxiv.org/abs/physics/0703164.



Simulated category learning in 
populations of artifical agents:

Komarova, Jameson & Narens (2007).  Evolutionary models of 
color categorization based on discrimination.  Journal of 
Mathematical Psychology, 51, 359-382.

Komarova & Jameson (2007).  Population heterogeneity and color 
stimulus heterogeneity in agent-based color categorization. (under 
review). Journal of Theoretical Biology.

Jameson & Komarova (2007).  Evolutionary models of color 
categorization: Investigations based on realistic population 
heterogeneity. (manuscript).



Our investigations of
color categorization emphasize:

 Simulated Naming ≠ Human Naming



(1.)  Signaling systems under 
observer heterogeneity 



23
for homogeneous observer models.

Pragmatic Human Communication: 

Under a shared visual capacity ...
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Under observer heterogeneity.

Pragmatic Human Communication: 



Normal Human Spectral Sensivity

~700nm ~400nm



Protan deficiency

Normal Human Spectral Sensivity



Protan deficiency

Deutan deficiency

Normal Human Spectral Sensivity



Protan deficiency

Deutan deficiency

Tritan deficiency

Normal Human Spectral Sensivity



TextText

d. Tritanope                    c. Deuteranope

a. Trichromat                 b. Protanope

Text

Simulations from Viénot et al. (1995).  Nature, 376.



TextText

d. Tritanope                    c. Deuteranope

a. Trichromat                 b. Protanope

Text

Simulations from Viénot et al. (1995).  Nature, 376.



TextText

d. Tritanope                    c. Deuteranope

a. Trichromat                 b. Protanope

Text

Simulations from Viénot et al. (1995).  Nature, 376.



TextText

d. Tritanope                    c. Deuteranope

a. Trichromat                 b. Protanope

Text

Simulations from Viénot et al. (1995).  Nature, 376.



Frequencies of  X-chromosome linked color vision 
deficiencies vary across ethnicity

Incidence of red-green deficiencies from 67 studies. Sharpe et al. (1999).

 

Groups % Male
color deficient

% Female 
color deficient

European descent 7.40 0.50

Asian 4.17 0.58

African 2.61 0.54

Australian Aborigines 1.98 0.03

Native American 1.94 0.63

South Pacific Islanders 0.82 ---



Individuals are asked to name each chip in 
isolation. This provides the experimenter 
with a list of color terms.

Possible Consequences?



“yellow” “green” “blue” “red”

Individuals are asked
Where are the examples of ...



“yellow” “green” “blue” “red”

at the individual choice level:

Where are the examples of ...

A cartoon of possible outcomes: 



Where are the examples of ...

“yellow” “green” “blue” “red”

at the language group aggregate level:

A cartoon of possible outcomes: 



“yellow” “green” “blue” “red”

and across language groups you find:

A cartoon of possible outcomes: 

Where are the examples of ...



It is this sort of observer 
variation that simulation 
investigations can help 

clarify.



(2.)  Color category systems
in the context of stimulus 

heterogeneity
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Environmental color serves a function 
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It could signal calorie 
rich food sources 
for some species:

• The biological basis for color vision in primates, 
including humans, reflects positive selection for 
identifying ripe fruit or tender leaves.

• Sumner & Mollon (2003). Did primate trichromacy evolve for frugivory or folivory?     
In Normal & Defective Color Vision. Mollon, Porkorny, Knoblauch (Ed.s).
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How does environmental color 
variation, or differences in color 

utility, impact color categorization? 
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These are the kinds of issues we 
examine using simulated color 
category learning, to compare 

with existing empirical results & 
study the possible tradeoffs 
among factors thought to 
influence categorization.



The simulation studies



Important questions:

(1)  What is the minimum one needs to evolve a 
color categorization systems?

And 

(2) How do two or more factors which 
simultaneously influence color naming behaviors, 
trade off in the process of developing a stable 
color naming system?



Important difference:

We start with a Simplest-case Approach.  


 We begin by assuming very little about the phenomenon 
at all levels of observer features, environmental stimulus, 
socio-pragmatic influences on color signaling systems.

In particular, we do not incorporate any color 
perception model into our simulated agent 
observers.



We Assume Only: 


 (1) Individual agents detect differences in stimulus 
continua.


 (2) Continuous stimulus domains are approximated by 
discrete samples that individuals can evaluate in 
discrimination games.


 (3) Some need for categorization exists.


 (4) Two agents can communicate via a discrimination 
game, with minimal pragmatic communication features 
assumed.



Jameson & Komarova                   IMBS workshop: Evolution of Psychological Categories.   03/15/2008

Categorization Domain:

•  A subspace of the 3-dimensional space of color 
appearance:  A Continuous Hue Circle.
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Why the Hue Circle?

•  From a formal modeling standpoint, accepted 
color theory suggests it is the most natural one-
dimensional reduction of the color space.  

•  The hue circle is an outcome of dimension 
reduction of spectral functions having any possible 
spectral form to three dimensions. (Kuehni 2003).



Color Space Dimensions





Sampled Hue Circle Continuum: 
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The Hue Circle 
Categorization Domain:

•  Allows comparisons between simulated 
category contours and empirically obtained 
category contours for structural similarity.

  1	  ...      i		  ...  	  j 
	 	

... 	 n



Image:  Kay & Regier (2003). Resolving the question of color naming 
universals.  Proceedings of the National Academy of Science, 100.

Relates to existing Cross-Cultural stimulus: 
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However:

Simulated color naming investigations do not tell 
us how humans categorize and name, but they may 
help clarify issues central to empirical 
investigations, and provide insight into some largely 
uninvestigated factors thought to play a role in 
human color categorization & naming behaviors. 

 Simulated Naming ≠ Human Naming



Perceptual dimensions of the color
space

Li
gh

tn
es

s

Saturation

Hue



The “skin” of the color solid



The “skin” of the color solid

The “hue circle”



Color categorization as a
probabilistic strategy
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Color categorization as a
probabilistic strategy
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Pragmatic considerations

• Objects of similar colors are likely to have
similar properties

• Objects of different colors are likely to have
different properties



Pragmatic considerations



Pragmatic considerations



Pragmatic considerations



Pragmatic considerations

• It is useful to call similar colors the same
name

• It is useful to call “far away” colors different
names



Pragmatic considerations

• It is useful to call similar colors the same
name

• It is useful to call “far away” colors different
names

• It is also useful to be able to communicate
with others…



The individual discrimination game
• Two colors chips are picked from a

distribution
• The agent (probabilistically) assigns color

categories

SuccessFailureDifferent
category

FailureSuccessSame
category

Chips far
apart

Chips nearby



The individual discrimination game
• Two colors chips are picked from a

distribution
• The agent (probabilistically) assigns color

categories

SuccessFailureDifferent
category

FailureSuccessSame
category

Chips farther apart
than k-sim

Chips closer
than k-sim



Similarity range, “K-sim” (K-similarity), is

The minimum difference between the color chips for
which it becomes important to treat them for pragmatic
purposes (and not for perceptual purposes) as different
color categories.

Note, K-sim is not another form of just-noticable-difference
(although it is related to color j.n.d. as a minimum bound).

Similarity range, k-sim



The measure of similarity

k-sim k-sim k-sim

For success I need to put these in the same category



The measure of similarity

k-sim k-sim k-sim

For success I need to put these in different categories



Success rate

• Given acategorization, let us play N
discrimination games. Then

• This is the probability for a given
categorization that a game is successful

N
S

N

games successful ofNumber 
lim !"=



The optimal categorization

• The optimal categorization is the one that
maximizes the probability of success of
discrimination/communication games



The optimal categorization

• The optimal categorization is the one that
maximizes the probability of success of
discrimination/communication games

• This can be found theoretically in the
simplest scenarios

• Otherwise, we study the evolutionary
dynamics numerically



Optimal categorizations for (a) an interval and (b) a
circle

m = 3 color categories, and n = 21 stimuli



The optimal categorization:
analytical results

• The optimal categorization is deterministic
(one category for each chip)



The optimal categorization:
analytical results

• The optimal categorization is deterministic
(one category for each chip)

• Categories have equal size; each is a
connected set if chips



The optimal categorization:
analytical results

• The optimal categorization is deterministic
(one category for each chip)

• Categories have equal size; each is a
connected set if chips

• The optimal number of categories is given
by
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The optimal categorization:
analytical results

• The optimal categorization is deterministic
(one category for each chip)

• Categories have equal size; each is a
connected set if chips

• The optimal number of categories is given
by

• They are rotationally invariant
)1(2 +

=
simsim

opt
kk

n
m



Optimal categorization

)1(2 +
=

simsim

opt
kk

n
m

We can prove that the optimal
number of categories is: 

Categories 
have an equal 
size.

Categorization 
is rotationally 
invariant

n = the total
number of
distinguishable
chips



Success rate can never be one

k-sim



Evolutionary dynamics

• A player starts from a random
categorization

• Rounds of the discrimination game are
played

• In case of “success”, the category is
strengthened, in case of “failure” it is
weakened…



Reinforcement learners

K-sim

Only two color terms: 
l=“light” and d=“dark”

“memory stacks”



Reinforcement learners

K-sim



Reinforcement learners
Assign: 1=dark, 2=light

K-sim



Reinforcement learners
Assign: 1=dark, 2=light

K-sim

Failure!



Reinforcement learners
Assign: 1=dark, 2=light

K-sim

Failure!



Reinforcement learners
Assign: 1=dark, 2=light

K-sim

Failure!



Rounds of individual discrimination
game

Start

FinishPr
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4 categories after 44,000 runs

One agent’s color categorization
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Color categorization of individual
agents



Communication game

• Two individuals play the discrimination
game

• If one succeeded and the other failed, the
failed individual learns from the successful
one

• If both succeeded, the teacher is chosen
at random

• If both failed, both update their
categorization as in the individual game



Population Color Categorization:

Run 1 Run 10,000 Run 70,000

Agent 1

Agent 2

Agent 3



Population solutions: the winning
categories

• For a given chip, each player has the most
likely category, the second most likely etc.

• For this chip, suppose color k is the most
likely category for n1

(k) agents, the second
most likely category for n2

 (k) agents etc
• Form the score for each color:
• The color with the largest score is the

winning color

!
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The winning category

• The score for color k is:

•                                plurality vote

•                                Borda count
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=
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The winning category: plurality and
Borda scores compared



A population solution

10 million games; m=6; k-sim=6; N=100



Rotational invariance

 4-category

                   5-category

 6-category



Rotational invariance

As dichromats increase (< 20%) boundaries are refined



Frequency diagrams: A wheel of
fortune



Frequency diagrams: A wheel of
fortune

Points on wheel
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So far,

• The homogeneous population of agents
converges to a common, nearly-optimal
color categorization

• The homogeneous color space is split in a
(predictable) number of equal color
categories

• The solution is defined up to an arbitrary
rotation, that is, the boundaries of the
color categories can be anywhere along
the circle…



Introduce inhomogeneities

1. Inhomogeneity in the population
2. Inhomogeneity in the color space



  1. Inhomogeneous populations
(“dichromat” agents)

Is this 5 or 3?

Is this 8 or 2?

Is this 29 or 70? Is this 74 or 21?



The color space of a dichromat

Extreme

Intermediate

Minimal



Psychophysical transformation

Physical space
of stimuli

Perceptual space
of an agent



Varying types of  “dichromats”

N=40



Categorization solutions for
normals and dichromats

A normal agent

A dichromat



A heterogeneous population solution

10 million games; m=6; k-sim=6; N=100; Nd=2 (l=n/2-1)



A heterogeneous population

10 million games; m=6; k-sim=6; N=100; Nd=2 (line model)

boundaries



Most common solutions

 4-category

                   5-category

 6-category



Boundaries under agent heterogeneity

As dichromats increase (< 20%) boundaries are refined
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(No dichromats)



Boundaries under agent heterogeneity

As dichromats increase (< 20%) boundaries are refined
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Symmetry breaking: A wheel of
fortune

Points on wheel
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Symmetry breaking: A wheel of
fortune



Symmetry breaking: A wheel of
fortune
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Boundaries under agent heterogeneity

As dichromats increase (< 20%) boundaries are refined
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Dichromats remove solution
 rotational invariance

Normals: any rotation 
of the optimal solution 
is an optimal solution

Normals & Dichromats:
preferred solution has
ancored boundaries

A non-ambiguous axis



Model:

Mildly impaired vs. more impaired dichromats



The number of categories can
change

Percentange of dichromats



Summary for dichromats

http://aris.ss.uci.edu/~kjameson/KomarovaJameson2007.pdf

• For different degrees of dichromat
impairment, and different proportions of
impaired agents, the statistics of solutions
changes
• ANC attracts & AC repels color
boundaries, and both interact to anchor
boundaries and define category centers even
when proportion of impaired agents is small.



2. Inhomogeneous color space (Regions
of Increased Salience)



Region of increased salience (RIS)
• The parameter k-sim is non-constant

throughout the color space
• There is one region where k-sim is smaller

than in the rest of the space

k-sim small k-sim large

RIS



5 categories after 10 million runs

The presence of a RIS
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Non-equal categories, and
symmetry breaking

k-sim=k-RIS small
No rotation 
Size and number of 
categories are defined by 
k-hot and k-normal 

k-sim=k-normal 



Varying color utility in the stimulus space:

homogeneous unimpaired population
10 million games; m=5; k-norm=6; k-RIS=3; N=10; RIS iL=26 & iR=36



homogeneous unimpaired population

5-category solution

RIS



RIS

6-category solution

10 million games; m=5; k-norm=6; k-RIS=3; N=10; RIS iL=26 & iR=36

(~25% of the time)



Schematics of 5- & 6-category solutions under RIS

(~25% of the time)(~70% of the time)



RIS summary

http://aris.ss.uci.edu/~kjameson/ResearchArticles.html

• For homogeneous populations, a RIS
removes solution rotational invariance.
• Categories are refined by a RIS.
• Number of categories in a solution can
vary

See articles online:



RIS and dichromats
Inhomogeneity in the k-sim measure ( RIS):

Inhomogeneity in the population (dichromats):



RIS and dichromats
Inhomogeneity in the k-sim measure ( RIS):

Inhomogeneity in the population (dichromats):

• Removes rotational invariance

• Changes category number and sizes

• Removes rotational invariance

• Changes category number and sizes



RIS and dichromats
Inhomogeneity in the k-sim measure ( RIS):

Inhomogeneity in the population (dichromats):

• Removes rotational invariance by aligning
  category boundaries with the RIS
• Changes category number and sizes (smaller
  categories inside the RIS)

• Removes rotational invariance by aligning
  category boundaries with the ambiguity axis
• Changes category number and sizes according
to the non-ambiguous axis orientation



Interations between the two types
of inhomogeneity

• Consider a population of normals and
dichromats

• Include a RIS in the color space



Solution found by a population of
normals with a RIS



Add dichromats



Add dichromats



Add dichromats

Extend + shift
Shift



Solution for an inhomogeneous
population

Non-ambiguous axis
blue yellow



Summary

• For a uniform color space and a
homogeneous population of viewers, the
categorization is a rotationally invariant
equipartitioning of the circle

• In the presence of inhomogeneities in the
color space (RIS), or in the population
(dichromats), the color boundaries are
fixed, and color categories may have
different size



Summary

• Dichromats align the color categories
along the non-ambiguous (blue-yellow)
axis.

• k-sim inhomogeneities decrease category
size inside the RIS.

• Different populations may have different
RISs and different types of color vision
variability

• This theory has a potential to explain the
observed variations in color categorization
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• Quick Peeks:
•(1.)  Category solutions based on 
similarity.

•(2.)  Homogeneous vs. Heterogeneous 
Population Category Solutions.

•(3.)  Pragmatic Color Salience and 
Inhomogeneous Color Utility.

•(4.)  Simulated Category Solutions 
compared to Empirical Category 
Solutions.



Jameson & Komarova                   IMBS workshop: Evolution of Psychological Categories.   03/15/2008

• (1.)  Category solutions    
based on similarity
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• How do observers use 
similarity to categorize color?



  “pick a good example of green”

IMBS - The Evolution of Psychological Categories - March 15, 2008 

Unpacking Color Similarity Dynamics

Fuzzy
“Yellow” 
Boundary

Fuzzy
“Blue” 

Boundary



 Strategy:  Pick the appearance furthest from the blue 
boundary, and furthest from the yellow boundary.
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Choosing color best exemplars

Fuzzy
“Yellow” 
Boundary

Fuzzy
“Blue” 

Boundary



 Strategy:  Pick the appearance furthest from the blue 
boundary, and furthest from the yellow boundary.
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Choosing color best exemplars

Fuzzy
“Yellow” 
Boundary

Fuzzy
“Blue” 

Boundary



 Boundaries repel, so best category best exemplars 
could tend toward some midpoint between categories.

IMBS - The Evolution of Psychological Categories - March 15, 2008 

Fuzzy
“Yellow” 
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Fuzzy
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Fuzzy
“Yellow” 
Boundary

Fuzzy
“Blue” 

Boundary

Choosing color best exemplars
 Boundaries repel, so best category best exemplars 

could tend toward some midpoint between categories.



 Strategy:  Pick all the appearances that are most 
similar to some best exemplar point, while also not  
too similar to neighboring category exemplars.
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Fuzzy
“Yellow” 
Boundary

Fuzzy
“Blue” 

Boundary

Choosing color category ranges:
“Show me all the Greens”



 Strategy:  Pick all the appearances that are most 
similar to some ideal example point, while also not   
too similar to neighboring category exemplars.
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Choosing color category ranges:
“Show me all the Greens”

Fuzzy
“Yellow” 
Boundary

Fuzzy
“Blue” 

Boundary



 The construct of a central exemplar, which all 
category members resemble, attracts or anchors 
boundaries.
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Fuzzy
“Yellow” 
Boundary

Fuzzy
“Blue” 

Boundary

Choosing color category ranges:
“Show me all the Greens”



 What happens if for normal observers within an 
ethnolinguistic group, the basis for this similarity-based 
idea of best exemplar varies? 

IMBS - The Evolution of Psychological Categories - March 15, 2008 

Color Similarity Dynamics
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Fuzzy
“Yellow” 
Boundary

Fuzzy
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 What happens if for normal observers within an 
ethnolinguistic group, the basis for this similarity-based 
idea of best exemplar varies? 

Color Similarity Dynamics
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Fuzzy
“Yellow” 
Boundary

Fuzzy
“Blue” 

Boundary

 What happens if for normal observers within an 
ethnolinguistic group, the basis for this similarity-based 
idea of best exemplar varies? 

Color Similarity Dynamics



Horizons of Vision Research at CSULB - March 7, 2008 

Perception Varies Even in Normal 
Observer Groups
 Ranges of individual color perception 

differences are greater than have been 
acknowledged in the color cognition and 
categorization literature.

 The extent of these ranges raises questions 
about the idea of uniformly shared perceptual 
color space as the explanation for color 
category uniformity across individuals.

 An example: unique hue percepts.
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Unique Hues
“There exist four colors, the Urfarben of 

Hering, that appear phenomenologically 
unmixed.  The special status of these ‘unique 
hues’ remains one of the central mysteries of 
colour science.”

 Mollon, J.D. & Jordan, G. (1997). On the nature of unique hues. In C. 
Dickinson, I. Murray and D. Carden (Eds), John Daltons Colour Vision 
Legacy, p. 381-392.



 

Image Credit:  www.handprint.com. Bruce MacEvoy.

black square indicates average unique green; data from 
Volbrecht, Nerger & Harlow (1997).

Normal Variation for Unique Green

Wavelength



 

Image Credit:  www.handprint.com. Bruce MacEvoy.

A span of  ~60 nm for a pure green setting  ...

Wavelength

Normal Variation for Unique Green



 

Unique Hue Choices on a Color Circle (Kuehni, 2004)

Image Credit:  www.handprint.com. Bruce MacEvoy.
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Color Similarity
 What happens if for normal observers within an 

ethnolinguistic group, the basis for this similarity-based 
idea of best exemplar varies?

 The structure of individual color similarity varies.
 Possible consequences for population category 

solutions?
 (i) none - all individual category solutions are 

statistically the same. 

 (ii) some yet known consequence?
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Color Similarity
 Possible consequences for population category 

solutions?

 (ii) some yet known consequence?
 At a minimum it seems that something else 

is helping along systems that begins with 
perceptual constraints in achieving the goal 
of a shared color signaling system.

Human Communication Pragmatics:
Linguistic Charity.



For the sake of communication, I will allow a 
certain amount of “inaccuracy” in your color 
communications (works both ways, ideally).

 Putnam, H. (1988). Representation and Reality. The MIT Press.
 Freyd, J. J. (1983). Shareability: The social psychology of 

epistemology. Cognitive Science, 5, 121–152.                                                
 Jameson (2005) J. Cog. & Cultr. 
 Jameson & Alvarado (2003) Phil.  Psych.

Horizons of Vision Research at CSULB - March 7, 2008 

Linguistic Charity

http://aris.ss.uci.edu/~kjameson/kjameson.html



For the sake of communication, I will allow a 
certain amount of “inaccuracy” in your color 
communications (works both ways, ideally).

So, calling a color by the name of an adjacent, 
near category (or even simply an adjacent 
category) is permissible, and accommodated by 
normal discourse.
 Analytically this can be shown to as a decreasing 
imposition on discourse as the number of categories 
shared increases.
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Linguistic Charity



So, calling a color by the name of an adjacent, 
near category (or even simply an adjacent 
category) is permissible, and accommodated by 
normal discourse.
 Analytically this can be shown to as a decreasing 
imposition on discourse as the number of categories 
shared increases.

Horizons of Vision Research at CSULB - March 7, 2008 

Linguistic Charity

For systems with more categories,  
a categorization error is not as 
dramatic of an error as it is in a 
system with just few categories.



So, calling a color by the name of an adjacent, 
near category (or even simply an adjacent 
category) is permissible, and accommodated by 
normal discourse.
 Analytically this can be shown to as a decreasing 
imposition on discourse as the number of categories 
shared increases.

Horizons of Vision Research at CSULB - March 7, 2008 

Linguistic Charity

For systems with more categories,  
a categorization error is not as 
dramatic of an error as it is in a 
system with just few categories.
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• (2.)  Homogeneous vs. 
Heterogeneous Population 

Category Solutions



Steels & Belpaeme (2005). Coordinating 
Perceptually Grounded Categories:  A Case Study 
for Colour.  Behavioral and Brain Sciences, 28, 
469-529.



The possibility exists that in heterogeneous 
populations, category distinctions may be 
influenced by a need to disambiguate the 
communication of categories among varying 
observer types.

Jameson (2005, JCC).

IMBS - The Evolution of Psychological Categories - March 15, 2008 

Steels & Belpaeme (2005). BBS.



Systematically varying dichromats by varying 
anchors regions of perceptual confusion.

Extreme

Intermediate

Minimal

“Dichromat” models tested:



Dichromats remove solution
 rotational invariance

Normals: any rotation 
of the optimal solution 
is an optimal solution

Normals & Dichromats:
Only one solution

A non-ambiguous axis
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Deuteranope Protanope



  Modeling heterogeneity:
 “In the heterogeneous population, each 

individual had a random variation on its 
colour perception, implemented as a normal 
variation (with a standard deviation of 10) on 
each of the L*, a*, and b* dimensions.”

IMBS - The Evolution of Psychological Categories - March 15, 2008 

Steels & Belpaeme (2005). BBS.



 They considered:
“The average communicative success of five 

populations consisting of identical agents 
[homogeneous populations] versus the average 
success of five populations consisting of 
agents having variations in their chromatic 
perception [heterogeneous populations],” With 
each population having 20 agents.

IMBS - The Evolution of Psychological Categories - March 15, 2008 

Steels & Belpaeme (2005). BBS.
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Steels & Belpaeme (2005). BBS.
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Steels & Belpaeme (2005). BBS.
 They Conclude:  “The communicative success 

of both kinds of agents evolves in the same way, 
showing that perceptual variations have very 
little influence on the communication of colour.”
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Steels & Belpaeme (2005). BBS.
 They Conclude:  “The communicative success 

of both kinds of agents evolves in the same way, 
showing that perceptual variations have very 
little influence on the communication of colour.”

  Three ways to model, three expectations:
 Random vs. systematic observer variation.
 Realistic (“normal” + “variable”) variation.
 Confusion axis symmetry breaking.
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Importance of  Cognitive Processes
When individual differences exist, language 

can gloss differences and permit meaningful 
communication.

This requires a cognitive process to link 
normative lexical terms (names) to individual 
mental representations of color.

Because people see color, even when their 
language contains no word for color itself, 
clearly color mental representation exists.
Lack of color perception does not exclude 
participation in shared linguistic knowledge.



Shepard and Cooper (1992).  Representation of 
colors in the blind, color--blind, and normally 

sighted.  Psychological Science, 3(2).



 “ ... Young children (from two very different cultures) group colours on 
the basis of perceptual similarity before they acquire any colour 
categories (Roberson et al. 2004), as does an adult patient with colour 
anomia, who had lost the ability to categorise colours explicitly 
(Roberson et al. 1999). Drawing children’s attention to the relative 
similarity of colours  through linguistic contrast, also promotes faster 
category learning (Au & Laframboise 1990; O’Hanlon & Roberson 
2004). If categories are initially formed based on the 
relative similarity of stimuli, as Dedrick (1996) and 
Roberson et al. (2000) have argued, then both the range 
of available stimuli in the environment and variability in 
the need to communicate about colour should affect the 
eventual set that a community arrives at.”   Roberson & 
O’Hanlon (2005) 

IMBS - The Evolution of Psychological Categories - March 15, 2008 

Universal use of  Color Similarity
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Deuteranope Protanope

Trichromat



Trichromat judgments for 
color terms and color 
appearances. 
 Adapted from Shepard and Cooper 
(1992). Psych. Sci.

Shepard & Cooperʼs  
Interpretation:

Structure preserving 
cognitive representation 
between color 
appearances and color 
names.



Dichromat similarity 
judgments for color 
appearances. 

 Adapted from Shepard and Cooper 
(1992). Psych. Sci.,3.

(Cf,  Jameson & Hurvich. 1978. Dichromat 
Color Language: “Reds” and  “Greens” 
don’t look alike but their colors do. 
Sensory Processes, 2.

Marmor. 1978. Age at the onset of 
blindness and the development of the 
semantics of color names. Journal of 
Experimental Child Psychology, 25.)



Dichromats:
Comparison of judgments 
for color terms and color 
appearances. 
 Adapted from Shepard and Cooper 
(1992). Psych. Sci.,3.

(c.f., Jameson & Hurvich. 1978. 
Dichromat Color Language: “Reds” and 
“Greens” donʼt look alike but their 
colors do. Sensory Processes, 2.

Marmor. 1978. Age at the onset of 
blindness and the development of the 
semantics of color names. Journal of 
Experimental Child Psychology, 25.)



DichromatsTrichromats

Names

Color
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Implying Universal Similarity Structure 
for Color Names?
 Which can perhaps be thought of an example 

of acquiring the correct category cognitive 
constructs in the absence of the perceptual 
distinctions to correctly apply those constructs.
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• (3.)  Pragmatic Color Salience 
and Inhomogeneous Color 

Utility



Heterogeneous Color Salience



Review a list of factors that are likely to 
influence human categorization, which can be 

addressed using simulation methods.
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(1.) How does environmental color 
variation, or differences in color 

utility, impact color categorization? 



 Identifying nonpoisonous food items.

IMBS - The Evolution of Psychological Categories - March 15, 2008 

(2) A universal need to communicate 
about color when it serves a purpose

(2001)
http://www.mykoweb.com/
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A universal need to communicate about 
color when it has social utility

 Adopting categorical 
distinctions for utilitaritan 
reasons.
 Celts used woad in the 
6th century. 

 Blue gets gentrified 
when introduced as 
Medieval European 
Christianity.

 Subsequent 
lexicalization of blue in 
early English.(2003)



(3.) Different dimensional emphases in color 
naming across cultures.



Many Cultures make a 
Warm versus Cool color distinction:



Many Cultures make a 
Warm versus Cool color distinction:

Warm

warmer

warmer



Many Cultures make a 
Warm versus Cool color distinction:

Cool

cooler

cooler



Dugum Dani (Papua, New Guinea) Color Categories: 

mola mola
mili

mola ~ warm colors
mili ~ cool colors

Kay, P. (1975). Language in Society, 4.



• Other Culturally-specific dimensions exist. 

• e.g., Conklin’s (1955) Hanunóo:

Light - Dark
Dessication - Freshness

Deep appearances - Pale appearances



Berimno’s Nol and Wor
Pragmatically defined stimulus continuum: 

Nol Wor

Good
to Eat

Not 
Good 
to Eat

Roberson, D. (2005). Cross-Cultural Research.



World Color Survey stimulus:

Nol

Wor

These may resemble “yellow” & “green” category glosses 
in the WCS model, but they arise for practical reasons 

rather than from perceptual processing constraints.



•  Nol and Wor are a pragmatic partition:

• “ ... for Berinmo speakers, ... tulip leaves, a 
favorite vegetable, are bright green when freshly 
picked and good to eat, but quickly yellow if 
kept.  Agreement over the color term boundary 
coincides with agreement over when they are 
no longer good to eat and is highly salient in a 
community that talks little about color.”

Roberson, D. (2005). Cross-Cultural Research:



•  Nol and Wor are a pragmatic partition:

Roberson, D. (2005). Cross-Cultural Research:

Trichromat Protanope

Trichromats can easily use Nol & Wor, 
while some dichromats may not.



Protan deficiency

Normal Human Spectral Sensivity
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• (4.)  Simulated Category 
Solutions compared with 

Empirical Category Solutions



Regier, Kay, & Khetarpal (2007).  Color naming 
reflects optimal partitions of color space.  PNAS, 
104(4).
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Regier, Kay & Khetarpal (2007)
• Compared to Regier et al (2007), 
we do not assume any perceptual 
model (i.e., CIEL*a*b*). Komarova & Jameson 
(in-press).  Journal of  Theoretical Biology.

• So, what kind of categorization 
solutions are possible in the absence 
of such a observer model?

http://aris.ss.uci.edu/~kjameson/KomarovaJamesonJTBresubmit.pdf
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Komarova & Jameson (in-press) results are presented 
here as a conjecture to be verified by future research.
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... yet, the color line segments here show 
denotative ranges of our category solution.



The World Color Survey stimulus: 



World Color Survey categories (Kay & Regier 2003, PNAS): 



World Color Survey categories (Kay & Regier 2003, PNAS): 



World Color Survey categories (Kay & Regier 2003, PNAS): 

Category Best Exemplars
or Universal Foci 



A A

Category Best Exemplars
or Universal Foci  (Kay & Regier 2003, PNAS): 



A A

B

Category Best Exemplars
or Universal Foci  (Kay & Regier 2003, PNAS): 



A C A

B

Category Best Exemplars
or Universal Foci  (Kay & Regier 2003, PNAS): 
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B

Category Best Exemplars
or Universal Foci  (Kay & Regier 2003, PNAS): 
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B

Category Best Exemplars
or Universal Foci  (Kay & Regier 2003, PNAS): 
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Where the brackets suggest the focal 
exemplar regions from the WCS data.
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Where (i) the color line segments are 
denotative ranges of our category solution.
And (ii) the brackets suggest the focal 
exemplar regions from the WCS data.
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 ... A consistent correspondence between 
the two different forms of results seems to 
be suggested.
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• Concluding
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Results shown today:
•  Color categorization solutions are obtained assuming 
very little about the phenomenon at levels of observer 
features, environmental stimulus, and socio-pragmatic 
influences on color signaling systems.
•  Individual agent and Population solutions obtained 
resemble realistic solutions.
•  Agent color perception heterogeneity and color 
environmment heterogeneity both influence population 
solutions obtained, and systematically interact when 
implemented simultaneously.
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Results shown today:
•  Color categorization solutions are obtained assuming 
very little about the phenomenon at levels of observer 
features, environmental stimulus, and socio-pragmatic 
influences on color signaling systems.
•  Individual agent and Population solutions obtained 
resemble realistic solutions.
•  Agent color perception heterogeneity and color 
environment heterogeneity both influence population 
solutions obtained, and systematically interact when 
implemented simultaneously.
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What’s ahead:
• Diachronic studies of color category evolutionary 
dynamics are possible with these techniques.
• Extensions using realistic models of population 
interaction and discrimination is on-going.
• Extension to the full dimensions of color appearance 
space is in progress.
• Simulations based on the empirical literature are in 
progress for comparison with relevant empirical results.



Thankyou for listening!

http://aris.ss.uci.edu/~kjameson/kjameson.html


