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MARKOV CHAIN ESTIMATION FOR TEST THEORY WITHOUT AN ANSWER KEY
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This study develops Markov Chain Monte Carlo (MCMC) estimation theory for the General Con-
dorcet Model (GCM), an item response model for dichotomous response data which does not presume
the analyst knows the correct answers to the test a priori (answer key). In addition to the answer key, re-
spondent ability, guessing bias, and difficulty parameters are estimated. With respect to data-fit, the study
compares between the possible GCM formulations, using MCMC-based methods for model assessment
and model selection. Real data applications and a simulation study show that the GCM can accurately
reconstruct the answer key from a small number of respondents.
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Introduction

Cultural Consensus Theory (CCT) models are developed for situations where the researcher
can write test or questionnaire items for a group of respondents who share common knowledge.
Unlike traditional applications of Item Response Theory (IRT), the CCT researcher does not
assume a priori knowledge of the “true” or “correct” response category for each item. Instead,
the answer key is treated as a set of parameters representing the cultural beliefs of a respondent
group. Thus, the data for CCT analysis are the respondents’ un-scored item responses. An ad-
ditional practical feature is that often CCT models can lead to accurate answer key estimates,
its main goal, with very small numbers of respondents (Batchelder & Romney, 1988), whereas
accurate IRT inference concerning respondent ability and item difficulty parameters may require
hundreds of respondents (e.g., Lord, 1983). CCT models have been successfully applied in an-
thropology, social psychology, cross-cultural psychology, social networks, and the analysis of
expert opinion (see the review by Romney & Batchelder, 1999).

Batchelder and Romney (1986, 1988, 1989) and Romney, Weller, and Batchelder (1986)
proposed and developed a model for dichotomous (Yes/No) items, called the General Condorcet
Model (GCM). The GCM was motivated by earlier work modeling dichotomous items in in-
formation pooling problems (Grofman & Owen, 1986). In the cited references, Batchelder and
Romney introduced respondent “ability” and respondent guessing bias parameters into the model
using an approach from signal detection theory (e.g. Green & Swets, 1966), and provided sub-
stantial rationale for the model. They also proved (Observation 5, Batchelder & Romney, 1988)
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that the GCM is structurally isomorphic to the two-class latent structure model (Clogg, 1981;
Lazarsfeld & Henry, 1968, chap. 2) with the roles of respondents and items interchanged.

Batchelder and Romney (1988) examined two versions of the GCM. They developed
method-of-moments estimation for the first version that allows respondent inhomogeneity in
ability, but assumes homogeneous item difficulties and no guessing response bias. They proposed
a more general GCM (described later) that adds inhomogeneity in item difficulty, however, es-
timation theory for this model awaited further development. Despite the availability of standard
IRT estimation procedures (e.g., Baker, 1992), developing estimation theory for the GCM is
not straightforward, because the unknown answer key is discrete (two-valued). For example,
simulated annealing (Aarts & Kours, 1989) was applied to estimate a GCM version (Batchelder,
Kumbasar, & Boyd, 1997) to overcome the combinatorially explosive number of possible answer
keys.

Fortunately, Markov Chain Monte Carlo (MCMC) estimation theory provides a flexible
framework to handle the estimation of even highly complex models (e.g., Carlin & Louis, 1998).
Recently, Patz and Junker (1999) introduce a general MCMC estimation procedure for IRT,
which can be applied to complex IRT models.

The general objective of the current study is to use MCMC’s flexibility to further examine
the GCM family. This study develops a MCMC estimation algorithm for the GCM, and shows
that the algorithm provides a natural way to estimate a model involving both discrete and con-
tinuous parameters. The study also presents MCMC-based statistical methods for testing GCM
assumptions, in addition to performing model selection between the GCM versions. The GCM
and MCMC framework is examined through applications to two real data sets as well as a sim-
ulation study. Before these applications, it is first necessary in the next section to review formal
aspects of the GCM, and for the section that follows, to describe the MCMC statistical analysis
framework.

The Single-Culture GCM for Dichotomous Data

Two-way designs represent a common data structure in CCT, containing N respondents,
{i =1,..., N}, and M questionnaire items, {k = 1, ..., M}. Three classes of random variables
describe the case of dichotomous test items:

1. Response profile: X = {X;;i=1,...,N,k=1,..., M}.

X = 1 if respondent i responds “Yes” to item k 1)
k=10 if respondent i responds “No” to item k.
2. Answerkey: L = (Zy,...,Zy).
7, — 1 if correct response to item k is “Yes” @
¥ =10 if correct response to item k is “No”.
3. Performance profile: Y = {Yj;i=1,...,N,k=1,..., M}
Yo = 1 ifrespondent i is “correct” onitem k, X;x = Z; 3)
k=10 if respondent i is “incorrect” on item k, X;; # Zy.

The performance profile in (3) does not refer to correct and incorrect in the “objective” sense, but
instead refers to the consistency of response X;; to the item key Z; believed by the respondent
group. In the CCT paradigm the analyst is only provided X, not Y, and the task is to use a model
to estimate the answer key Z, where Z represents the respondents’ consensus belief about the
correct item responses. This contrasts with typical IRT applications, where the analyst assumes
a-priori knowledge of Z and Y, and uses it to estimate IRT model parameters, such as respondent
ability and item difficulty.
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The following axioms describe the GCM (Batchelder & Romney, 1989):

Axiom 1: Single culture. All respondents belong to the same cultural group, characterized
by a correct answer z € {0, 1} for eachitemk=1,..., M.

Axiom 2: Conditional independence. The respondent-item response random variables sat-
isfy conditional independence, given by

N M
PriiX=x|Z=12] = ]_[ n Pr(Xix = xik|Zk = k), C)
i=1k=1 .

for all possible response profile matrices x and all possible answer keys z.

Axiom 3: Item inhomogeneity. Each respondent i = 1,..., N has latent hit rates H;; and
false-alarm rates F;j that vary over M items, where

Hyp ifzp=1

Pr{Xit = xitlZi = 2¢] = [ Fie ifge=0 ©

subject to the constraint 0 < Fix < Hyx < L.

The model, as described by the axioms, is not identifiable because it has been intentionally
overparameterized to permit various useful submodels to be defined. The constraint, Fix < Hix,
is needed to identify some of the submodels (see Batchelder & Romney, 1988, Observation 4),
described later.

As is well known in models of signal detection (Swets, 1996), the hidden variable of re-
sponse bias renders it difficult to directly interpret data in terms of hit and false-alarm rates.
Consequently, a special re-parameterization of the model is considered (Batchelder & Romney,
1988, 1989) by introducing two new parameters. First, Dix € (0,1) is the probability that re-
spondent i “knows” the correct response to item k, and g; € (0, 1) is the probability of guessing
“Yes” when the correct answer is unknown. The model is defined and restricted by:

Hix = Dix + (1 — Dir)gi, (6a)
Fit = (1 — Dix)gi, ‘ (6b)

where (6) is a version of the so-called double-high threshold model (Macmillan & Creelman,
1991). Specifically, (6a) is the probability of a correct response to an item with a correct answer of
“Yes” (Zx = 1). This is modeled as a function of the probability of knowing the correct answer,
Dix, and the probability of not knowing the correct answer but obtaining it through guessing,
(1 — D;x)gi. On the other hand, (6b) is the probability of incorrectly guessing “Yes” when the
correct answer is “No” (Z; = 0). Note that (6) does satisfy the restriction 0 < Fix < H; < 1.

Relative to N M observations of X, the model in (6) has N(M + 1) continuous parameters,
and M answer key parameters. Batchelder and Romney (1988) develop and apply a simplified
model {Hix = H;, Fx = Fi;i =1,...,N,k =1,..., M} that postulates item homogeneity.
They also note in passing that (6) can be further specified while retaining item inhomogeneity,
with the formulation:

B 6i(1 — &)
6i(1—8¢) + (1 — 68

fori =1,...,Nandk = 1,..., M, where ;, 8, € (0, 1) are the respondent ability param-

eter and item difficulty parameters, respectively. Equation (7) is a version of the Rasch model

(Roskam & Jansen, 1984) studied by Crowther, Batchelder, and Hu (1995) in detail. As with all
other parameterizations of the Rasch (1960) model (e.g., logistic), (7) is nonidentifiable, as more

Dy Q)
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than one pair of values {6;, §;} can yield the same Dj; € (0, 1). The current study identifies
(7) by setting §; = % for a single chosen item k € (1, ..., M}, though any single item can be
selected and set to a constant in (0, 1).

The fully parameterized submodel in (6) and (7) is called the GCM3 and has parameters

0=1{6,....6n),8=1(g1,....8n}, and 8={81,...,8m},

relative to the NM observations of X. This article also investigates three nested versions of
the GCM3. The GCM2g assumes neutral guessing bias, {g; = .5;i = 1,..., N}. The GCM2§
assumes item homogeneity by setting {6y =d € (0, 1); k =1, ..., M}, and the GCM1, employs
the restriction {g; = .5,8 =d € (0,1);i=1,...,N,k=1,..., M}. In the latter two models,
it is useful to set d = .5, because then (7) yields D;; = 6;, convenient for the interpretation of
ability.

As a matter of simplification, (6a) and (6b) are combined to yield a GCM expression of the
probability of a correct response to an item, p;y, as follows:

Pik = Pr{Xix = Z|Zy, 6;, 8i, &) = D,-Zkk +gi(1 — Dix)(2Z; - 1), ®

where in (8), Dj is a function of ; and §; through (7). In (8), pix is expressed in terms of the
answer key parameters and the other parameters of the model. The form emphasizes that the
GCM directly uses X, instead of Y, in estimation of the model parameters.

MCMC Estimation Theory for the GCM
Bayes Inference of the GCM3

The paper proposes Bayesian methods to estimate the various GCM submodels by em-
ploying an approach using MCMC. 1t is natural to incorporate Bayes theorem into the MCMC
estimation framework, though MCMC can also benefit non-Bayesian statistical inference (Geyer,
1996). This paper adapts a Bayesian perspective for GCM estimation, because it can handle both
uninformative and informative priors, either which may be important in a particular GCM appli-
cation. Also MCMC allows one to employ modern methods of Bayesian model assessment and
model selection, described later.

The GCMs joint posterior distribution for Z and = {6, g, 8} is

LX|Z, Qn(Z, Q)

p(Z,QX) = f LXI|Z, Q)n(Z, Q)d(Z, Q) '

&)

where L(X|Z, 2) refers to the GCM likelihbod, m(Z, 2) is the joint prior distribution, and the
normalizing constant in the denominator is the marginal distribution of X.
In (9), under Axioms 1 and 2, the GCMs likelihood is given by:

N M
LX|Z, Q) = ]_[ I—[ pgcikzk'F(l—Xik)(l—Zk)(l _ pik)Xik(l-—Zk)+(l—X,-k)Zk, (10)
i=1k=1

where p;; is given by (8). The exponent on p;; in (10) is 1 for a “correct” response, and 0 oth-
erwise. Similarly, the exponent on (1 — p;;) indicates an incorrect response. These exponents
enable simultaneous estimation of the GCM without requiring a priori knowledge of Y, the per-
formance profile.

The current study specifies the prior distribution of the answer key by independent item
priors, with marginal distribution 7 (Z;) = ¢kz"(1 — ¢x)!%, where ¢ = Pr[Z; = 1],k =
1,..., M. The current study sets ¢ = % for all items, which yields a noninformative prior for
the answer key Z. The rationale is not to suppose any prior knowledge about the correct answers,
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but to let the data “speak for themselves”. For example, an anthropologist might give a set of
questions in an exotic language to a person who will analyze the data with the GCM. The analyst
is not thought to peruse (or even read or know) the content of the questions, so the Bernoulli
prior probability % represents this view. Of course, informative priors on Z can be useful when,
for instance, prior information is available on the respondents’ beliefs.

This study also employs independent priors for the parameters in €2, though dependence
might be useful when, for example, respondents with more knowledge (6;) tend to have larger
guessing biases (g;). Assuming independence, the beta distribution may be specified as the
marginal for each GCM parameter y € £, as it is the natural conjugate prior for a random
variable in (0, 1) (e.g., Carlin & Louis, 1998). The beta density has a flexible form (Johnson &
Kotz, 1970) given by:

vl -yt
n(y) = Bla.b) an
The denominator B(a, b) is the so-called beta function, and a, b > 0 govern the shape of the
beta distribution, which can vary over each element in .

This study most often employs noninformative (uniform, a = b = 1) beta priors on all the
respondent ability, respondent bias, and item difficulty parameters. Of course, these noninforma-
tive priors on the model parameters result in a prior on the H;; and F;; which satisfies neither
independence nor marginal uniformity, because in (6) and (7) they are nonlinearly related to the
GCM3 parameters. From a psychological perspective, guessing bias, the g;, abilities, the 6;, and
difficulties, the 8, can be viewed as substantively separable. They are so because independent
experimental manipulations, that are typical of studies in signal detection (Swets, 1996), could
effect one parameter without having an effect on the others (e.g., the base rate of “yes” items,
more education, or difficult item wording). Psychologically, by all accounts, parameter classes
like H;; and Fj; depend on the same underlying processes (guessing and ability), and this might
make one more skeptical about postulating independent uniform priors for them. The current
authors believe that independent noninformative beta priors are a reasonable choice, given the
substantive considerations mentioned, and especially when there is no prior information avail-
able on the latent parameters. However, for pragmatic reasons, this study explores informative
priors in a couple of GCM applications.

The GCM MCMC Algorithm

The posterior distribution in (9) has a complicated form, and it seems impossible to ei-
ther derive closed-form estimators, or even to employ direct simulation methods to gener-
ate independent samples from p(Z, Q|X). An alternative approach to model estimation in-
volves implementing Markov Chain Monte Carlo (MCMC) to generate T dependent samples
{zZ, QY {Z,92)9, ..., {Z, 2}, ..., {Z, Q}T} from the posterior distribution, with each
iterate {Z, 2} randomly generated as a function of the previous iterate {Z, Q}¢=D, Compre-
hensive treatments of MCMC inference are found in many recent texts (e.g., Carlin & Louis,
1998; Gilks et al., 1996). ‘

This section develops a general MCMC algorithm for estimating the posterior distribution of
the GCM. Under certain conditions such as irreducibility and geometric ergodicity (see Tierney,
1994, for more details), if the number of iterations 7 is large enough, then the set of observations
from the chain {{Z, 2}®;¢ =1, ..., T} leads to an approximate sample from p(Z, 2|X).

In a single sampling iteration ¢, the MCMC estimation algorithm for the GCM3 entails four
steps, each containing two sub-steps (see Patz & Junker, 1999, for a related algorithm). Let6_; =
{61,...,6i_1,6i41,...,0n}, with g_;, 5k, and Z_j similarly defined. Also, the respondent
and item response vectors are given by X; = (X;1,..., Xim) and Xg = (Xi), ..., XN,
respectively. The following MCMC algorithm is introduced, which adds an “answer key sampler”
for Step 1.
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Step 1. Draw Z ~ p(ZIQ¢~, X), where pj) = Pr[Xik = Zk|{Z, 6;, &, 8}~ D],
(a) Independently draw ry ~ Unif[0, 1] foreach 1 <k < M.

(b) Decide:
N ® \ !X 0\ Xik -l
{ 1-p! 1-
70 _ Y1 iffre < 1+n( plk(t)) ( (g'k) ( ¢k)
k i=1 \1—py Pix b

0 otherwise.
(12)
Step 2. Attempt to draw ) ~ p(9|Z, g, 8, X), where rest2 = {Z®, {6_;, g, §}¢~D, X}.
(a) Candidate generation: Independently draw 67 ~ Unif(0, 1) and r; ~ Unif[0, 1]
foreachl <i < N.
(b) Decide:

L(X;6; , rest2)m (6)

L(X; IO,-“’”, rest2)n(0i("'l)) . (13)
otherwise.

Hi(') _ 0,? iff r; <

Bi(t -1

Step 3. Attempt to draw g) ~ p(g|Z, 9, 8, X), where rest3 = {{Z, 6}®, {g_;, 5}¢~D, X].
(a) Candidate generation: Independently draw g ~ Unif(0, 1) and r; ~ Unif[0, 1]
foreachl <i < N.
(b) Decide:

L(X;|g¢, rest3)m (g€
o s iffr; < (Xilg; )(g)

g = T LXilg" ™, rest3)m (g P) (14)

i i
gi('_l) otherwise.

Step 4. Attempt to draw §) ~ p(8|Z, 8, g, X), where restd = {{Z, 6, g}®, s, X}.
(a) Candidate generation: Independently draw 8¢ ~ Unif(0, 1) and ry ~ Unif[0, 1]
over M — 1 items (for an item k, set 6 = % overt=0,...T).
(b) Decide:
L (X |5, restd)m (87)

LXil8¢ ™Y, restym (3¢ D) (15)
otherwise.

&  iffn <

® _
%= #-1)
8k

The equations in substep (b) of the four MCMC steps use full-conditional posterior distributions
that characterize the Gibbs sampler (e.g., Gelfand & Smith, 1990). Steps 2, 3, and 4 employ
the Metropolis-Hastings algorithm (e.g., Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953), where a step generates a candidate parameter value in sub-step (a), and
sub-step (b) decides whether to accept it. The decision is based on a posterior odds-ratio that
compares the posterior probability given the parameter candidate with the posterior probability
given the parameter value at iteration ¢ — 1. Clearly, special cases of the MCMC algorithm handle
the submodels of the GCM3. GCM$ needs only MCMC Steps 1 through 3, GCMg only Steps 1,
2, and 4, and GCM1 only requires Steps 1 and 2.
Some observations should be made about the MCMC algorithm:

1. Step 1 is a data augmentation procedure (e.g., Tanner, 1996) which uses Gibbs sampling to
obtain probable “latent data” Z(*), where the bracketed equation in (12) is item k’s posterior
key probability at iteration ¢. The equation implies that, for any item k, the GCM compares the
set of pik (correct-response probabilities) among the group individuals who respond X = 1,
against the set of p;x among the group of individuals who respond X;; = 0. Since the p;x may
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differ over respondents, a minority of respondents can “outweigh” the majority in determining
the posterior mode estimate Zk.

2. Substep (a) of Metropolis—Hastings Steps 2, 3, and 4 has a convenient feature. For each
parameter 6;, 3¢, and g;, a candidate can simply be drawn from the uniform (0, 1) distribution,
and furthermore, uniform candidate distributions result in an irreducible MCMC chain. Such
a chain can reach any region of the domain of the GCMs true posterior in a finite number of
iterations.

3. As mentioned, the odds-ratio in substep (b) of Metropolis Steps 2, 3, and 4 is a posterior
odds-ratio, simplified to the form (assuming Beta priors):

LX|y¢, rest)(y©)*~1(1 — y©)*~!
LIy ©D, rest) (y ¢~ Dya=1(1 — y DT’

(16)

where the posterior marginal density and B(a, b) constants cancel out of the numerator and
denominator.

The posterior distribution p(Z, 2|X) obtained from the generated T MCMC samples can
be summarized in a number of ways. This study chooses a discrete interpretation of the answer
key estimate, with the posterior mode Z., having posterior key probability {Pr{Z; = Zi;1 <
k < M}. Also, the study interprets the point estimate of  in standard fashion with the posterior
mean § = {9, g, 3}, though the mode or median are other options. Furthermore, the posterior
variance of Q may be detailed by 95% Bayesian intervals, bracketed by .025 and .975 posterior
quantiles.

In the GCM3 and GCM2g, the median (and average) over the posterior means 0 =
{61, ...,6x), and that of & = {51, .. .,3um), depends on which item difficulty parameter is
fixed before MCMC estimation. It is customary in IRT inference to center § and § estimates
around some useful point. Accordingly, the current study centers the posteriors  and & to .5,
relative to an item with median (posterior mean) difficulty dmed among the M items. By extend-
ing equation 4 of Crowther, Batchelder, and Hu (1995) to the current context, any point estimate
nebi,....0n,81, ..., 1) is centered around dmeq by:

.S_Smed -5"8med
* = 14— 1 - 17
" "( +smed—.samed)/ [ +"(smed—.samed)] {an

Define D;y, as the result, after plugging in any pair of posterior means {6;, 8} into (7). Then each
of the posterior means {8;, 8}, through (17), are centered to {6;,5;). Plugging these centered
values into (7) yields ﬁ,*k such that invariance holds, namely 51*,( = D;. The posterior quantiles
of 6 and § are centered in the same manner.

MCMC Convergence Analysis

Of course, the degree to which the posterior estimates are useful depends on how well the
MCMC sample converges to the target joint posterior, p(Z, Q|X). Cowles and Carlin (1996) re-
view the many methods available to assess MCMC convergence, which help the analyst choose
an appropriate number of MCMC iterations T. In general, before interpreting a model’s pos-
terior, it is good practice to discard the samples obtained from the first B “burn-in” iterations
{Z, )93t = 1,..., B}, as they may depend on possibly arbitrary starting values {Z, Q}©.
It is also important that the observed sequence of the chain is mixed adequately, that is, it does
not have too much dependence. This is checked by autocorrelation analysis on each of the GCM
parameters over the T iterations. In fact, Geyer (1992) suggests that the burn-in B should be
greater than the lag needed to achieve negligible autocorrelations.
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It is not the scope of the present study to enter into details on convergence analysis. How-
ever, a later section devotes to a simulation study that evaluates how well the MCMC algorithm
reproduces data-generating GCM parameters.

GCM Model Evaluation and Selection with MCMC

It is possible to detect important systematic differences between the statistical model and
observed data, by generating replicated data sets from the posterior predictive distribution, and
then examining differences between the observed and replicated data sets. For any GCM, the
posterior predictive distribution is as follows:

pX™|X) = / p(X™|Z, Q)p(Z, QIX)d(Z, ), (18)

where (18) is the density of “future” data replications X™P, which are conditioned on model
parameters {Z, 2}, and the data X used to estimate them. Thus, X™P can be viewed as “probable
data” under the GCMs posterior. The predictive distribution (18) is simulated over the T MCMC
iterations, simply as a byproduct of the four-step algorithm described earlier. After the 4th step
of iteration ¢, independently overalli = 1,...,Nandk'=1,..., M, Yir:p(t) = 1 is generated
with probability p?, otherwise Yi',fp(') = 0, yielding:

As in Gelman, Meng, and Stern (1996), posterior predictive p-values are obtainable from
(18) over the T — B MCMC (nonburn-in) samples to evaluate the fit of a GCM to data. They can
be obtained to assess the data-fit of any particular important aspect of the model. For instance,
the posterior p-value of observed response X is estimated by:

T
X=X =T - B Y [XaXFO+ 0 - X - X)), 0
t=B+1

where a low p-value indicates that observation X4 is unlikely to have occurred under the model.
Now consider the Bernoulli deviance function, stated in terms of the GCM:

N M
DX;Z,Q) = _22 Zen[P,v}](cika+(l-Xik)(l_Zk)(1 _ pik)xik(l—Zk)+(1—Xik)Zk]’ 1)
i=1 k=1

where, as in (8), p; is conditional on {Z, Q2} (for examples of deviance functions, see McCul-
laugh & Nelder, 1983). Then the global posterior p-value of a GCM is estimated by

Pr{D(X™?; Z, Q) > D(X; Z, Q)]

— (T B! i {1 iff DIX"P; {Z, ) 2 DX; (2, 2))

0 otherwise. (22)

t=B+1

As shown, the p-value in (22) is based on the MCMC-estimated reference distribution of
D(X™?; Z, Q), where a low p-value implies that data X is unlikely to have occurred under the
model. The method can be simplified to examine the fit of a GCM to any subset of X. For ex-
ample, the posterior predictive p-value of a respondent’s vector X;, obtained by modifying (21)
and (22) to evaluate D(X;ep; Z, Q) and D(X;; Z, 2), checks whether respondent i’s responses
are consistent with the single culture assumption of Axiom 1. The posterior predictive p-value of
an item’s response vector X, obtained in the same manner, provides an item-specific evaluation
of fit.
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Within the context of discrete-data regression, Gelman et al. (1999) note in passing that the
posterior predictive inference can be employed to evaluate a model’s assumption of conditional
independence. Yen’s Q, known as a (frequentist) statistic that tests the zero correlation null hy-
pothesis of an IRT model’s conditional independence assumption (see Chen & Thissen, 1997),
is adapted into the current posterior predictive framework of the GCM. The posterior p-value of
the Q statistic is estimated by:

PrQ(Y[P, Y% Z,Q) = Q(Y;, Y3 Z, Q)]

j
T : rep(t)
=T-B7") [1 it 0

=B+1 |0 otherwise.

z \Q}}) 23)

The posterior p-value estimator in (23) depends on the MCMC-estimated reference distribution
of Qgﬁp(r), which correlates

) (¢t 1 t (t
sV, ) = (70 = piY - Y - piag)

between respondents i and j on replicate data. The statistic QE;) pertains to the observed data, as

it correlates res(Y®, p”) between i and j, where Y = XuZ{) + (1 - Xa)(1 - Z;"). Alow
p-value supports a violation of independence in Axiom 2, for respondents i and j.

Comparing the fit between different GCM versions also provides an evaluation of the item
inhomogeneity assumption of Axiom 3, and the assumption of neutral guessing bias among the
N respondents. The evaluation can be achieved with model selection methods that aim to iden-
tify the best fitting model among a competing set of models, that is, the one that has the best
tradeoff between data underfit and overfit. Bayesian model selection is offered by the Deviance
Information Criterion (DIC, Spiegelhalter, Best, Carlin, and van der Linde, 2002). For a given
GCM, the DIC yields:

DIC(GCM) = D(X; Z, Q) + 2(D(X; Z, Q) — D(X; Z, 2)), (24)

where D(X; Z, Q) is the GCM deviance (21) evaluated at the posterior mode Z and posterior
mean 2, and D(X; Z, Q) is the posterior mean of (21) over the MCMC chain, D(Z, Q) =
(T—B)~' 3%, D(X; {Z, 2)®). The difference component in (24), D(X; Z, 2)~ D(X; Z, ),
penalizes model complexity. The DIC penalty approximates Ye's (1998) generalized formulation
of degress of freedom (Spiegelhalter et al. 2002), which measures the sensitivity of the model
parameters to changes in the observed data. The model with the lowest DIC is identified as best
fitting, where models within 2 to 3 DIC units of the “best” deserve consideration (Spiegelhalter
et al. 2002).

According to Spiegelhalter et al. (2002), one practical advantage of DIC model selection is
that it does not posit that one of the competing models is “true” (unlike the Bayes factor method;
see Bernardo & Smith, 1994). Furthermore, it can be applied to arbitrarily complex models,
which may either have informative priors, correlated parameters, or where the number of param-
eters increase with the number of observations (as is the case with the GCM). On the other hand,
the current authors agree that model selection analysis should not lead to an “automatic” choice
of a model (see Gelman & Rubin, 1995, 1999), something that Spiegelhalter et al. reccommend
for DIC applications. All the GCM comparisons performed in this study therefore use DIC and
posterior predictive model assessment in combination.

GCM Computer Program

A program was written using the S-PLUS (Insightful Corporation, 1995) statistical software
package to perform all the MCMC estimations of the GCM described in this study. The code can
be obtained directly from the corresponding author.
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GCM Analysis on Real Data

This section applies the GCM on two data sets to compare the data-fit performance between
the different model versions, and to demonstrate technical aspects of GCM answer key inference.
This section bases each model analysis on 5,500 MCMC samples, discarding the first 500 as
burn-in (justified by Geyer’s, 1992, criterion).

General Information Test

The first data set contains responses of 40 University of California-Irvine psychology under-
graduates to 40 True/False trivia items of the General Information Test (GIT, Nelson & Narens,
1980). This data set benchmarked the GCM1 in previous studies (Batchelder & Romney, 1988).
This section analyzes the GIT data with the GCM1, GCM2g, GCM4, and GCM3, using indepen-
dent uninformative priors on (Z, £2).

The DIC model selection analysis in Table 1a concludes GCM2g as best fitting. The GCM3
was second best, but it has the highest DIC penalty. Also, item inhomogeneity models GCM2g
and the GCM3 fit much better than item homogeneity models GCM1 and GCM234. This is in-
teresting because previous analysis of the GIT data set assumed item homogeneity. Furthermore,
the item difficulty parameters, compared to the bias parameters, better capture the variance of the
GIT response data, as shown in comparing DIC values between the GCM2g and GCM24.

The posterior predictive model assessments of Table 1b show that, at most, only 10 re-
sponses (out of 1600 = 40*40) misfit the four models. Also, all respondents fit all four models,
supporting single culture Axiom 1. Furthermore, the posterior predictive assessments add further
support for item inhomogeneity Axiom 3. The GCM1 and GCM?24 have about 25% misfitting
items, while the item inhomogeneity models GCM2g and GCM3 have at most 1 misfitting item.
Finally, Table 1b shows that the GCM2g and GCM3 are generally consistent with conditional
independence Axiom 2.

In the GCM2g, the average of posterior means § was .46 with variance .04, and the average
over & was .49 with variance .06. The model’s estimated answer key Z, with exception to items

TABLE 1.
Evaluations of GCM fit to the general information test data

Model selection analysis with the deviance information criterion

Model DX;Z.9Q) DX, Z ©) Penalty DIC

GCM2g 1590.2 1656.5 66.3 1722.8
GCM3 1531.1 1629.2 98.0 1727.2
GCM1 1732.7 1768.1 354 1803.5
GCM25s 1663.1 1733.8 70.7 1804.4

Posterior predictive fit analysis of the GCM.

Number of posterior predictive p-values < .10

% of Respondent
Misfitting Misfitting Misfitting Global Pairs Violating C/
Model Responses Respondents Items p-value (p < .10)
GCM2g 9 0 0 .30 33
GCM3 10 0 1 .04 3.1
GCM1 0 0 10 .29 14.0
GCM2§ 5 0 9 ) .05 6.3

Note: C1 refers to Conditional Independence
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15 and 30 (GIT items listed in Romney, Weller, & Batchelder, 1986), corresponds to the actual
correct answers on the GIT. This implies that the respondents’ cultural beliefs generally matched
the objectively true answers for the items, though in many applications of GCM this is not the
case (Romney, Weller, & Batchelder, 1986). Over all items, the model posteriors Pr[Z; = Zk]
averaged .96 with variance .01.

Items 15 and 30 in the GCM2g do have the highest estimated difficulty, {315 = .87, 830 =
91}, Item 15’s estimate 215 = 1 is common to the four models, and the posterior p-value
concludes that the item fits in three of them (criterion > .10). Item 30 fits the GCM2g and
GCM3 (p-values .25 and .20 respectively), which infer Z3 = 1. But the same item misfits the
GCM1 and GCM2$ (p-value = .00 for both models), which infer Z30 = 0. The estimate Z30 =1
thus seems more reasonable. On closer inspection, with respect to the correct-probability vector
(P1,15, . - . Pn;15) obtained by plugging Z and € into the GCM2g, the 22 majority respondents
responding 0 = “False” had an average correct-response probability of .58, and the 18 minority
respondents who responded 1 = “True” averaged .60. Thus, the minority’s slight superior ability
overturned the majority, and the posterior probability Pr{Z3p = 1] = .57 reflects these slight
differences.

To conclude the analysis of the GIT data set, the DIC model selection analysis and posterior
predictive model assessments support that item difficulty parameters can certainly improve the fit
of a GCM. These parameters also can help increase the precision of answer key estimates, which
may be important in “close” answer key decisions, as shown with GIT item 30, where majority
rule was “reversed” to decide 230 =1.

Medical Student Communication Performance

The second data set involves a medical student of a major Louisiana university, who was
evaluated on his ability to communicate effectively to a live actor who simulated a 5-minute
medical scenario. The scenario required the student to effectively deliver the news of a patient’s
death to a family member, played by the actor. Student performance was judged by the actor (A)
simulating the scenario, a medical school professor (P) serving as an independent observer, and
the student (S) evaluating his own performance. The judges evaluated the student’s performance
through 1 = “Yes”, 0 = “No” responses on a 33-item test, where each item pertains to a desirable
patient communication behavior.

In addition to the four GCM versions with uninformative priors, the second data example
considers two other GCMs with informative priors. First, the model GCM3p15 is a GCM3 with
a = b = 15 beta priors on each and every item difficulty parameter (i.e., prior mean of .50,
and variance .008). Tightening the variance of the beta distribution adds information to the item
difficulty parameters, since each only has three responses from the data (N = 3). Second, the
model GCM-ORD makes the following assumptions: (1) the restriction fp > 8 > s specifying
the professor to have highest judge ability and the student the least; (2) only the student can have
nonneutral guessing bias, {gp = ga = .5,0 < gs < 1}, as he may be over- or under-optimistic
in his own performance evaluation; and (3) item homogeneity. From a Bayesian perspective, the
order constraints 0 < s < Gp < 0o < 1 constitute an informative prior:

2(6) = {6 iffOp > O > 65

0 otherwise, (25)

where (25) is a probability density function on (0, 1)V=3_ As in Gelfand, Smith, and Lee (1992),
such a complicated prior is routinely accommodated for GCM-ORD posterior estimation by
modifying Step 2 of the MCMC algorithm to sample each of the 6; one-by-one. For example,
that step generates candidate 65 from the “updated” candidate distribution Unif(6, ®, B(t 1)) The
reader is also referred to Karabatsos (2001) for related MCMC applications of order—resmcting

priors, used for the estimation of the isotonic ordinal probabilistic model of IRT (Scheiblechner,
1995).
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TABLE 2.
Comparison of GCM models by DIC and the posterior predictive p-value
Model D(X; Z, O DX.Z,Q) Penalty DIC  Posterior p-value
GCM25 79.4 88.4 9.0 974 .49
GCM3pl5 78.5 88.5 10.0 98.4 46
GCM3 71.7 859 142 100.1 42
GCM-ORD 90.1 95.2 5.1 100.3 S1
GCM1 89.5 99.3 9.8 1090 - 50
GCM2g 822 99.6 17.3 116.9 38

Table 2 shows the DIC and posterior predictive fit for the six GCM versions. It concludes the
GCM?2$ as best fitting, with three other close competitors within 3 DIC units. The highest DIC
penalties of GCM3 and GCM2g imply that the item difficulty parameters cause model overfit,
which is not surprising with N = 3. However, the a = b = 15 item difficulty priors did improve
model fit, as GCM3p15 and GCM2§ have similar DIC. Finally, in all six models, the posterior
predictive assessments of all responses, items, respondents, and of conditional independence,
yielded p-values greater than .10.

Tables 3 and 4 give detailed results of the GCM2§ analysis. Table 3 lists the judge posteriors

{Op = 44,8p = .36}, (Ba = 64,84 = .69}, and {@s = .43,gg = .79},

which suggest that the student was overly optimistic about his own performance, while the pro-
fessor was the most severe judge. For each of the 33 items, Table 4 gives the key estimate, and the
item response pattern X; = (Xpx, XAk, Xs¢) observed over the 3 judges. The student’s perfor-
mance Z is the same as what is obtained from observing the majority rule of the item responses.
The posterior probabilities Pr{Z; = 21:], over items, averaged .88 with variance .02, which is
remarkable for N = 3.

The GCM-ORD concludes fp = .69, 8o = .47, and {fs = .24, g5 = .83}, and infers
an answer key Z different from the GCM23 on nine items. Denote an item’s responses by
X, = (Xpr, XAk, Xsk). Eight items had pattern X; = (0, 1, 1), and one had X; = (1,0, 0).
Conclusions Z; = 0 and Z; = 1 are equally likely for all these items, where the posterior key
probability Pr{Z; = 2k] was around .50 for them. Thus, a single item response of the professor,
postulated to have the highest medical expertise and no bias, had about as much weight as the
responses of the two student judges.

The second data set illustrated that, for very small N, the GCM can obtain high answer
key posterior probabilities. Respondent parameters, like the item difficulty parameters, may also
be instrumental in reversing majority rule for the answer key estimate Z. Furthermore, informa-
tive priors are useful for improving a GCMs fit under small N (or M) conditions. They may
also address substantive aspects of answer key inference, as shown with the GCM-ORD, which
represents only one simple example.

TABLE 3.
GCM2$ judge posteriors, involving the medical student data set

Posterior Distribution of the Judges

Posterior Ability 6; Posterior Bias g; Posterior predictive
Judge Mean 2.5% 97.5% Mean 2.5% 97.5% p-value fit
Professor 44 .05 87 .36 .07 .66 .39
Actor .64 12 .96 .69 .48 97 57

Student 43 .05 .90 .79 21 .96 .39
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TABLE 4.
GCM23 item posteriors, involving the medical student data set

Item Key Posteriors Posterior

Vector Zi PrZ; = Z) p-value fit Item

111 1 .99 .95 1. Fully introduced his/herself.

011 1 .88 52 2. Fully identified the listener.

1 1 99 95 3. Addressed listener by proper surname.
111 1 1.0 96 4. Quickly established rapport. '
111 1 99 95 5. Sat down when communicating.

111 1 99 95 6. Initially assessed listener’s understanding
111 1 99 .96 7. Used open-ended questions.

111 1 99 .96 8. Did not interrupt speaker.

011 1 .88 .50 9, Used good nonverbal communication.
111 1 .99 .96 10. Recounted events in sequential order.
111 1 99 96 11. Explained the diagnosis to the listener.
110 1 72 24 12. Used understandable language.

010 0 .60 25 13. Showed integrated medical knowledge.
111 1 99 96 14. Provided eye contact when listening.
111 1 99 96 15. Provided eye contact when speaking.
011 1 .88 52 16. Understood what the listener felt.

011 1 87 St 17. Made listener feel at ease.

001 0 .80 55 18. Interested in the listener’s concerns.
101 1 .56 21 19. Addressed emotional needs.

010 0 .60 27 20. Talked about listener’s support system.
011 1 .88 52 21. Offered to help inform loved ones.

100 0 70 35 22. Offered to contact other family.

001 0 82 57 23. Addressed listener’s need for comfort.
001 0 82 .56 24. Acknowledged the listener’s distress.
111 1 .99 95 25. Ensured access during times of need.
001 0 81 .56 26. Summarized at the end of encounter.
000 0 92 72 27. Assessed listener’s understanding.
000 0 92 72 28. Asked: “Anything we didn’t cover?”
111 1 99 95 29. Treated the listener with respect.

111 1 99 95 30. Did not use rehearsed communication.
011 1 .87 S1 31. Conveyed confidence.

011 1 .86 51 32. Behaved as the listener’s advocate.
011 1 .88 52 33. Informed listener about social services.

Note: Item vector refers to the item response vector X; = (Xp;, Xai, Xsi)-

GCM Simulation Study

The current section generates response profile data, and evaluates the ability of each GCM
model to recover the generating parameters and answer keys through MCMC estimation. To
reflect data sets more typical of CCT research, four types of small respondent sample sizes are
considered, N = 3, 7, 15, and 25. These sample sizes were examined on short, medium, and
long tests, M = 15, 31, and 61 items, respectively. The GCMS3 is the focus of the 12 (= 4*3)
simulations, as it enables a simultaneous study of all GCM parameters.

For the N = 3 simulation conditions, the generating respondent ability vector was 6 =
(.25,.50, .75). For N = 7, the generating vector was 0 = (.02,.18,.34, .50, .66, .82, .98),
hence, the ability distribution is spaced by increments of .16 around the .5 median. Similarly,
the N = 15 and N = 25 conditions used .069 and .04 ability increments, respectively. For
the generating bias parameters, N = 3 conditions used g = (.50,.75, .25), and for each of
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the N = 7, 15, and 25 conditions, g values were independently drawn from the (0, 1) uniform
distribution.

On the short test conditions, item 8 was assigned median difficulty of .5, and the remaining
14 items increased (decreased) in .069 difficulty increments around the median. The medium test
conditions assigned item 16 with median difficulty and used .03 increments, while the long test
conditions used item 31 and ,016 increments, respectively. To facilitate comparisons between the
generating and estimated item difficulties, the median generating item was fixed to .5 difficulty
in MCMC estimation, and the resulting difficulty posteriors were uncentered. Finally, for each of
the 12 simulations, M independent draws, from the discrete uniform distribution in {0, 1}, were
made to obtain the generating answer key.

The twelve simulation conditions provide strict evaluations of the GCM3. For example,
the DIC model selection analysis in Table 1 showed that, by far, the GCM3 had the highest
overfit (DIC penalty) on a N = 40 data set. Furthermore, each of the twelve simulations will
base posterior estimates on only 3,500 MCMC samples (first 500 samples discarded as burn-in),
which possibly render the conditions stricter.

Table 5 gives the results of the simulation study, presenting the degree to which the GCM3
estimates recover the generating parameters Q = {6, g, 8}. This degree is measured by “Avg.
|Dis|”, the absolute distance between a parameter’s estimated posterior means and its corre-
sponding generated parameter, averaged over all simulated respondents (or items). The standard
deviation of the set of absolute distances is labeled “s.d. |Dis|”. Over all twelve simulations, for
the ability, bias and item difficulty parameters, the average discrepancy ranged from .04 to .19.

TABLE 5.
GCM3 simulation study: discrepancies between generating parameters with the corresponding posterior means and
intervals

|Dis] NotPI |Dis| NotPI |Dis| NotPI

Avg. s.d. 95 99 Avg. s.d. 95 99 Avg. s.d. 95 99
N=3M=15 N=3M=31 N=3M=61

0 15 12 0 0 .04 .02 0 0 12 A1 0 0

g 24 13 0 0 .16 .03 0 0 1 .04 0 0

8 25 13 0 0 .19 14 0 0 25 15 1 0
N=71M=15 N=7,M=31 N=17,M=61

6 A2 .06 1 0 15 .14 1 1 .09 .08 0 0

g 11 .10 0 0 15 15 0 0 07 .06 0 0

8 24 12 0 0 .19 10 0 0 .18 .13 1 0
N=15M=15 N=15M =31 N=15M =61

e .19 .14 0 0 A1 .09 0 0 .06 .04 0 0

g 17 .10 0 0 .09 07 0 0 07 .07 0 0

8 14 .10 0 0 13 A1 0 0 13 .09 0 0
N=25M=15 N=25,M =31 N=25M=61

0 .15 11 1 0 .10 10 1 0 .07 .05 0 0

g .09 .08 0 0 1 1 0 0 .10 12 2 0

] 10 .06 0 0 11 .09 0 0 .10 .08 1 0

Note: [Discr| Avg. is the average absolute discrepancy between parameter posterior means and their respective generating
parameters. |Discr] s.d. is the standard deviation of these discrepancies. NotPI 95 refers to the number of generating
parameters not contained in their corresponding 95% posterior intervals (quantiles: .025, .975). NotPI 99 refers to 99%
posterior intervals (quantiles: .01, .99).
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The ability and bias parameter discrepancies generally decreased with M, and the discrepancies
of the item difficulty decreased with N, as expected.

For each of the twelve simulated data sets, Table 5 also displays results on the number of
generating 2 parameters falling outside of their corresponding estimated posterior interval. In
Table 3, for example, the “NotPI 95" refers to the 95% interval on posterior quantiles-.025 and
.975, and “NotPI 99” pertains to the 99% interval on quantiles .01 and .99. The Table shows that
over all these data sets, only nine of the 728 GCM3 generating 2 parameters fell outside the 95%
interval, and only one outside the 99%. The only inconsistent 99% posterior interval, pertaining
to an ability parameter, had a .61 value for the .99 posterior quantile, while the generating ability
was .66. This interval may have included the generating value if more MCMC samples were
utilized (e.g., 10,000) to obtain better convergence to the posterior.

With respect to convergence, unfortunately, the simulations also showed that the MCMC
autocorrelations of the ability and bias parameters increased with M, and the autocorrelations
of the item difficulty parameters increased with N. For example, in the N = 25 and M = 25
condition, over ali @ and g parameters, the lag needed to yield nonsignificant autocorrelations
ranged between 4 and 45, with 80 the most extreme. For N = 25 and M = 61 simulation, the
range of that lag was 10 and 80, with the three most extreme parameters ranging from 113 to 184.
Similarly, in the N = 3 and M = 61 condition, over all § parameters, that lag was at worst 13.
In contrast, the N = 25 and M = 61 condition had a lag range of 6 and 41, and three difficulty
parameters had the most extreme lag, ranging from 66 and 225. All these autocorrelation results
occurred because the uniform candidate densities, employed in MCMC Steps 2 through 4, cause
the full conditionals of 9, 8, and g to become more concentrated on a part of the (0, 1) interval
as N M increases. Increasing the concentration decreases the candidate acceptance rates, which
in turn increases the autocorrelations. But despite this autocorrelation issue, a relatively small
number of MCMC iterations, under small N conditions, did seem to yield consistency between
the generating parameters and posterior intervals.

Table 6 presents the GCM3 ability to recover the generating answer keys. Table 6a presents
the number of matches between the generating item keys, and the key posterior modes, for all

TABLE 6.
GCM3 simulation study: Agreement between generating answer keys and their posterior estimates

(a) Number of agreements between generating item answer keys
and the corresponding posterior mode item keys.

M=15 31 61

N=3 15 27 54

7 15 30 57
15 14 31 61
25 14 31 60

(a) Average estimated posterior probability of generating answer keys.

Item difficulties generated from interval:
©,.11 (1,21 (2,31 (3,4 (4,5 (5.6 (6,71 (7,8 (8.9 [9D

N=3 .97 .88 91 .89 .94 87 7 .80 .58 .70
7 1 .99 .98 .96 .97 95 .95 .95 .84 95
15 1 1 1 1 1 1 1 .96 .96 .90
25 1 1 1 1 1 1 1 .99 97 .84

Number of items generated from difficulty interval over the 12 simulations:
11 10 11 10 13 10 10 12 10 10
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twelve simulations. The key recovery rate ranges from 87% to 100%, where the rates increase
with N. Of the 17 items with posterior Zi mismatching the generating item key in-the simula-
tions, twelve had a generating item difficulty in the range [82, .98], and five had range [.55, .72].
This result is expected, because item difficulty correlates with the posterior key probability. The
estimate §; ~ 1 implies that all N responses are governed by guessing, and hence provide little
information about Z;. When §; = 0, all N respondents know that item, and there is very high
certainty about Zy. This correlation is supported in Table 6b, which presents the estimated pos-
terior probabilities of the generating item keys, as a function of item difficulty, and sample size.
These posterior probabilities are averaged over items with generating difficulties in the corre-
sponding range, over all the twelve simulation conditions. The posterior key probabilities of the
GCM3 did generally have high recovery rates of the generating item keys, even for very small N.

Conclusion

Markov Chain Monte Carlo inference enables routine analysis of General Condorcet Models
with answer key, respondent ability, respondent guessing bias, and item difficulty parameters.
The two real-data applications support that the item difficulty and guessing bias parameters can
usefully capture a significant amount of variance in test response data, and can be important for
answer key estimation. Finally, it was shown that the GCM accurately recovers the answer key
for a small number of respondents. Future research will adapt the MCMC framework developed
in this study to estimate GCMs formulated for multiple choice and ranking test formats, as well
as for “multi-culture” GCMs able to estimate more than one answer key (Batchelder & Romney,
1989, 2000).
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