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Abstract This paper provides a theoretical foundation for group self-
governance. Two measures are necessary for a self-governing group: (1) an ex-
pulsion mechanism, a mechanism which allows the group to easily maintain a
cooperative equilibrium; and (2) a risk-sharing plan (insurance), which serves
as both a screening mechanism and a utility-improving measure. This article
explains why expulsion and risk-sharing plans prospered in craft guilds in late
medieval England. In fact, both expulsion and insurance assure only the low-risk
type (more risk averse) agents remain in their groups. This feature explains why
the insurance fees within the groups were less by far than those within social
groups.
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1 Introduction

Most historical evidence suggests that when potentially profitable opportunities are avail-

able, economic agents will form an interest-group. The prevalence of various craft guilds in

late-medieval England provides a good example. These guilds, or groups, consist of many

self-interested individuals. Divergence between group and individual interests often exists,

which may jeopardize both group and individual interests. To secure the underlying profit

of every member, the interest-group have to overcome the potential collective action prob-

lems inherent in coordinating participation in productive activities. It has to prohibits its

self-interested members from devastating infighting. The self-governing problem, i.e., how

does group overcome that divergence and archive cooperation, therefore, is of great interest.

The importance of collective action problems in group decisions was highlighted by Man-

cur Olson in his classic book, The Logic of Collective Action, where he analysis the problems

that groups will have in convincing individuals to take actions which are costly for them-

selves, but beneficial for the whole group. Additionally, we are interested in evidence from

the craft guilds in late-medieval England. According to the study on the craft guilds in late-

medieval England(Epstein, 1998; Richardson 2001, 2004, 2005a, 2005b, 2005c), although

the guilds engaged in different businesses in different cities at different times, surprisingly,

most of them employed the same measures, say, (1) expelling the members who broke the

guild regulation; (2) providing intra-guild insurance; and (3) pursuing religious goals, to

carry out this self-governance function.

The literature on the collective action problem, has identified a number of ways that

can deal with group self-governance problems. These include the use of ideology and pecu-

niary benefits (Acemoglu and Robonson, 2005). Pecuniary benefits, in turn, can be usefully

disaggregated into two categories, private benefits and exclusion. First, groups may try to

indoctrinate their members so that they view participation in activities that are beneficial
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for the group as a positive action that directly adds to their utility. This type of indoc-

trination explains why craft guilds in late-medieval England possessed pious features and

pursued religious goals. A comprehensive study on this issue is given by Gary Richardson

in his paper, Craft Guilds and Christianity in Late-Medieval England. Second, groups may

attempt to generate private pecuniary benefits for those who participate in collective action.

However, in practice, the most common strategy to deal with collective action problem is

“exclusion.”Exclusion limits the benefits resulting from collective action to only those who

take part in the action.

A rich empirical literature has investigated how the group self-governance problem is

solved in practice (see, for example, the surveys in Lichbach, 1995, and Moore, 1995).

Though there are different ways of classifying putative solutions to this collective action

problem (see Lichbach, 1995, pp. 20-21), most scholars emphasize the importance of ideol-

ogy. Nonetheless, most of the empirical evidence in more about how private benefits and

exclusion are used by those trying to organize collective action. Therefore, this article fo-

cuses on the first two features of the craft guilds in late-medieval England. The objective

of this article is to investigate the rationale behind this phenomenon and gain a better

understanding of groups.

We develop an theoretic approach to justify such group self-governance phenomenon.

The contribution of this study is three-fold: first, it explains why expulsion is much more

popular than the “Cournot punishment”1; second, it proves that under certain circumstance,

a risk-sharing scheme (insurance)2 can serve as a screening mechanism which helps the self-

governance of the group; third, it provides a means of analysis for questions about infinite

horizon games with different agents’ types. Additionally, we focus on the interaction among

agents with different risk aversions.
1To my knowledge, this terminology is first used by H. Cheng. See H. Cheng: Inefficiency in Repeated

Cournot Oligopoly Games, IEPR working paper. 2005
2Through out this paper, we use “risk-sharing scheme”and “insurance”interchangeably.
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This article is organized as follows. The basic model is introduced in section 2, which

provides the framework of our following analysis. Section 3 concerns the equilibria of the

infinite repeated game. It also compares expulsion with Cournot punishment, presenting

the first possible explanation why expulsion is superior to Cournot punishment. In section

4, the risk-sharing function (insurance) of the group is discussed. Subsection 4.1 presents

a useful result, which allows us to consider the behavior of different types of agents with-

out specifying the functional form of the utility functions. It facilities the analysis of the

risk-sharing function of the group. Subsection 4.2 shows that the insurance scheme may

serve as a screening mechanism, which discriminates high-risk group members from low-

risk ones. Moreover, it explains how the insurance scheme can make group members better

off. Therefore, the importance of the risk-sharing function of the group can not be over-

stated. A somewhat striking result is also presented in subsection 4.2, which shows that the

aggravations of the social environment may actually improve the welfare of group members.

Imperfect monitoring is considered in sections 5. It proves that no mixed strategy survives

in the imperfect monitoring case. What is more, it shows that when monitoring is imper-

fect, expulsion is still superior to Cournot punishment. Concluding remarks are in the final

section.

2 The Model

Consider a group, consisting of N ≥ 2 agents, which controls some potentially profitable

business3. The group provides its members with both marketing and risk-sharing services.

Each agent carries out her production process separately, using the same technology. For a

given period, say, a year, each agent can only produce one unit of good. Their products are

collected by the group and sold out in the market collectively. The group enforces edicts
3This model is first discussed by G. Richardson (2005). His research on medieval English craft guilds

consists of a large amount of interesting historical phenomena. In fact, the original motivation of this article
is to provide a theoretical justification of all those phenomena.
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concerning the quality of its products. The hope of increasing income encourages the group

members to set high standards for themselves. These incentives arise when the reputation

of the group influences the incomes of its members. Indeed, the group’s reputation may

influence the demand for members’ merchandize. The market is assumed to be extremely

elastic. Therefore, a group’s reputation helps its members to sell all of their products at the

market price, which is solely determined by the group’s reputation. Group members choose

quality as their control variable. The group encourages consumers to purchase their wares

by monitoring the quality of members’ merchandize, consistently selling defect-free prod-

ucts, and developing reputations for doing so. This assumption is consistent with historical

evidence. A typical example comes from the ordinances that London’s guild of pewterers

adopted in 1348:

So many person make vessels not in due manner to the damage of the people

and the scandal of the trade, that three or four of the most true and cunning

in the guild [should] be chosen to oversee the alloys and the workmanship of

all. . . be it understood, that all manner of vessels shall be made of fine pewter

with the [proper] proportion of copper to tin, and no one of the guild shall in

secret places [make] vessels of lead or of false alloy to sell out of the city at

fairs or markets to the scandal of the City and the damage of the good folk of

the guild. . . and if anyone is found carrying such wares to fairs or markets or

anywhere else in England. . . let them forswear the guild for evermore. (Michaelis,

1955: 2-5)

The group is also assumed to manipulate the market by setting an entry barrier. It

guarantees the market clearance and stableness. Because of the potential profit, a large

number of agents in the market are willing to enter the business. Those agents constitute

an applicant pool. Only being acknowledged by the group brings those agents into the
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business, otherwise they only receive some reserved social benefit4 y. Therefore, the group

plays two roles simultaneously: as a monopoly in the goods market, and as a monopsony in

the labor market.

Assume an individual group member’s revenue from sales of merchandize is a function

ri(·), which depends only upon the group’s reputation. This differs from the canonic as-

sumption made in classic production theory; the revenue function is not dependent on the

quantity of output. The group’s reputation is represented in this model by the average

quality of the merchandize sold by the group. When average quality improves, the revenue

received by each member increases, although the marginal return to quality falls as the level

of quality rises, i.e.,

ri = r(q); r′(q) > 0; r′′(q) < 0,

where

(1) q =
1
N

N∑
i=1

qi

is the average quality of all group member’s products. Here qi is the quality of the ith group

member’s products and qi > 0 for all i = 1, . . . , N . r(·) is the function relating quality to

revenue from sale, which is the same for all members of the group.

The cost of producing merchandize, ci(·), depends on the quality of an individual’s own

merchandize. Cost increases as quality grows, and the increase occurs at an increasing rate.

Thus,

ci = c(q); c′(q) > 0; c′′(q) > 0.

Here, c(·) is the function relating product quality to the cost of production. All members

in the group employ the same technology.

Profits are assumed to be positive when quality is zero, i.e., r(0)−c(0) > 0, and assumed

to increase when quality increases from zero, i.e., r′(0)−c′(0) ≥ 0. Therefore, agents prefer a
4The amount of profit agents are ensured to gain.
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positive amount of quality to zero. Since the group consists of self-interested individuals, the

members have an incentive to free ride by producing below-average quality products. The

group, therefore, needs a self-governing technique to monitor the quality of its members’

products and keep the average quality at a profitable level.

3 Preliminaries

Assume monitoring is both perfect and costless (we will drop the assumption about per-

fectness in section 5 and thereinafter). For member i, the noncooperative Nash equilibrium

outcome is given by

(2) q∗1 ∈ max
qi

r(
1
N

N∑
j=1

qj)− c(qi).

The first order condition has the form

(3)
1
N

r′(
1
N

N∑
j=1

qj)− c′(qi) = 0.

Since we assume group members are identical, there exits a symmetric Nash equilibrium,

i.e., qi = q∗, i = 1, · · · , N . This implies that

q∗ = q̄ ≡
∑N

i=1 qi

N
.

Or,

q∗ ∈ arg{ 1
N

r′(q)− c′(q) = 0}.

We call q∗ the noncooperative quality and the outcome that every agents chooses q∗ the

noncooperative outcome.

Alternatively, the agents can act cooperatively and maximize the group’s profit. Agents

choose quality

(4) q∗∗ ∈ arg max
q
{r(q)− c(q)}.
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The quality is then characterized by

(5) r′(q∗∗)− c′(q∗∗) = 0,

or,

(6) q∗∗ = arg{r′(q)− c′(q) = 0}.

We call q∗∗ the cooperative quality and the outcome that every agents chooses q∗∗ the

cooperative outcome. Comparing q∗ and q∗∗, one can easily see that q∗∗ > q∗.

It is obvious that all group members will be better off if they cooperate with each other.

The cooperation, however, can not sustain itself without enforcement because every agent

has an incentive to deviate, or take advantage of the others. In a one-shot game, therefore,

the cooperative equilibrium outcome cannot be achieved.

Although unsustainable in the one-shot game, the cooperative outcome can be enhanced

in the infinitely repeated game. In this game, agents can punish noncooperative behavior

and eliminate the incentive to deviate from the the cooperative outcome.

Denote the discount factor of utility as δ with δ ∈ (0, 1). Agents’ expected utilities are

then given by

EU = E[U
(
r(q0)− c(q0

i )
)

+ δU
(
r(q1)− c(q1

i )
)

+ δ2U
(
r(q2)− c(q2

i )
)

+

+ δ3U
(
r(q3)− c(q3

i )
)

+ δ4U
(
r(q4)− c(q4

i )
)

+ · · · ],(7)

where qk
i is the quality chosen by agent i in period k and qk ≡ 1

N

∑N
j=1 qk

j is the average

quality of the whole group in that period.

Suppose every agent employs a trigger strategy which exerts certain punishment to the

deviator who acts noncooperatively (i.e., choosing q∗ in some round). This strategy can

sustain the cooperative outcome if the punishment is severe enough. Within the framework

presented above, the Folk theorem tells us that as long as the discount factor is great enough,

there are infinitely many strategies that could achieve this objective. The difference between
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those trigger strategies is that some of them require greater discount factors than the others

to sustain the cooperative outcome. Additionally, we want to compare two possible strategies

(punishments): the Cournot punishment (agents punish the deviator by choosing q∗ in the

next period) and expulsion (agents punish the deviator by expelling her from the group).

The strategies under different punishment schemes are given as follows:

1. - Cournot punishment: For each group member i, i = 1, · · · N , her strategy σc
i
5

is given by:

(8) qt
i =

{
q∗∗ if t = 0 or qt−1

j = q∗∗,∀j 6= i

q∗ otherwise
,∀t = 0, 1, 2, · · · .

2. - Expulsion (Ostracism6): For each group member i, i = 1, · · · N , her strategy

σe
i
7 is given by:

(9) (qt
i , v

t
ij)

′ =
{

(q∗∗, 0)′ if t = 0 or qt−1
j = q∗∗,∀j 6= i

(q∗∗, 1)′ otherwise
,∀t = 0, 1, 2, · · · ,

where vt
ij is her vote in the tth round upon the expulsion of agent j. Agent j is

expelled in the k + 1 round if and only if her votes
∑

i6=j vt
ij > 0.

Historical evidence suggests that expulsion is a far more popular measure of punishment

than Cournot punishment, especially for the guilds in late-medieval England. Several schol-

ars note this important fact (Thomas 1926: 264; Blair and Ramsay 1991: 73; Cherry 1992:

54). Lujo Brentano, one of the first scholars of English guilds, wrote:

The Gild never assumed a right over the life and limbs of its members:

compensation only and fines were used for punishments, the highest penalty

being expulsion. (Brentano 1870: ciii)
5The superscript c denotes the case of Cournot punishment.
6There is some subtle difference between “expulsion”and “ostracism”. However, here we follow Hirshleifer

and Rasmusen (1989), neglect the difference and use “expulsion”and “ostracism”interchangeably.
7The superscript e denotes the case of expulsion.
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Expulsion was the worst possible punishment, because as Brentano noted, guilds lacked the

sovereign power of the state. Francis Hibbert, who studied the guilds of Shrewsbury, writes:

The ordinary penalties which the companies might inflict were of money or

of wax. . . and, in extreme cases, total expulsion from the Gild. (Hibbert 1981:

44)

One feasible way to compare two trigger strategies is comparing the critical discount

factors that sustain the cooperative outcome. Additionally, we give the following definition.

Definition 1 Consider two trigger strategies σ1 and σ2 in an infinitely repeated game. We

call σ1 is more efficient than σ2 if and only if δ1 < δ2, where δi, i = 1, 2 is the critical

discount factor (the infimum of the discount factors that sustain the cooperative outcome)

of σi.

A more efficient trigger strategy implies that the cooperative outcome is more likely to

achieved for certain agents. Moreover, we have the following lemma.

Lemma 1 δ1 < δ2 if EU1
o > EU2

o , where U i
o is the utility that an agent receives in the

corresponding one-shot game when she is being punished.

Proof. It is straightforward to compute the expected utility of agent j when she chooses

to deviate. Using the notation introduced above, we have

(10) EU i = U(q∗j , q
∗∗
−j) +

δi

1− δi
EU i

o,

with i = 1, 2. By definition of critical discount factor, agent j is indifferent between choosing

cooperation and deviation. Therefore, we have EU1 = EU2, which implies

(11)
δ1

1− δ1
EU1

o =
δ2

1− δ2
EU2

o .

Or,

(12)
δ1 − δ1δ2

δ2 − δ1δ2
=

EU2
o

EU1
o

.
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Because the righthand side of (12) is less than one, we must have δ1 < δ2.

If no new agent joins the group, agents who remain in the group gain more from ex-

pulsion than from Cournot punishment. This additional gain comes from the fact that q∗

is monotonically decreasing on the size of the group. This situation, however, rarely hap-

pens in the real world, especially in craft guilds in late-medieval England. A much more

common situation, as suggested by historical evidence, is that groups pick new members

from the applicants pools after expulsions. The procedure goes as follows. When somebody

in the group is found deviating (or behaving noncooperatively), she gets expelled from the

group. Meanwhile, new members are picked from the applicants pool. The most common

case is that the guild picks the same number of new members that were expelled. And this

“metabolism”keeps the guild in a fixed scale.

With the fixed number of memberships, the remainders can no longer gain from expulsion

through the channel of shrinking the size of group. Comparing expulsion and Cournot

punishment from this aspect thus can not land us upon a clear conclusion. However, we

have the following proposition.

Proposition 1 Expulsion is more efficient than Cournot punishment if Ui(q∗) > Ui(y).

Proof. It is straightforward by Lemma 1.

What is more, as we will show, under fairly weak conditions, expulsion rewards cooper-

ative behaviors with higher utilities than Cournot punishment does in the case of deviation.

Proposition 2 If the discount factor δ is great enough, expulsion gives cooperative agents

more utilities than Cournot punishment does in the case of deviation.

Proof. Assume at some stage at least one member of the group chooses noncooperative

quality (behaves noncooperatively), i.e. ∃i, such that qi = q∗. Within Cournot punishment

scheme, every member of the group chooses q∗ in each round thereafter. The discounted
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utility of member j is given by

(13) EU c
j = Uj [q∗] + δUj [q∗] + δ2Uj [q∗] + · · · = Uj [q∗]

1− δ
.

Within the expulsion scheme, the member that deviated from cooperative equilibrium gets

expelled and a new member (indexed i) joins the group. Suppose with probability P ∈ (0, 1)

the new member will choose Nash equilibrium, the expected utility of every other group

member in the next round is given by

EU e
j,1 = PUj(q∗i , q

∗∗
−i) + (1− P )Uj(q∗∗),∀j 6= i.

When member i chooses q∗ (with probability P ), an expulsion happens in the following

round. Another new member joins the group. Again, assume she will choose q∗ with prob-

ability P . The expected utility of every other group member in this round is then given

by

EU e
j,2 = P 2δUj(q∗i , q

∗∗
−i) + (1− P )PδUj(q∗∗),∀j 6= i.

This scenario then repeats itself. When the number of the stage approaches infinity, the

discounted expected utility of member j, ∀j 6= i is

EU e
j =

∞∑
k=1

EU e
j,k

=
∞∑

k=1

[P kδk−1Uj(q∗i , q
∗∗
−i) + (1− P )P k−1δk−1Uj(q∗∗)]

=
PUj(q∗i , q

∗∗
−i) + (1− P )Uj(q∗∗)

1− Pδ
.

Comparing EU c
j and EU e

j , it is easy to see EU e
j > EU c

j is equivalent to

PUj(q∗i , q
∗∗
−i) + (1− P )Uj(q∗∗)

1− Pδ
>

Uj [q∗]
1− δ

,

or

(14) P <
(1− δ)Uj(q∗∗)− Uj(q∗)

(1− δ)Uj(q∗∗)− Uj(q∗) + (1− δ)[Uj(q∗)− Uj(q∗i , q
∗∗
−i)]

.
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Notice that when δ → 1−, the right hand side of equation (14) approaches 1, while the

left hand side of (14) remains unchanged. The definition of P assures that P < 1, which

guarantees that (14) always holds when δ converges to 1. Therefore, with a large enough

discount factor δ, the discounted expected utility of group member j within the expulsion

scheme is always greater than that within Cournot punishment scheme.

4 When Insurance is Available

Our previous results are based upon the homogeneous agents assumption. We now extend

our findings to the heterogeneous agents case. Additionally, we consider the situation that

agents have different altitudes towards risks. It allows us to investigate the effect of risk-

sharing plans (insurance). Having risk-sharing plans is another prominent feature of craft

guilds in late-medieval England. Evidence from primary sources illuminates the essential

facts. Craft guilds insured members against the risks of everyday life such as poverty due

to accident, illness, or infirmity in old age; property losses due to acts of man and nature;

and the costs and uncertainties of litigation. An example illustrates the contingent nature

of guilds’ guarantees. In 1388, the ordinances of London’s tailors’ guild stated that:

If, God forbid, any one of the gild falls into poverty, and has not the means of

support, he shall have, every week during his life, seven pence out of the goods

of the gild. When one of the guild dies. . . four wax lights shall be put round

the body until burial, and the usual [religious] services and offerings shall be

made. . . on feast days, a mass shall be said for the souls of those who are dead.

If any one dies within the city, without leaving the means for burial, the gild

shall find the means, according to the rank of him who is dead. . . If a brother

or sister dies outside the city. . . the brethren. . . shall do for his soul what would

have been done if he died in his own parish. (Smith 1870 pp.179)
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Guilds also supported members when they were involved into litigations. In 1388, the ordi-

nances of Lincoln’s masons’ guild stated that:

The guild must stand by a brother. . . charged with any offense. . . with consul

and help, as if they were all children of the same father and mother. (Westlake,

1919 pp.171-173)

Another example also comes from Toulmin Smith’s book, English Gilds. In Berwick-upon-

Tweed around the year 1283, a number of occupational guilds merged into a single associ-

ation. The twelfth clause of their ordinances stated that

If a brother is charged, on a matter of life and limb, outside the borough, two

or three gildman shall help him, at the cost of the gild, for two days: afterwards,

it must be at the brother’s cost. If the brother has been rightly charged, he shall

be dealt with as the Aldermen and Brethren think well. (Smith 1870 pp.341)

A more recent study by Gary Richardson gives a comprehensive servery on the risk-sharing

plans provided by guilds in late-medieval England.

Most craft guilds promised [insurance] support. From the corporate census

of 1388, returns of forty craft guilds survive. Twenty-one describe the contingent

guarantees provided by the guild in considerable detail. More than two-thirds of

those guilds promised help to members “in poverty.”About one-quarter promised

help to members in need due to “sickness,”“blindness,”“theft,”and other acts

of God or man. Approximately ten percent promised help without stating the

circumstances. (Richardson, 2004, 9)

4.1 A Lemma

When insurance is under concern, generally things get complicated. The measures of risks

are correlated with the first and the second order derivatives of utility functions. Without
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a properly specified utility function, it is difficult to get us meaningful results. In order to

conquer this difficulty, we use a reasonable alternate — the discount factor — to capture

agents’ different attitudes towards risk.

Suppose the agents are of two types, high risk averse type (less risk tolerant) and low

risk averse type (more risk tolerant). They have identical discount factors δ. In order to

avoid the complexities the first and second order derivatives of the utility functions, we

consider an alternative situation that every agent has the same utility function (hence their

risk aversions are identical) but different discount factors, denoted δH and δL. We claim

that agents make identical insurance decisions in this two scenarios. In other words, we can

not identify what scenario we are in if we only observe agents’ insurance decisions. A formal

proof goes as follows.

Lemma 2 An insurance decision can be justified by the following two different combinations

of utility functions and discount factors,{
identical utility functions
different discount factors

}
and

{
different utility functions
identical discount factors

}
.

Proof. Suppose a insurance scheme takes two stages8. The agents receive an identical payoff

E at the beginning of each stage. At the first stage, agent i pays money Ai as her insurance

fee. Then in the next stage, with probability P , agent i will suffer a total loss E, and

get compensation Bi from the insurance scheme. Otherwise, she gets nothing in the second

stage. Assume the insurance scheme is actuarially fair, i.e. Ai = PBi. Denote discount factor

as δi and utility function as Ui, U
′
i > 0, U ′′

i < 0. The agent i is now facing the optimization

problem:

max
Ai

E[Ui] = max
Ai

{Ui(E −Ai) + δi[PUi(Bi) + (1− P )Ui(E)]}

= max
Ai

{Ui(E −Ai) + δi[PUi(
Ai

P
) + (1− P )Ui(E)]}.

8The following argument holds when the number of stages is finite. When there are infinitely many stages,
the derivation requires only minor changes.
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The first order condition gives

(15) δiU
′
i(

Ai

P
)− U ′

i(E −Ai) = 0.

By the Implicit Function Theorem,

(16)
dAi

dδi
= −

U ′
i(

Ai
P )

U ′′
i (E −Ai) + δi

P U ′′
i (Ai

P )
.

By the assumptions of the utility function, U ′
i > 0 and U ′′

i < 0, we know (16) is greater

than zero. This means when agents are facing identical risks, high discount factors induce

high insurance payments, and vice versa.

We now show that high risk aversion also leads to a high insurance payment. Imagine

two agents i and j that face the same risk and insurance scheme. Keep all else unchanged,

notice now that the discount factor δi = δj = δ ∈ (0, 1) is regarded as a constant. (15) then

gives

(17)
U ′

i(E −Ai)
U ′

i(
Ai
p )

= δi = δ = δj =
U ′

j(E −Aj)

U ′
j(

Aj

P )
.

Notice 0 < δ < 1, then 0 <
U ′

i(E−Ai)

U ′
i(

Ai
P

)
< 1 and 0 <

U ′
j(E−Aj)

U ′
j(

Aj
P

)
< 1. Because U ′

i and U ′
j are

strictly decreasing, we have

E −Aj >
Aj

P
(18)

E −Ai >
Ai

P
.(19)

Denote the Arrow-Pratt measure of absolute risk aversion as ρ ≡ −U ′′

U ′ . Suppose agent

i is less risk averse than agent j. Additionally, we have the relationship ρi < ρj . Pratt’s

Theorem tells us that Uj = G(Ui) for some increasing strictly concave function G. (17) then

becomes

(20)
U ′

i(E −Ai)
U ′

i(
Ai
P )

=
G′(Ui(E −Aj)

)
U ′

i(E −Aj)

G′
(
Ui(

Aj

P )
)
U ′

i(
Aj

P )
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Suppose some pair (Ai, Aj) such that Ai ≥ Aj satisfies (20). Easy to see E − Ai ≤ E − Aj

and Ai
P ≥ Aj

P . Because U ′
i is strictly decreasing, we have U ′

i(E − Ai) ≥ U ′
i(E − Aj) and

U ′
i(

Ai
P ) ≤ U ′

i(
Aj

P ). Therefore, the following inequality holds.

U ′
i(E −Ai)
U ′

i(
Ai
P )

≥ U ′
i(E −Aj)

U ′
i(

Aj

P )
.

(20) then implies

(21)
G′(Ui(E −Aj)

)
G′

(
Ui(

Aj

P )
) ≥ 1.

Since G is strictly concave, G′ is strictly decreasing. So (21) gives Ui(E − Aj) ≤ Ui(
Aj

P ).

Notice U ′
i > 0, we then have E − Aj ≤ Aj

P , which contradicts (18). We can thus conclude

that our assumption about the existence of the pair (Ai, Aj) such that Ai ≥ Aj is false

and therefore Ai < Aj always holds. Therefore high risk aversion leads to a high insurance

payment.

Combining these two results together completes the proof.

Lemma 2 guarantees that the discount factor is a reasonable alternate of risk aversion.

Therefore, we can discriminate agents by their discount factors to investigate the dynamics

among themselves.

4.2 Expulsion and Insurance

For group member i, comparing her utilities of staying in the group and living on reserved

benefit gives three possible outcomes:

1. Ui(q∗) > Ui(y);

2. Ui(q∗∗) ≥ Ui(y) ≥ Ui(q∗);

3. Ui(y) > Ui(q∗∗).
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The first scenario has already been discussed in the previous section. One should notice

that there exists a pooling equilibrium under expulsion scheme — both high-risk and low-

risk group members prefer cooperation to deviation.

Rational Individual constraint does not allow the third inequality happen. If reserved

benefit offers agents more utility than the maximum profit they can earn from the group,

nobody has an incentive to join the group. In fact, this case provides a upper bound of the

scale of the group. It is easy to see that when the number of group members approaches

infinity, even the cooperative equilibrium dies out. Given that the reserved benefit is positive,

at some point nobody wants to join the group. That moment gives the upper bound of the

group size. As most historical documents suggest,however, craft groups were prosperous in

late medieval England. Therefore, we can rule out this case.

The second scenario is of more interest. In this scenario, the previous argument does not

hold. But Proposition 2 tells us the expulsion scheme is still better than Cournot punishment

for those group members whose discount factors are great enough. At the same time, Lemma

2 says agents whose discount factors are greater can be regarded as having more risk averse

utility functions. So now, there exists a separative equilibrium — high-risk group members

choose deviation and low-risk members choose cooperation. The expulsion scheme provides

a screening mechanism, which provides another interpretation that expulsion is superior to

Cournot punishment.

Proposition 3 Expulsion provides a screening mechanism when Ui(q∗∗) ≥ Ui(y) ≥ Ui(q∗).

Proof. Following the logic in Proposition 1, within the expulsion scheme, group member i

is more likely to choose deviate. When a group member is detected deviating, her discount

factor should be small, which implies that she is less risk averse by Lemma 2. Expelling her

can protect other group members from being taken advantage of by group member i in the

sense that other agents are paying more insurance fees to cover agent i’s additional risk,

which helps the insurance scheme work better.
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A group distinguishes itself from society by offering its members a higher profit. This

profit might come from some monopolistic power (e.g. its brand or trademark). Only mem-

bers may enjoy this profit, while other agents live on the average social benefit level y. To

keep this monopolistic power, the group fixes its scale by limiting its membership. Because

of this potential profit, many agents would apply to become a member of the group. The

agents are of two types: high-risk and low-risk. Although both types of agents have the same

utility function, their discount factors are different. Lemma 2 tells us that δH < δL. The

high-risk agents have a lower discount factor than low-risk agents. Suppose the probability

of a agent being high-risk is P ∈ (0, 1).

Within the group, an insurance scheme is provided. With probability a a group member

will be struck by a disaster. When disaster strikes, the group member suffers a loss b. But

she can secure a future income by paying a certain amount of money d as an insurance

fee9. Assume the insurance scheme is actuarially fair, i.e. aδb = d, where δ is the average

discount factor of all group members.

The following proposition shows that an insurance scheme gives group members a higher

utility, which makes the cooperative outcome more likely to be obtained.

Proposition 4 The insurance scheme gives group members higher utilities when Ui(q∗∗) ≥

Ui(y) ≥ Ui(q∗)10.

Proof. Since the game is played identically infinite times, we need only to compare the

discounted expected utility of two sequential stages. Proposition 3 guarantees that all group

members are the low-risk type, whose discount factors are δL. Therefore the average discount

factor of all group members is equal to every group members’ discount factor, i.e. δ = δi =

δL.
9The insurance provider covers her loss b when disaster happens.

10When Ui(q
∗) ≥ Ui(y), the insurance may not make both the low-risk and the high-risk agents better off

because of potential adverse selection problem.
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Consider the case when no insurance is provided. Agent i earns Ui(q) at the first stage.

At the second stage, disaster strikes agent i with probability a. When disaster happens,

agent i bears loss b. His discounted expected utility is given by11

EUN
i = Ui[r(q)− c(q)] + δ{aUi[r(q)− c(q)− b] + (1− a)Ui[r(q)− c(q)]}.

On the other hand, when a fair insurance scheme is provided, agent i pays insurance fee

aδb at the first stage to assure her utility being fixed at Ui[r(q)− c(q)], (i.e. when disaster

strikes, she gets a compensation b from the insurance provider). His discounted expected

utility has the form12

EU I
i = Ui[r(q)− c(q)− aδb] + δUi[r(q)− c(q)].

Comparing EUN
i and EU I

i gives us the answer where the insurance scheme might benefit

the group members. Notice that U ′′
i < 0, we have

EU I
i − EUN

i = Ui[r(q)− c(q)− aδb] + δUi[r(q)− c(q)]− Ui[r(q)− c(q)]−

− δ{aUi[r(q)− c(q)− b] + (1− a)Ui[r(q)− c(q)]}

= Ui[r(q)− c(q)− aδb]− Ui[r(q)− c(q)] +

+ aδ{Ui[r(q)− c(q)]− Ui[r(q)− c(q)− b]}

= Ui[r(q)− c(q)− aδb]− {(1− aδ)Ui[r(q)− c(q)] +

+ aδUi[r(q)− c(q)− b]}

> 0

The last inequality comes from Jensen’s Inequality. It tells us that when Ui(q∗∗) ≥ Ui(y) ≥

Ui(q∗), the screening function of the expulsion mechanism helps the insurance scheme to

provide a higher utility. Therefore, insuring members against the risks of everyday life

helps business groups overcome free rider problems to achieve high product quality from its
11The superscript “N”denotes the case when no insurance scheme is provided.
12The superscript “I”denotes the case when an insurance scheme is provided.
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members. Groups that insure their members can create better reputations, all else being

equal, because their members have more to lose, and thus, are more intimidated by the

threat of expulsion.

Another interesting result can be obtained from this finding. Historical evidence shows,

a great social regime shift, such as the Black Death in late medieval Europe, could exert

big influence upon the craft guilds. Additionally, taking quality as a metric, historians find

that the average quality of groups’ products were at a low level before the Black Death, and

became high quality thereafter (Richardson, 2005b). We will show that this feature can be

justified by our model.

Proposition 5 When y decreases from Ui(q∗∗) ≥ Ui(y) ≥ Ui(q∗) to Ui(q∗) > Ui(y), the

average product quality q increases, i.e., aggravations of the social environment improve the

average quality of group’s products.

Proof. If we take y as a proxy of social regime, as we have shown in Proposition 3, as long

as Ui(q∗∗) ≥ Ui(y) ≥ Ui(q∗), the expulsion mechanism provides a screening function which

helps the group to discriminate high-risk agents from low-risk ones. This allows the insur-

ance scheme offered by the group to provide a higher utility level to its members. As long as

the condition Ui(q∗∗) ≥ Ui(y) ≥ Ui(q∗) holds, the insurance fee can be guaranteed to be fair

to the group members because they are homogenous. Additionally, the insurance fee is a

constant in this case because that: (1) the risk every group member faces remains the same;

and (2) the discount factor of every group member does not change. Any members that

remain in the group will all behave cooperatively by choosing quality level q∗∗. However,

because expulsion might happen, the average quality of the group’s product is affected.

When an expulsion takes place13, the group picks a new member randomly from the appli-
13Readers may doubt the existence of expulsion. It is true that within our previous settings, expulsions

can never happen if all its members are of low-risk type. But a tiny amendment can fix this problem. By
incorporating a constant mortality rate β, group members may pass away randomly, which provides the
group opportunities to accommodate new members. The mortality rate serves the same function as the
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cant pool. As we have assumed, the new member may be of high-risk type with probability

P . Once a high-risk agent joins the group, the condition Ui(q∗∗) ≥ Ui(y) ≥ Ui(q∗) induces

her to choose the Cournot equilibrium outcome. Given other group members choosing q∗∗,

the new member, denoted i, now faces the optimization problem as follows:

(22) q∗i ∈ arg max
q
{r(q)− c(qi)− d},

where q = 1
n

∑n
j=1 qj = 1

n [(n− 1)q∗∗ + qi].

The first order condition of this case is given by

(23)
1
n

r′(
n− 1

n
q∗∗ +

1
n

q∗i )− c′(q∗i ) = 0.

Comparing equation (3), (6), and (23), we have

(24) q∗∗ > q∗i > q∗.

The first inequality is obvious. The second inequality needs some explanation. Assume

q∗i < q∗. Because c′′ > 0, c′ is strictly increasing. Then we have c′(q∗i ) < c′(q∗). Equation (3)

and (23) give 1
nr′(n−1

n q∗∗ + 1
nq∗i ) < 1

nr′(q∗), or r′(n−1
n q∗∗ + 1

nq∗i ) < r′(q∗). Since r′′ < 0, r′ is

strictly decreasing. We have n−1
n q∗∗ + 1

nq∗i > q∗. At the same time, we have q∗∗ > q∗i , then

n− 1
n

q∗∗ +
1
n

q∗i >
n− 1

n
q∗i +

1
n

q∗i = q∗i > q∗,

which contradicts to our assumption q∗i < q∗. Therefore, (24) holds.

When a high-risk agent joins the group, we know that the average quality is given by

qH = 1
n

∑n
j=1 qj = 1

n [(n − 1)q∗∗ + q∗i ] < q∗∗. But when the new member is of low-risk

type, the average quality is qL = 1
n

∑n
j=1 qj = 1

n

∑n
j=1 q∗∗ = q∗∗. Therefore, the expected

(average) average quality of the group’s product is

(25) qb = PqH + (1− P )qL =
P

n
[(n− 1)q∗∗ + q∗i ] + (1− P )q∗∗ < q∗∗14.

discount factor. In fact, we can accommodate it into our model without losing any of the results we have
derived so far.

14The subscript b denotes before the social regime shift.
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When a great social regime shift such as the Black Death occurs, the decrease in y

is so dramatic that Ui(q∗∗) ≥ Ui(y) ≥ Ui(q∗) no longer holds. The condition becomes

Ui(y) < Ui(q∗). Proposition 1 tells us that expulsion can no longer exert the screening

function. Both types of agents, high-risk and low-risk, would like to behave cooperatively

by choosing some q∗∗. Since different types of members have different discount factors, the

insurance scheme cannot remain to be actuarially fair, although it may be fair on average.

The following derivation shows this fact.

For agent i, the insurance scheme is actuarially fair if and only if aδib = d holds. Because

the risk {a, b} is unchanged, higher discount factor δi will lead group member i paying a

higher insurance fee. But right now the group can not observe which type its members are,

it has to implement an average insurance fee among the members. Suppose the insurance

scheme is on average fair, i.e. aδb = d, where δ is the average discount factor. One may

notice δL > δ > δH . Therefore, low-risk members pay less than they should while high-risk

members pay more.

Notice now that the average quality qa = 1
n

∑n
i=1 qi = 1

n

∑n
i=1 q∗∗ = q∗∗15. Our previous

analysis (25) tells qb < qa. This completes the proof.

5 When Monitoring is Imperfect

In this section, we drop the assumption that monitoring is perfect, although it is still

assumed to be costless. We call the monitoring is imperfect if there exists some (p1, p2) with

0 < pi < 1 for i = 1, 2, such that

1. with probability p1, a group member who deviates from the cooperative quality will

be caught and expelled; and

2. with probability p2, a group member who sticks to the cooperative quality will be

falsely accused and expelled.
15The subscript a denotes after the social regime shift.
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Consider the infinitely repeated game. Assume there exists some strictly mixed equilib-

rium, meaning that for group member i, a strictly mixed strategy maximizes her expected

discount utility. Consider the strictly mixed strategy that she plays q1
i

16 with probability

1 > gi > 0, and chooses some q2
i

17 with probability 1 > 1 − gi > 0. We suppose q2
i is

determined by the group, so it is exogenous for group member i. In fact, q2
i serves as a

yardstick for the group to determine whether group members are deviating. Our previous

derivation assures that q2
i ∈ [q∗∗, q1

i ). The decision-making process for agent i can be re-

garded as follows: she first flips a coin which gives two exclusive outcomes with probability

gi and 1 − gi respectively; after agent i observes the outcome of the flipping, she chooses

corresponding quality q1
i or q2

i . Because this strictly mixed strategy is optimal for agent i,

it must maximize her expected discount utility. If group member i chooses q2
i , she survives

in the group in the next round with probability 1− p2; if she chooses q1
i , in the next round

she may be caught and expelled with probability p1, otherwise she survives. If an expulsion

happens, the expellee lives on the reserved benefit y thereafter. Therefore, agent i’s expected

discount utility is given by18:

EUi = gi[Ui(q1
i , q−i) + p1δiUi(y) + (1− p1)δiEUi] +

+ (1− gi)[Ui(q2
i , q−i) + p2δiUi(y) + (1− p2)δiEUi].(26)

By collecting like terms, we can simplify equation (26) as

EUi =
1

1− δi + p2δi + giδi(p1 − p2)
{gi[Ui(q1

i , q−i) + p1δiUi(y)] +

+ (1− gi)[Ui(q2
i , q−i) + p2δiUi(y)}.(27)

Notice that because all group members are identical, the game is symmetric. And the

existence of the Nash equilibrium requires that all group members should flip the same coin,

i.e. gi = gj , for ∀i, j ∈ {1, 2, · · · , n}. Therefore, we can drop all of the i subscripts.
16Regard q1

i as some noncooperative quality in the imperfect scenario. q1
i may differ from q∗.

17Regard q2
i as a cooperative quality in the imperfect scenario, q2

i may differ from q∗∗.
18Here we assume EUi is finite.
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We first prove that if q1
i is also exogenously determined19, almost surely that no strictly

mixed strategy survives within the expulsion regime, as declared in the following proposition.

Proposition 6 When neither cheating nor cooperation can be monitored perfectly, no

strictly mixed strategy survives in the expulsion regime if both q1
i and q2

i are exogenously

determined.

Proof. When group members are identical and both q1 and q2 are exogenous, then within

the expulsion regime, agent i will choose the optimal g to maximize her expected discount

utility (27). Or

g ∈ arg max
g

EUi

= arg max
g

{ 1
1− δi + p2δi + gδi(p1 − p2)

{g[Ui(q1
i , q−i) + p1δiUi(y)] +

+ (1− g)[Ui(q2
i , q−i) + p2δiUi(y)}

}
.

The first order condition is given by

(28)
1− δ + p2δ

δ
[
U(q1

i , q−i)− U(q2
i , q−i)

p1 − p2
+ δU(y)] = [U(q2

i , q−i) + p2δU(y)].

It has nothing to do with g. Therefore g = 0 or 1, which means no mixed strategy equilibrium

exists. In fact, when p1 = p2 = p > 0, we have

(29) (1− δ + pδ)[U(q1
i , q−i)− U(q2

i , q−i)] = 0.

Because δ < 1, 1 − δ + pδ > 0. It implies that U(q1
i , q−i) = U(q2

i , q−i) or q1
i = q2

i , which

contradicts to the assumption q1
i < q2

i .

Now let us turn to Cournot punishment regime. In Cournot punishment regime, the

group does not need to monitor every group members’ choice, but only average quality

q = 1
n

∑
j qj . Once the group detects that q < q2, the punishment begins. However, the

monitoring is imperfect, which means that when q < q2, the group may not detect it
19For instance, it may be due to some technology constraint.
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with probability 1 − p1, whereas when q = q2, the group may falsely detect cheating and

implements punishment with probability p2.

Analogous to Proposition 6, we have a similar result for Cournot punishment if both q1

and q2 are exogenously given.

Proposition 7 When neither cheating nor cooperation can be monitored perfectly, no

strictly mixed strategy survives in Cournot punishment regime if both q1
i and q2

i are ex-

ogenously determined.

Proof. Within Cournot punishment regime, when the average quality of group’s product

is caught to be less than q2, all other members will exercise Cournot quality q∗ forever.

Suppose such a strictly mixed symmetric equilibrium exists. And suppose group member

i’s expected discount utility is finite. By the recursive algorithm, group member i’s expected

discount utility is given by

EUi = g[Ui(q1
i , q−i) + p1δiUi(q∗) + (1− p1)δiEUi] +

+ (1− g)[Ui(q2
i , q−i) + p2δiUi(p∗) + (1− P2)δiEUi].(30)

By collecting like terms, we can simplify equation (30) as

EUi =
1

1− δi + p2δi + gδi(p1 − p2)
{g[Ui(q1

i , q−i) + p1δiUi(q∗)] +

+ (1− g)[Ui(q2
i , q−i) + p2δiUi(q∗)},(31)

which is identical to equation (27) except the term Ui(q∗) in (31) takes the place of Ui(y)

in (27). The first order condition is given by

(32)
1− δ + p2δ

δ
[
U(q1

i , q−i)− U(q2
i , q−i)

p1 − p2
+ δU(q∗)] = [U(q2

i , q−i) + p2δU(q∗)],

which is again independent of g. Therefore, g = 0 or 1, which means no mixed strategy

equilibrium exists. In fact, when p1 = p2 = p > 0, we again have equation (29). It implies

q1
i = q2

i , which contradicts to the assumption q1
i < q2

i . Therefore, with measure one, there is
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no strictly mixed strategy can survive within the imperfect monitoring Cournot punishment

regime if q1 and q2 are both exogenously determined.

Propositions 6 and 7 tell us that no strictly mixed strategy can survive within both

the expulsion regime and Cournot punishment regime if q1 and q2 are both exogenously

determined. As we have pointed out, q2 should be solely determined by the group, which is

exogenous to every group member. Therefore, the endogeneity of q1 is a necessary condition

for the existence of the strictly mixed strategy within both regimes. It is, however, not

sufficient for the existence of the strictly mixed strategy, which is given by the following

proposition.

Proposition 8 No strictly mixed equilibrium exists if the monitoring is imperfect.

Proof. Suppose there exists a strictly mixed strategy for agent i. Because the game is

symmetric, there must exist a strictly mixed symmetric equilibrium. Notice now agent i

can predict the average quality of other group members as gq1 + (1− g)q2, we have

(33) q1
i ∈ arg max

q
{r

((n− 1)gq + (n− 1)(1− g)q2 + q

n

)
− c(q)}.

Notice here we are considering the one-shot game, given other group members strategies.

In other words, we want to find out what is the optimal quality agent i would like to choose to

maximize her one-shot game utility. It differs from the strictly mixed strategy we discussed

previously because the strictly mixed strategy is optimal in the infinitely repeated game.

This maximization algorithm is reasonable because it tells us that in an infinitely repeated

game, given that every agent plays an identical strategy, when agent i flips a coin which

tells her to deviate in this round, the optimal quality she should choose.

The first order condition is given by20

(34)
1
n

r′
( [(n− 1)g + 1]q1 + (n− 1)(1− g)q2

n

)
− c′(q1

i ) = 0.

20We don’t need to consider the K-T condition because we have assumed that the maximum is achieved
on an interior point.
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From the Implicit Function Theorem, we have

(35)
dq1

dg
= −

1
n [ (n−1)(q1−q2)

n ]r′′
( [(n−1)g+1]q1+(n−1)(1−g)q2

n

)
(n−1)g+1

n2 r′′
( [(n−1)g+1]q1+(n−1)(1−g)q2

n

)
− c′′(q1)

> 0.

The last inequality comes from the fact that q1 < q2, r′′ < 0, and c′′ > 0. Therefore, we

deduce that with probability g increasing, the noncooperative quality q1 increases. However,

notice that a group member chooses q1 when g = 1 and chooses q2 when g = 0, it is

straightforward that q1 > q2. This contradicts our previous assumption that q1 < q2. This

result means that our assumption that there exists a strictly mixed equilibrium is false.

According to Proposition 8, we can assert that no matter what punishment regime

is examined, it is almost sure that no strictly mixed equilibrium exists. In other words,

Proposition 8 tells us that even in imperfect monitoring case, group members will always

choose pure strategies, i.e. gi = g = 0 or 1, and q1
i = q∗∗∗. Combining with the assumption

all group members are identical, it implies that by the group setting a cooperative quality

q2, either all or no group member will behave noncooperatively.

If the group sets cooperative quality as the average quality of all group’s products, we

have q2 = 1
nq1

i = q∗∗∗, which means no group member will deviate from this equilibrium.

Therefore, no expulsion will happen. The same result holds when the group sets some

cooperative quality q2 ≤ q∗∗∗. If the group increases the cooperative quality standard to

some q2 > q∗∗∗, group members will compare the expected discount utility of staying at

q2 and choosing q∗∗∗. It is determined by the functional forms of utility and the reserved

benefit y.

Additionally, if the monitoring technologies are identical in both expulsion and Cournot

punishment regimes, because all group members will play a pure strategy, the payoff struc-

ture given in section 3 will not change, which means Proposition 2 holds in the imperfect

monitoring case.
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6 Conclusion

The above analysis provides a theoretical foundation of how a group should carry out its

self-governance. Two measures are necessary for a self-governing group: (1)an expulsion

mechanism, a mechanism which allows the group to easily maintain a cooperative equilib-

rium. Or, it makes the cooperative outcome more robust; and (2)a risk-sharing plan, which

serves as both a screening mechanism and a utility-improving measure. It also presents a

justification for why these two measures prospered in craft guilds in late medieval England.

In fact, both expulsion and insurance assure that every member remains in the group, who

always behaves cooperatively, is more risk averse (low-risk type). Unlike the social groups

which also provide insurance schemes only attract less risk averse (high-risk type) agents,

the business groups’ insurance schemes provide protection to low-risk type agents. This

feature explains why the insurance fees within the groups were less by far than those within

social groups.
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